Abstract: Provided herein are transdermal delivery devices comprising tetrabenazine, a deuterated tetrabenazine, or a combination thereof. Also provided herein are pharmaceutical compositions, such as adhesive compositions, comprising tetrabenazine, a deuterated tetrabenazine, or a combination thereof, for example, homogenously dispersed in an adhesive, such as a pressure sensitive adhesive. Further provided herein are methods of using the transdermal delivery devices or pharmaceutical compositions, for example, for treating a hyperkinetic movement disorder.
Type:
Grant
Filed:
April 24, 2019
Date of Patent:
November 19, 2024
Assignee:
SHINKEI THERAPEUTICS, INC.
Inventors:
Suresh Borsadia, Kalpana Patel, Hock S. Tan
Abstract: The present invention relates to a process for microwave assisted synthesis of N-methyl pyrrolidone (NMP). Particularly the process relates to the synthesis of N-methyl succinimide or corresponding analogs by using microwave irradiation which on hydrogenation in the presence of a hydrogenating catalyst gives N-methyl pyrrolidone. Compared to the conventional heating microwave process requires less energy inputs and reduces the reaction time drastically from 5-6 h to 2-5 min.
Type:
Grant
Filed:
September 4, 2014
Date of Patent:
July 28, 2015
Assignee:
COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
Inventors:
Praveen Kumar Khatri, Suman Lata Jain, Alok Kumar Chaterjee, Sain Bir
Abstract: The present invention relates to a method of producing bio-based homoserine lactone and bio-based organic acid through hydrolysis of O-acyl homoserine produced by a microorganism in the presence of an acid catalyst. According to the present invention, O-acyl homoserine produced by a microorganism is used as a raw material for producing 1,4-butanediol, gamma-butyrolactone, tetrahydrofuran and the like, which are industrially highly useful. The O-acyl homoserine produced by a microorganism can substitute conventional petrochemical products, can solve environmental concerns, including the emission of pollutants and the exhaustion of natural resources, and can be continuously renewable so as not to exhaust natural resources.
Type:
Application
Filed:
March 19, 2014
Publication date:
October 2, 2014
Inventors:
Han Won Lee, Young Lyeol Yang, So Young Kim, Yong Uk Shin, Jin Sook Chang, Hye Won Um, Young Hyoung Goh, Sung Hoo Jhon
Abstract: The present invention relates to a mixture comprising itaconic acid or an itaconic acid derivative and a primary amine of the formula (I) R—NH2??(I) where the molar ratio of primary amine to itaconic acid or the itaconic acid derivative is in the range from 0.5:1 to 20:1, wherein the mixture comprises 50 mole percent or less of 4-carboxypyrrolidones of the formula (II), derivatives of the 4-carboxypyrrolidones of the formula (II) and 4-carbamidopyrrolidones of the formula (III) based on the itaconic acid used or the itaconic acid derivative used and in which R is a linear or branched saturated aliphatic radical having 1 to 24 carbon atoms or a saturated cycloaliphatic radical having 3 to 24 carbon atoms. The invention further provides for the use of the inventive mixtures for preparing 1,3-alkylmethylpyrrolidones and/or 1,4-alkylmethylpyrrolidones, and also a process for preparing 1,3-alkylmethylpyrrolidones and/or 1,4-alkylmethylpyrrolidones.
Type:
Grant
Filed:
November 24, 2009
Date of Patent:
August 5, 2014
Assignee:
BASF SE
Inventors:
Tobias Wabnitz, Rolf Pinkos, Karl Ott, Katja Lamm
Abstract: Methods for forming ammonium salts of C4 diacids in a fermentation process with removal of divalent metal carbonate salts are disclosed. The pH of fermentation broths for production of C4 diacids is controlled by adding alkaline oxygen containing calcium or magnesium compounds, which forms divalent metal salts of the diacids. The divalent metal salts of the diacids are substituted with ammonium by introduction of ammonium salts at elevated temperature and pressure forming soluble ammonium salts thereof. C02 or bicarbonate is simultaneously added to the fennentation media at the elevated temperature and pressure. Reducing the temperature and pressure forms insoluble divalent metal carbonate salts that are separated from the solubilized ammonium diacid salts.
