Iron, Cobalt, Nickel, Ruthenium, Rhodium, Palladium, Osmium, Iridium, Or Platinum Containing (fe, Co, Ni, Ru, Rh, Pd, Os, Ir Or Pt) Patents (Class 556/16)
-
Patent number: 9834572Abstract: The present invention relates to a process for preparing hydridocarbonyltris(triphenylphosphine)rhodium(I), RhH(CO)(PPh3)3, also referred to hereinafter as “Rh-hydrido.” An alcoholic suspension of triphenylphosphine is stirred with an Rh(III) chloride precursor at elevated temperature. The Rh(III) chloride precursor used may be rhodium(III) chloride hydrate RhCl3*xH2O or rhodium(III) chloride solution H3[RhCl6]*(H2O)n. After cooling, alcoholic alkali metal hydroxide solution is added, and the mixture is stirred for a few hours. Finally, sparging is effected with CO gas and the Rh-hydrido formed is removed. Rh-hydrido can be prepared by this process on the industrial scale with high yields and at very good quality.Type: GrantFiled: July 3, 2015Date of Patent: December 5, 2017Assignee: Umicore AG & Co. KGInventors: Angelino Doppiu, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner
-
Patent number: 9295983Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.Type: GrantFiled: December 23, 2014Date of Patent: March 29, 2016Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CHEVRON U.S.A. INC.Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
-
Patent number: 9243016Abstract: The present invention is directed to the synthesis of novel stable open metal clusters by selective oxidation of bound ligands. The synthesis comprises, for example, using an amine based oxidant for decarbonylation of specific carbonyl ligands. The synthesis can also comprise further removal of a bound amine group by an acid. The resulting metal cluster contains a coordinatively unsaturated site comprising a carbonyl vacancy. The resulting metal cluster can be used as a catalyst in a variety of chemical transformations.Type: GrantFiled: September 23, 2013Date of Patent: January 26, 2016Assignees: Chevron U.S.A. Inc., The Regents of the University of CaliforniaInventors: Alexander S. Katz, Alexander Kuperman, Alexander Okrut, Ron C. Runnebaum, Xiaoying Ouyang
-
Patent number: 9163045Abstract: The invention relates to a process for preparing diketonato-rhodium(I)-carbonyl complexes, especially diketonato-rhodium(I)-triorganophosphine-carbonyl complexes, for example Rh(CO)(PPh3)acac. The process according to the invention is a “one-pot synthesis” and features a process procedure without intermediate isolation stages. After introduction of an Rh(III) halide precursor into a solvent and sparging with carbon monoxide (CO), a diketo compound of the R?—C(?O)—CH2—C(?O)—R? type and a base are added, forming the intermediate compound diketonato-Rh(CO)2. After addition of a triorganophosphine of the PR3 type, the reaction mixture is heated and the diketonatocarbonyltriorganophosphine-rhodium(I) complex is removed. The process enables a rapid operation and a high yield. The complex Rh(CO)(PPh3)acac prepared in accordance with the invention, because of its purity, is particularly suitable as a catalyst or precatalyst for homogeneous catalysis, for example for hydroformylation reactions.Type: GrantFiled: April 25, 2013Date of Patent: October 20, 2015Assignee: UMICORE AG & CO. KGInventors: Eileen Woerner, Timo Ebert, Ralf Karch, Andreas Rivas-Nass, Angelino Doppiu, Juergen Widmer
-
Publication number: 20150141685Abstract: The invention relates to a process for preparing diketonato-rhodium(I)-carbonyl complexes, especially diketonato-rhodium(I)-triorganophosphine-carbonyl complexes, for example Rh(CO)(PPh3)acac. The process according to the invention is a “one-pot synthesis” and features a process procedure without intermediate isolation stages. After introduction of an Rh(III) halide precursor into a solvent and sparging with carbon monoxide (CO), a diketo compound of the R?—C(?O)—CH2—C(?O)—R? type and a base are added, forming the intermediate compound diketonato-Rh(CO)2. After addition of a triorganophosphine of the PR3 type, the reaction mixture is heated and the diketonatocarbonyltriorganophosphine-rhodium(I) complex is removed. The process enables a rapid operation and a high yield. The complex Rh(CO)(PPh3)acac prepared in accordance with the invention, because of its purity, is particularly suitable as a catalyst or precatalyst for homogeneous catalysis, for example for hydroformylation reactions.Type: ApplicationFiled: April 25, 2013Publication date: May 21, 2015Inventors: Eileen Woerner, Timo Ebert, Ralf Karch, Andreas Rivas-Nass, Angelino Doppiu, Juergen Widmer
-
Publication number: 20150101936Abstract: This invention relates to an iron-sulfur complex that is capable of efficiently catalyzing formation of hydrogen, and a method for producing hydrogen using the complex as a catalyst. The iron-sulfur complex provided herein comprises: a structure of formula (I) wherein the ligands L1 to L3, L5 and L6 and the groups X1 to X3 are each selected from the group consisting of alkyl, alkenyl, alkynyl and aryl that are substituted or unsubstituted, hydroxyl, carbonyl, aldehyde, and so on; L4 is a bridging ligand selected from the group consisting of hydroxyl, carbonyl, and so on; and the symbol “z” means the charge, which is an integer with the range of ?3 to +2. X1 and X2 may join together to form a bridging group between the two sulfur atoms. X3 may alternatively be a vacant site.Type: ApplicationFiled: October 8, 2014Publication date: April 16, 2015Inventors: MING-HSI CHIANG, YU-CHIAO LIU, KAI-TI CHU
-
Publication number: 20150093890Abstract: A metal precursor and a method comprising decomposing a metal precursor on an integrated circuit device; and forming a metal from the metal precursor, wherein the metal precursor is selected from the group consisting of (i) a Co2(CO)6(R1C?CR2), wherein R1 and R2 are individually selected from a straight or branched monovalent hydrocarbon group have one to six carbon atoms that may be interrupted and substituted; (ii) a mononuclear cobalt carbonyl nitrosyl; (iii) a cobalt carbonyl bonded to one of a boron, indium, germanium and tin moiety; (iv) a cobalt carbonyl bonded to a mononuclear or binuclear allyl; and (v) a cobalt (II) complex comprising nitrogen-based supporting ligands.Type: ApplicationFiled: September 27, 2013Publication date: April 2, 2015Inventors: James M. Blackwell, Scott B. Clendenning, John J. Plombon, Patricio E. Romero
-
Publication number: 20150065339Abstract: Catalysts prepared from abundant, cost effective metals, such as cobalt, nickel, chromium, manganese, iron, and copper, and containing one or more neutrally charged ligands (e.g., monodentate, bidentate, and/or polydentate ligands) and methods of making and using thereof are described herein. Exemplary ligands include, but are not limited to, phosphine ligands, nitrogen-based ligands, sulfur-based ligands, and/or arsenic-based ligands. In some embodiments, the catalyst is a cobalt-based catalyst or a nickel-based catalyst. The catalysts described herein are stable and active at neutral pH and in a wide range of buffers that are both weak and strong proton acceptors. While its activity is slightly lower than state of the art cobalt-based water oxidation catalysts under some conditions, it is capable of sustaining electrolysis at high applied potentials without a significant degradation in catalytic current. This enhanced robustness gives it an advantage in industrial and large-scale water electrolysis schemes.Type: ApplicationFiled: July 2, 2014Publication date: March 5, 2015Inventors: Aaron J. Bloomfield, Stafford W. Sheehan, Samuel L. Collom, Robert H. Crabtree, Paul T. Anastas
-
Patent number: 8969607Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.Type: GrantFiled: October 22, 2010Date of Patent: March 3, 2015Assignees: The Regents of the University of California, Chevron U.S.A., Inc.Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
-