Abstract: Processes for making pyrrolidones include providing a clarified diammonium succinate (DAS)-containing and/or monoammonium succinate (MAS)-containing fermentation broth; distilling the broth under super atmospheric pressure at a temperature of greater than 100° C. to about 300° C. to form an overhead that includes water and ammonia, and a liquid bottoms that includes SA, and at least about 20 wt % water; cooling and/or evaporating the bottoms to attain a temperature and composition sufficient to cause the bottoms to separate into a liquid portion and a solid portion that is substantially pure SA; separating the solid portion from the liquid portion; and converting the solid SA portion to pyrrolidones.
Type:
Application
Filed:
May 17, 2011
Publication date:
July 11, 2013
Applicant:
BIOAMBER S.A.S.
Inventors:
Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
Abstract: Processes for making pyrrolidones include making MAS and/or SA from a clarified DAS- and/or MAS-containing fermentation broth and converting the MAS or SA to the pyrrolidones, typically with catalysts at selected temperatures and pressures.
Type:
Application
Filed:
May 18, 2011
Publication date:
June 6, 2013
Applicant:
BIOAMBER S.A.S.
Inventors:
Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
Abstract: A double-walled plastic jar for cosmetic materials, having an inner compartment to hold the cosmetic, and an annular outer side wall defining the exterior of the jar. The inner compartment carries the lip that seals with a screw cap, and also carries an external skirt, which latter has the screw threads for engagement by the cap. In addition, a weight is disposed in a-concealed manner in the base of the jar, between the walls, to give the jar a heft feel, characteristic of glass or thick plastic walls.
Type:
Application
Filed:
April 4, 2011
Publication date:
February 21, 2013
Inventors:
Johan van Walsem, Erik Anderson, John Licata, Kevin A. Sparks, William R. Farmer, Christopher Mirley, Jeffrey A. Bickmeier, Ann D'Ambruoso, Frank A. Skraly, Thomas M. Ramseier, M.S. Sivasubramanian, Yossef Shabtai
Abstract: The present invention relates to a mixture comprising itaconic acid or an itaconic acid derivative and a primary amine of the formula (I) R—NH2??(I) where the molar ratio of primary amine to itaconic acid or the itaconic acid derivative is in the range from 0.5:1 to 20:1, wherein the mixture comprises 50 mole percent or less of 4-carboxypyrrolidones of the formula (II), derivatives of the 4-carboxypyrrolidones of the formula (II) and 4-carbamidopyrrolidones of the formula (III) based on the itaconic acid used or the itaconic acid derivative used and in which R is a linear or branched saturated aliphatic radical having 1 to 24 carbon atoms or a saturated cycloaliphatic radical having 3 to 24 carbon atoms. The invention further provides for the use of the inventive mixtures for preparing 1,3-alkylmethylpyrrolidones and/or 1,4-alkylmethylpyrrolidones, and also a process for preparing 1,3-alkylmethylpyrrolidones and/or 1,4-alkylmethylpyrrolidones.
Type:
Application
Filed:
November 24, 2009
Publication date:
October 13, 2011
Applicant:
BASF SE
Inventors:
Tobias Wabnitz, Rolf Pinkos, Karl Ott, Katja Lamm
Abstract: The present invention relates to a new process for preparing 2-oxo-I-pyrrolidine derivatives of general formula (I) wherein the substituents are as defined in the specification.
Type:
Grant
Filed:
September 13, 2004
Date of Patent:
December 8, 2009
Assignee:
UCB Pharma S.A.
Inventors:
John Surtees, Françoise Lurquin, Ousmane Diouf
Abstract: Process for the continuous preparation of N-ethyl-2-pyrrolidone (NEP) by reacting gamma-butyrolactone (GBL) with monoethylamine (MEA) in the liquid phase, wherein GBL and MEA are used in a molar ratio in the range from 1:1.08 to 1:2 an the reaction is carried out at a temperature in the range from 320 to 420° C. and an absolute pressure in the range from 70 to 120 bar.