Patent number: 8968599Abstract: A cholesteric liquid crystal. The liquid crystal includes a metal acetylide, of which the metal is a square, planar transition metal. The metal acetylide includes first and second acylphosphine ligands and first and second phenyl acetylene ligands. Each of the first and second phenyl acetylene ligands have a meta- or para-substituent, which are selected from the group consisting of H, F, CN, OCH3, C?C—C6H5,(COO—C34H50O2), and COO—C5H10—C))—C34H50O2.Type: GrantFiled: February 28, 2013Date of Patent: March 3, 2015Assignee: The United States of America as represented by the Secretary of the Air ForceInventors: Thomas M. Cooper, Ronald F. Ziolo, Aaron R. Burke, Anatoliy V. Glushchenko
-
Patent number: 8884044Abstract: The invention relates to ruthenium complexes which have a chiral diphosphorus donor ligand and in which the ruthenium has the oxidation state (+11) and the chiral diphosphorus donor ligand has bidentate P—P coordination to the ruthenium. The ruthenium complexes are present in two forms (cationic type A and uncharged type B), are cyclic and have a four- to six-membered ring incorporating the diphosphorus donor ligand. The chiral diphosphorus donor ligands are selected from the group consisting of diphosphines, diphospholanes, diphosphites, diphosphonites and diazaphospholanes. Furthermore, processes for preparing the ruthenium complexes of types A and B, which are based on ligand exchange reactions, are described. The Ru complexes are used as catalysts for homogeneous asymmetric catalysis for preparing organic compounds.Type: GrantFiled: March 26, 2009Date of Patent: November 11, 2014Assignee: Umicore AG & Co. KGInventors: Andreas Rivas-Nass, Ralf Karch, Roland Winde, Angelino Doppiu, Tina Schneider
-
Publication number: 20140243526Abstract: The present invention relates to processes for the reduction by hydrogenation, using molecular H2, of a C5-C20 substrate containing one or two aldehydes functional groups into the corresponding alcohol or diol, characterized in that said process is carried out in the presence of —at least one catalyst or pre-catalyst in the form of a ruthenium complex having a coordination sphere of the N2P2O2, wherein the coordinating atoms N2 are provided by a first bidentate ligand, the coordinating atoms P2 are provided by a second bidentate ligand and the coordinating atoms O2 are provided by two non-linear carboxylate ligands; and —optionally of an acidic additive.Type: ApplicationFiled: September 27, 2012Publication date: August 28, 2014Applicant: FIRMENICH SAInventors: Philippe Dupau, Lucia Bonomo, Laurent Kermorvan
-
Patent number: 8716507Abstract: New hexa-coordinate iron (II) complexes comprising compounds of formula (I) are described. These compounds comprise a tetradentate ligand with donor atoms comprising nitrogen and phosphorus. These complexes are shown for the first time to be useful catalysts for the hydrogenation of ketones, aldehydes, or imines to produce alcohols or amines, and the asymmetric hydrogenation of prochiral ketones or imines to produce non-racemic alcohols or amines. The source of the hydrogen can be hydrogen gas or a hydrogen-donating molecule such as isopropanol or hydrogen-donating mixture such as formic acid and an amine depending on the structure of the catalyst. In certain embodiments, the axial ligands on the catalyst comprise organonitrile ligands, carbonyl ligands, isonitrile ligands, or combinations thereof. The catalysts and the preparation thereof are disclosed. A reaction using phosphine and diamine precursors that is templated by the iron ion is the preferred route to the catalysts.Type: GrantFiled: October 30, 2009Date of Patent: May 6, 2014Assignee: The Governing Council of University of TorontoInventors: Alexandre Mikhailine, Friederike Freutel, Christine Sui-Seng, Nils Meyer, Robert H. Morris, Paraskevi Olympia Lagaditis
-
Publication number: 20140121427Abstract: The present invention is directed to the activation of metal carbonyl clusters by an oxidative agent to prepare a stable metal cluster catalyst exhibiting catalytic rate enhancement. The activation comprises, for example, using oxygen for decarbonylation of carbonyl ligands and changing the oxidation state of the other ligands. In one aspect, treatment of the metal cluster catalyst under oxidative conditions in a flow reactor leads to removal of CO ligands and oxidation of bound calixarene phosphine ligands, and results in a stable activated open metal cluster that is more active for ethylene hydrogenation catalysis. The resulting metal cluster contains coordinatively unsaturated sites comprising carbonyl vacancies. In one aspect, the resulting activated open metal cluster can be used as a catalyst in a variety of chemical transformations.Type: ApplicationFiled: October 28, 2013Publication date: May 1, 2014Applicant: The Regents of the University of CaliforniaInventors: Alexander Katz, Ron C. Runnebaum, Alexander Okrut, Xiaoying Ouyang, Igor Busygin
-
Publication number: 20140088318Abstract: The present invention is directed to the synthesis of novel stable open metal clusters by selective oxidation of bound ligands. The synthesis comprises, for example, using an amine based oxidant for decarbonylation of specific carbonyl ligands. The synthesis can also comprise further removal of a bound amine group by an acid. The resulting metal cluster contains a coordinatively unsaturated site comprising a carbonyl vacancy. The resulting metal cluster can be used as a catalyst in a variety of chemical transformations.Type: ApplicationFiled: September 23, 2013Publication date: March 27, 2014Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CHEVRON U.S.A. INC.Inventors: Alexander S. Katz, Alexander Kuperman, Alexander Okrut, Ron C. Runnebaum, Xiaoying Ouyang
-
Patent number: 8592614Abstract: The present invention relates to new types of material mixtures composed of at least two substances, one serving as a matrix material and the other being an emission material capable of emission and containing at least one element of atomic number greater than 20, and for their use in organic electronic components such as electroluminescent elements and displays.Type: GrantFiled: July 7, 2004Date of Patent: November 26, 2013Assignee: Merck Patent GmbHInventors: Heinrich Becker, Anja Gerhard, Philipp Stössel, Horst Vestweber
-
Patent number: 8592617Abstract: The present application is generally directed to ruthenium or osmium containing complexes and their use as redox mediators in electrochemical biosensors.Type: GrantFiled: December 21, 2006Date of Patent: November 26, 2013Assignee: Roche Diagnostics Operations, Inc.Inventors: Hugh Oliver Allen Hill, Christopher Paul Newman, Luet Lok Wong, Tai-Chu Lau
-
Publication number: 20130264216Abstract: The present disclosure relates generally to carbon to carbon coupling processes, and more specifically, to dimerization or trimerization by electrocatalysis of alkenes and alkynes at room temperature.Type: ApplicationFiled: April 3, 2013Publication date: October 10, 2013Applicant: Ball State University Board of TrusteesInventors: Daesung Chong, Jesse W. Tye
-
Publication number: 20130244865Abstract: Provided is a catalyst for producing hydrogen, which catalyst has higher performance than conventional catalysts since, for example, it exhibits a certain high level of activity in an aqueous formic acid solution at high concentration even without addition of a solvent, amine and/or the like. The metal phosphine complex is a metal phosphine complex represented by General Formula (1): MHm(CO)Ln, wherein M represents an iridium, iron, rhodium or ruthenium atom; in cases where M is an iridium or rhodium atom, m=3 and n=2, and in cases where M is an iron or ruthenium atom, m=2 and n=3; and the number n of Ls each independently represent a tri-substituted phosphine represented by General Formula (2): PR1R2R3. The catalyst for producing hydrogen comprises the metal phosphine complex as a constituent component.Type: ApplicationFiled: November 24, 2011Publication date: September 19, 2013Applicant: NATIONAL UNIVERSITY CORPORATION OKAYAMA UNIVERSITYInventors: Makoto Muranaka, Toshiyuki Oshiki