Type:
Application
Filed:
May 10, 2007
Publication date:
July 23, 2009
Applicant:
BASF SE
Inventors:
Helmut Schmidtke, Ralph Versch, Silke Simon, Karl Ott, Ronald Drews, Stephanie Mollner
Abstract: A process for preparing an N-alkyllactam with improved color quality, wherein from 0.01 to 10% by weight of a C1-10-alcohol or a compound which releases from 0.01 to 10% by weight of a C1-10-alcohol is added to the N-alkyllactam. A mixture comprising at least 99.0% by weight of an N-alkyllactam and in the range from 100 to 5000 ppm by weight of a C1-10-alcohol or of an acetal, aminal or of an orthoester which releases in the range from 100 to 5000 ppm by weight of a C1-10-alcohol.
Abstract: This invention relates to a process for producing a reaction product comprising 5-methyl-N-alkyl-2-pyrrolidone by (a) reacting levulinic acid with alkyl amine(s) and (b) hydrogenating the products of step (a) in the presence of a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl amines utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams, N-alkyl-2-lactams, and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl or alkyl nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl amines utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams, N-alkyl-2-lactams, and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl or alkyl nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams, N-alkyl-2-lactams, and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl or alkyl nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl amines utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-1-R-2-pyrrolidone or 5-methyl-2-pyrrolidone, wherein R is a hydrocarbyl or substituted hydrocarbyl, by reductive amination of levulinic acid utilizing a metal catalyst, which may be optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-N-aryl-2-pyrrolidone, 5-methyl-N-cycloalkyl-2-pyrrolidone, and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid esters with nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl amines utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams, N-alkyl-2-lactams, and N-cycloalky-2-lactams by reductive amination of lactones with aryl or alkyl nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: A process for continuously preparing 2-pyrrolidone by reacting gamma-butyrolactone with ammonia in the liquid phase in the presence of water, wherein the reaction is carried out at a temperature of from 275 to 300° C. and an absolute pressure of from 140 to 180 bar.
Type:
Application
Filed:
February 24, 2004
Publication date:
December 2, 2004
Inventors:
Martin Rudloff, Peter Stops, Erhard Henkes, Helmut Schmidtke, Rolf-Hartmuth Fischer, Manfred Julius, Rolf Lebkucher, Karl-Heinz Ross
Abstract: This invention relates to a process for producing 5-methyl-N-(methyl aryl)-2-pyrrolidone, 5-methyl-N-(methyl cycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with aryl cyano compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-N-aryl-2-pyrrolidone, 5-methyl-N-cycloalkyl-2-pyrrolidone, and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-N-aryl-2-pyrrolidone, 5-methyl-N-cycloalkyl-2-pyrrolidone, and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid esters with nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-N-(methyl aryl)-2-pyrrolidone, 5-methyl-N-(methyl cycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid esters with aryl or alkyl cyano compounds utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-N-aryl-2-pyrrolidone and 5-methyl-N-cycloalkyl-2-pyrrolidone by reductive amination of levulinic acid or its derivatives with aryl amines, ammonia or ammonium hydroxide utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl amines utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-N-aryl-2-pyrrolidone, 5-methyl-N-alkyl-2-pyrrolidone, and 5-methyl-N-cycloalkyl-2-pyrrolidone by reductive amination of levulinic acid esters with aryl or alkyl amines utilizing a metal catalyst, which is optionally supported.
Abstract: This invention relates to a process for producing 5-methyl-1-R-2-pyrrolidone or 5-methyl-2-pyrrolidone, wherein R is a hydrocarbyl or substituted hydrocarbyl, by reductive amination of levulinic acid utilizing a metal catalyst, which may be optionally supported.
Abstract: This invention relates to a process for producing N-aryl-2-lactams, N-alkyl-2-lactams, and N-cycloalkyl-2-lactams by reductive amination of lactones with aryl or alkyl nitro compounds utilizing a metal catalyst, which is optionally supported.
Abstract: In a process for preparing pyrrolidone, which may be N-substituted, substrates selected from among C4-dicarboxylic acids and their derivatives are hydrogenated in the gas phase under anhydrous conditions with or without addition of ammonia or primary amines and using a Cr-free catalyst which comprises from 5 to 95% by weight of CuO, preferably from 30 to 70% by weight of CuO, and from 5 to 95% by weight of Al2O3, preferably from 30 to 70% by weight of Al2O3, and from 0 to 60% by weight, preferably from 5 to 40% by weight, of ZnO.