-
Patent number: 8507705Abstract: The invention affords C2-symmetrical ruthenocene diphosphine ligands with surface chirality and their manufacture. The present invention uses (S)-(S)-1,1?-2(diphenylphosphino)-2,2?-2[(S)-4-isopropyloxazolinyl] ruthenocene as raw material and the product is prepared through two or three steps of reaction. At the action of trifluoroacetic acid, (S)-(S)-1,1?-2(diphenylphosphino)-2,2?-2[(S)-4-isopropyloxazolinyl] ruthenocene first removes oxazoline and gets ester amides compound which then carries out ester exchange or reduction alkylation and gets the product of ruthenocene diphosphine ligand with surface chirality. The ligands prepared with the structure as follows from the invention can be used in all kinds of metallic catalysis asymmetric reaction and has good reaction activity and stereoselectivity, wherein R is methyl or ethyl, R1 is linear or branched alkyl, cycloalkyl, alkoxy, aryl, aralkyl and alkyl amino.Type: GrantFiled: June 8, 2007Date of Patent: August 13, 2013Assignee: Shanghai Jiaotong UniversityInventors: Wanbin Zhang, Fang Xie, Delong Liu, Li Luo, Genghong Hua, Jian Shang
-
Patent number: 8487136Abstract: A method for selectively producing a monoaryl norbornene derivative represented by a formula (5) involves having a norbornadiene derivative represented by a formula (3) and a bromine compound represented by a formula (4) react with each other in the presence of a reducing agent, palladium and at least one selected from phosphorus compounds represented by the formulas (1) and (2), whereby the norbornene derivative represented by formula (5) having a monoaryl substituent is an exo configuration.Type: GrantFiled: July 29, 2008Date of Patent: July 16, 2013Assignee: Nippon Oil CorporationInventors: Shinichi Komatsu, Toshikatsu Shoko, Tadahiro Kaminade
-
Patent number: 8455671Abstract: The invention relates to ruthenium complexes with a chiral ferrocenyldiphosphine ligand, wherein the ruthenium has the oxidation state (+II) and the chiral ferrocenyldiphosphine ligand has bidentate P—P coordination to the ruthenium. The ruthenium complexes are cyclic and with the ferrocenyldiphosphine ligand have an at least eight-membered ring. The ferrocenyldiphosphine ligands are selected from the group consisting of Taniaphos, Taniaphos-OH and Walphos ligands. A process for preparing the Ru complexes is described. The Rn complexes are used as catalysts for homogeneous asymmetric catalysis for preparing organic compounds.Type: GrantFiled: May 8, 2008Date of Patent: June 4, 2013Assignee: Umicore AG & Co. KGInventors: Albrecht Salzer, Angelino Doppiu, Nadine Langenscheidt, Andreas Rivas-Nass, Ralf Karch, Roland Winde, Stefanie Mayrhofer
-
Patent number: 8362204Abstract: Described herein are methods for forming two or more dicarba bridges, as well as new compounds containing dicarba bridges.Type: GrantFiled: September 26, 2008Date of Patent: January 29, 2013Assignee: Syngene LimitedInventors: Andrea Robinson, Roy William Jackson, Jim Patel, Jomana Elaridi
-
Publication number: 20130018199Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.Type: ApplicationFiled: October 22, 2010Publication date: January 17, 2013Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
-
Publication number: 20110237814Abstract: The present invention relates to a ruthenium carbonyl complex that is represented by the following Formula (1): RuXY(CO)(L)??(1) (in the Formula (1), X and Y, which may be the same or different from each other, represent an anionic ligand and L represents a tridentate aminodiphosphine ligand which has two phosphino groups and a —NH— group), its production method, and a method for production of alcohols by hydrogenation-reduction of ketones, esters, and lactones using the complex as a catalyst. The ruthenium carbonyl complex of the invention has a high catalytic activity and it can be easily prepared and handled.Type: ApplicationFiled: June 30, 2010Publication date: September 29, 2011Applicant: Takasago International CorporationInventors: Wataru Kuriyama, Takaji Matsumoto, Yasunori Ino, Osamu Ogata