Type:
Application
Filed:
December 19, 2003
Publication date:
August 12, 2004
Inventors:
Rolf-Hartmuth Fischer, Rolf Pinkos, Markus Rosch, Frank Stein
Abstract: The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Type:
Grant
Filed:
October 25, 2002
Date of Patent:
March 16, 2004
Assignee:
Battelle Memorial Institute
Inventors:
Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
Abstract: The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Type:
Application
Filed:
October 25, 2002
Publication date:
July 3, 2003
Inventors:
Todd Werpy, John G. Frye, Yong Wang, Alan H. Zacher
Abstract: The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Type:
Application
Filed:
October 25, 2002
Publication date:
June 26, 2003
Inventors:
Todd Werpy, John G. Frye, Yong Wang, Alan H. Zacher
Abstract: The invention relates to a method for producing cyclic lactams of formula (II) by reacting a compound (I) of formula (I) with water in the presence of an organic, liquid dilution agent in the liquid phase. In formula (II), n and m respectively can have the values 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and the sum of n+m is at least 3, preferably at least 4 and R1 and R2 represent C1-C6 alkyl, C5-C7 cycloalkyl or C6-C12 aryl groups. In formula (I), R1, R2, m and n are defined as above and R represents nitrile, carboxylic acid amide and carboxylic acid groups. The inventive method is characterized in that a) compound (I) is reacted with water in the liquid phase in the presence of an organic, liquid dilution agent (III) to form a mixture (IV) containing a lactam (II) and said mixture (IV) is subjected to an aqueous treatment to obtain a two-phase system.
Type:
Application
Filed:
October 17, 2002
Publication date:
June 19, 2003
Inventors:
Frank Ohlbach, Andreas Ansmann, Peter Bassler, Rolf-Hartmuth Fischer, Hermann Luyken, Stefan Maixner, Johann-Peter Melder
Abstract: The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Type:
Application
Filed:
June 18, 2001
Publication date:
May 22, 2003
Inventors:
Todd Werpy, John G. Frye, Yong Wang, Alan H. Zacher
Abstract: The present invention provides a method for producing a carbonyl compound by dehydrogenating an alcohol. Namely, it relates to a method for producing a carbonyl compound, which comprises dehydrogenating an alcohol in the presence of a complex compound catalyst comprising ruthenium and an organic phosphine wherein aliphatic carbons are bonded to two or more of the three bonding hands of the phosphorus atom.
Abstract: Novel tetramic acid-type compounds isolated from a CCR-5 active complex produced by fermentation under controlled conditions of a biologically pure culture of the microorganism, Chaetomium globosum Kunze SCH 1705, ATCC 74489., pharmaceutical compositions containing the compounds and the use of the CCR-5 antagonist compounds and compositions to treat HIV-1 infections in humans are disclosed.
Type:
Application
Filed:
March 23, 2001
Publication date:
September 12, 2002
Inventors:
Min Chu, Ronald A. Mierzwa, Joseph Terracciano, Mahesh G. Patel
Abstract: An adhesive composition which lacks functional groups containing reactive hydrogen moieties and contains no post-polymerization chemical crosslinker finds use in transdermal drug delivery systems. The invention enables the administration of drugs containing a reactive functional group, which drugs have heretofore not been able to be administered by the transdermal route using conventional acrylic adhesives.
Type:
Application
Filed:
September 18, 2001
Publication date:
June 20, 2002
Inventors:
Eric Silverberg, Rama Chandran, Paul Foreman, Michael Philbin, Smita Shah
Abstract: The present invention is related to a method for preparing lactam represented by the following formula:
wherein R is C2-10 alkylene which may be optionally substituted with C1-6 alkyl or phenyl; R′ is a hydrogen atom, C1-6 alkyl, C1-6 hydroxyalkyl or phenyl. The method for preparing lactam comprises an amination reaction using crystalline aluminosilicate zeolites as catalysts under the condition of gas phase in the presence of (a) lactone, (b) amine and/or ammonia and (c) water.