-
Publication number: 20110160474Abstract: The invention affords C2-symmetrical ruthenocene diphosphine ligands with surface chirality and their manufacture. The present invention uses (S)—(S)-1,1?-2(diphenylphosphino)-2,2?-2[(S)-4-isopropyloxazolinyl]ruthenocene as raw material and the product is prepared through two or three steps of reaction. At the action of trifluoroacetic acid, (S)—(S)-1,1?-2(diphenylphosphino)-2,2?-2[(S)-4-isopropyloxazolinyl]ruthenocene first removes oxazoline and gets ester amides compound which then carries out ester exchange or reduction alkylation and gets the product of ruthenocene diphosphine ligand with surface chirality. The ligands prepared with the structure as follows from the invention can be used in all kinds of metallic catalysis asymmetric reaction and has good reaction activity and stereoselectivity, wherein R is methyl or ethyl, R1 is linear or branched alkyl, cycloalkyl, alkoxy, aryl, aralkyl and alkyl amino.Type: ApplicationFiled: June 8, 2007Publication date: June 30, 2011Applicant: SHANGHAI JIAOTONG UNIVERSITYInventors: Wanbin Zhang, Fang Xie, Delong Liu, Li Luo, Genghong Hua, Jian Shang
-
Publication number: 20110003959Abstract: The invention relates to a coordination complex system comprising a ligand having the formula: R1—SO2—NH—P (XR2)2 (1a); or R1—SO2—N?PH (XR2)2 (1b); or R1—SO(OH)?N—P(XR2)2 (1c); wherein X is independently O, S, NH, or a bond; R1 and R2 are independently selected from hydrogen and substituted or unsubstituted alkyl or aryl; wherein at least one equivalent of the ligand is complexed to an equivalent of a metal selected from a transition metal and lanthanide. The invention also relates to the use of said coordination complexes as catalysts in the hydroformylation, hydrogenation, transfer hydrogenation, hydrocyanation, polymerization, isomerization, carbonylation, cross-coupling, metathesis, CH activation, allylic substitution, aldol condensation, or Michael addition.Type: ApplicationFiled: November 19, 2008Publication date: January 6, 2011Inventors: Joost Nikolaas Hendrik Reek, Frederic William Patureau, Mark Kuil, Albertus Jacobus Sandee, Jurjen Meeuwissen
-
Publication number: 20100145087Abstract: New hexa-coordinate iron (II) complexes comprising compounds of formula (I) are described. These compounds comprise a tetradentate ligand with donor atoms comprising nitrogen and phosphorus. These complexes are shown for the first time to be useful catalysts for the hydrogenation of ketones, aldehydes, or imines to produce alcohols or amines, and the asymmetric hydrogenation of prochiral ketones or imines to produce non-racemic alcohols or amines. The source of the hydrogen can be hydrogen gas or a hydrogen-donating molecule such as isopropanol or hydrogen-donating mixture such as formic acid and an amine depending on the structure of the catalyst. In certain embodiments, the axial ligands on the catalyst comprise organonitrile ligands, carbonyl ligands, isonitrile ligands, or combinations thereof. The catalysts and the preparation thereof are disclosed. A reaction using phosphine and diamine precursors that is templated by the iron ion is the preferred route to the catalysts.Type: ApplicationFiled: October 30, 2009Publication date: June 10, 2010Applicant: The Governing Council of the University of TorontoInventors: Alexandre MIKHAILINE, Friederike Freutel, Nils Meyer, Robert H. Morris, Parasekevi Olympia Lagaditis
-
Publication number: 20080269529Abstract: The invention relates to an enantiomerically enriched chiral compound comprising a transition metal M, which comprises four, five or six coordinating groups of which at least one pair is linked together to form a bidentate ligand, in which M is directly bound via one single ?-bond to a carbon atom of an optionally substituted and/or optionally fused (hetero)aromatic ring of said bidentate ligand and in which M is directly bound to a nitrogen atom of a primary or secondary amino group of said bidentate ligand, thereby forming a metallacycle between said bidentate ligand and the metal M, said metal M being selected from the metals of groups 8 and 9 of the Periodic Table of the Elements, in particular iron, ruthenium, osmium, cobalt, rhodium, or iridium. The chiral compound can be used as a catalyst, preferably in an asymmetric transfer hydrogenation process.Type: ApplicationFiled: November 10, 2005Publication date: October 30, 2008Inventors: Johannes Gerardus (Hans) Vries De, Gerardus Karel Maria Verzijl, Andreas Hendrikus Maria Vries De, Vincent Ritleng, Adeline Marie Josephe Voelklin
-
Patent number: 7435840Abstract: The invention relates to compounds having a structural element of formula (I) in an aromatic hydrocarbon ring, wherein: M represents —Li, —MgX3, (C1-C18-Alkyl)3Sn—, —ZnX3 or —B(O—C1-C4-Alkyl)2; X1 and X2, independent of one another, represent O or N, and C-bound hydrocarbon radicals or heterohydrocarbon radicals are bound to the free bonds of the O and N atoms; group —C?C—, together with C atoms, forms a hydrocarbon aromatic compound and represents X3 Cl, Br or I. The inventive compounds are easily obtained by directly substituting the hydrogen in the ortho position to the P atom with metalation reagents. The metal atoms can then be substituted by a reactive electrophilic compound. The group —P(X1—)(X2—) - - - -(BH3)0,1 can then be converted into a secondary phosphine group. The inventive method enables the production of monophosphines and diphosphines even on a large scale, which are valuable ligands for metal complexes serving as catalysts for, e.g. enantioselective hydrogenations.Type: GrantFiled: December 10, 2004Date of Patent: October 14, 2008Assignee: Solvias AGInventors: Andreas Pfaltz, Matthias Lotz, Marc Schönleber, Benoît Pugin, Martin Kesselgruber, Marc Thommen
-
Patent number: 7355057Abstract: The present invention relates to a series of platinum acetylide nonlinear optical chromophores which are liquid at room temperature. The viscosity of these liquid chromophores is low enough that they are easily processable into optical cells and can be used for nonlinear optical applications. The compounds remain liquids below room temperature, converting to a glass in the range of from about ?80° C. to ?100° C. Neat liquids have a high chromophore concentration (˜1 Mole/liter) making possible the development of optical devices requiring materials with a high chromophore concentration.Type: GrantFiled: November 17, 2004Date of Patent: April 8, 2008Inventors: Thomas M. Cooper, Benjamin C. Hall, Aaron R. Burke, Paul A. Fleitz
-
Patent number: 7348290Abstract: A novel polymer-supported arene-ruthenium complex represented by the following formula: , wherein A represents an organic polymer with a side chain containing an aromatic ring coordinated to Ru, X1 and X2 represent the same or different halogen atoms, and R represents a hydrocarbon group that may have a substituent is provided for use as a catalyst. This novel polymer-supported arene-ruthenium complex and catalyst thereof can be produced by a simple process, are stable and easy to recover, have a high catalytic activity, and can be used for various organic synthesis reactions. Novel methods for an organic synthesis reaction such as ring-opening metathesis reaction of an olefin compound and reduction of a carbonyl group, using the catalyst are provided.Type: GrantFiled: March 11, 2003Date of Patent: March 25, 2008Assignee: Japan Science and Technology AgencyInventor: Shu Kobayashi
-
Patent number: 7300639Abstract: A process is provided for removing one or more metals from liquids. Also provided is a process for the synthesis of aP2 inhibiting compounds having the formula (I) wherein R1, R2, R3, R4, HET, and X-Z are as described herein, which process comprising the step of removing one or more metals from a solution of the compound of formula I or an intermediate or precursor thereof. The processes for removing metal comprise the step of contacting the liquid with a solid extractant comprising a metal-binding functionality.Type: GrantFiled: December 2, 2003Date of Patent: November 27, 2007Assignee: Bristol-Myers Squibb CompanyInventor: Wansheng Liu