Abstract: 4-Hydroxy-2-pyrrolidinone which is useful as a raw material of drugs can be produced rapidly and highly selectively in a high yield from an optically active or recemic 4-amino-3-hydroxybutylic acid derivative or a 4-azido-3-hydroxybutyric acid derivative by adding a base catalyst to the reaction system. 4-Hydroxy-2-pyrrolidinone having a high optical purity can be obtained by carrying out recrystallization of optically active 4-hydroxy-2-pyrrolidinone without using a poor solvent.
Abstract: A process for manufacturing gamma-butyrolactone by the catalytic hydrogenation of maleic anhydride, succinic anhydride or their acids in the vapor phase in the presence of catalysts based on copper oxide and aluminum oxide in reduced form is described. The process is characterized in that a catalyst is employed to conduct the reaction which is formed on the basis of 50 to 95 % by weight copper oxide, 3 to 30 % by weight aluminum oxide and 0 to 25 % by weight of a binder. Preferably the catalyst is formed on the basis of 83.5 to 85.5 % by weight copper oxide, 9 to 11 % by weight aluminum oxide, and 4.5 to 6.5 % by weight graphite. The reaction mixture obtained can be used directly without separating off the water, e.g. for manufacturing N-methylpyrrolidone.
Abstract: 2-Pyrrolidones can be prepared by simultaneous reaction of maleic acid, ammonia or a primary amine and hydrogen at elevated temperature and elevated pressure in the liquid phase over a supported catalyst, with the supported catalyst containing both palladium and rhenium in metallic or bound form.
Abstract: There is provided a process for producing a cyclic N-vinyl carboxylic acid amide stably in safety and low cost, using, as starting raw materials, a cyclic carboxylic acid ester and monoethanolamine both available inexpensively and easily. The process comprises subjecting a cyclic carboxylic acid ester and monoethanolamine to an intermolecular dehydration reaction (a first-step reaction) in a liquid phase to produce a cyclic N-(2-hydroxyethyl) carboxylic acid amide and then subjecting the cyclic N-(2-hydroxyethyl) carboxylic acid amide to an intramolecular dehydration reaction (a second-step reaction) in a gas phase in the presence of an oxide catalyst containing an alkali metal element and/or an alkaline earth metal element and silicon, to produce a cyclic N-vinyl carboxylic acid amide.
Abstract: Preparation of N-alkenylcarboxamides of the general formula I ##STR1## where at least one of the radicals R.sup.1 is hydrogen and the second radical R.sup.1 is hydrogen or a C.sub.1 -C.sub.4 -alkyl group, the radical R.sup.2 is an aliphatic, cycloaliphatic, araliphatic or aromatic radical which can be bonded to the radical R.sup.3 to give a 3- to 10-membered bridge member, and the radical R.sup.3 is hydrogen or an aliphatic, cycloaliphatic or aromatic radical, from an alkenyl carboxylate of the general formula II ##STR2## where R.sup.1 has the meanings indicated above and R.sup.4 is hydrogen or an aliphatic, cycloaliphatic or aromatic radical, and a carboxamide of the general formula III ##STR3## where the radicals R.sup.2 and R.sup.3 have the meanings indicated above, by reacting the starting compounds in the presence of a base is described.
Type:
Grant
Filed:
August 10, 1995
Date of Patent:
June 24, 1997
Assignee:
BASF Aktiengesellschaft
Inventors:
Thomas Ruhl, Jochem Henkelmann, Marc Heider
Abstract: Cyclic lactams are prepared by reacting an aminocarboxylic acid compound of the formula IH.sub.2 N--(CH.sub.2).sub.m --COR.sup.1 Iwhere R.sup.1 is --OH, --O--C.sub.1 -C.sub.12 -alkyl or --NR.sup.2 R.sup.3 and R.sup.2 and R.sup.3, independently of one another, are each hydrogen, C.sub.1 -C.sub.12 -alkyl or C.sub.5 -C.sub.8 -cycloalkyl and m is an integer from 3 to 12, with water by a process in which the reaction is carried out in the liquid phase using a heterogeneous catalyst.