-
Patent number: 7247595Abstract: A metallocene compound represented by the following Chemical Formula 1: wherein M is a transition metal of Group 4; Cp denotes a cyclopentadienyl ring unsubstituted or substituted by hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl or arylalkenyl radicals; Qs, which are the same or different, are halogen radicals, alkyl, alkenyl, aryl, alkylaryl, or arylakyl radicals having 1 to 20 carbon atoms, or alkylidene radicals having 1 to 20 carbon atoms; A? is methoxymethyl, t-butoxymethyl, tetrahydropyranyl, tetrahydrofuranyl, 1-ethoxyethyl, 1-methyl-1-methoxyethyl, or t-butyl; and a is an integer of 4 to 8. The metallocene compounds in this invention can be strongly supported on the inorganic support, and the supported catalyst of this invention allows for an olefin polymerization process without any fouling in the reactor, and produces a polymer with better morphology and bulk density.Type: GrantFiled: November 30, 2005Date of Patent: July 24, 2007Assignee: LG Chem, Ltd.Inventors: Bun-Yeoul Lee, Jae-Seung Oh, Joo-Eun Lee, Do-Hoon Lee
-
Patent number: 7156731Abstract: A chiral compound, particularly a chiral secondary alcohol, can be efficiently resolved under a mild condition by acylation with an alkenyl acetate in the presence of a novel aminocyclopentadienyl ruthenium complex, an enzyme catalyst, and a base.Type: GrantFiled: May 17, 2002Date of Patent: January 2, 2007Assignee: Postech FoundationInventors: Jaiwook Park, Mahn-Joo Kim, Jun Ho Choi, Yangsoo Ahn
-
Patent number: 7153809Abstract: Chiral ligands and metal complexes based on such chiral ligands useful in asymmetric catalysis are disclosed. The metal complexes according to the present invention are useful as catalysts in asymmetric reactions, such as, hydrogenation, hydride transfer, allylic alkylation, hydrosilylation, hydroboration, hydrovinylation, hydroformylation, olefin metathesis, hydrocarboxylation, isomerization, cyclopropanation, Diels-Alder reaction, Heck reaction, isomerization, Aldol reaction, Michael addition; epoxidation, kinetic resolution and [m+n] cycloaddition. Processes for the preparation of the ligands are also described.Type: GrantFiled: January 7, 2005Date of Patent: December 26, 2006Assignee: The Penn State Research FoundationInventors: Xumu Zhang, Wenjun Tang
-
Patent number: 7132491Abstract: Organometallic reversible addition-fragmentation chain transfer reagents (RAFT reagents), processes of free radical polymerization employing the same and polymers with low polydispersity index obtained thereby. The process includes polymerizing at least one monomer with at least one initiator and at least one organometallic RAFT reagent to obtain polymers having terminal organometallic functional groups with low polydispersity index. In addition, the terminal organometallic functional group may be removed by subjecting the obtained polymer to elimination to provide the corresponding organic polymers.Type: GrantFiled: May 10, 2004Date of Patent: November 7, 2006Assignee: Industrial Technology Research InstituteInventors: Yih-Hsing Lo, Kuo-Chen Shih, Yi-Chun Chen, Mei-Hua Wang, Fong Yee Hsu, Ming-Siao Hsiao
-
Patent number: 6987202Abstract: Phosphine compounds represented by the following formula (1): wherein R1, R2, R3, R4, R5, R6 and R7 represent substituents, and asymmetric synthesis catalysts containing transition metal phosphine complexes with the compounds contained as ligands therein. The novel phosphine compounds according to the present invention are useful especially as ligands in transition metal complexes. The transition metal phosphine complexes are useful as catalysts for asymmetric synthetic reactions. The novel phosphine compounds useful as ligands can be prepared by a relatively economical preparation process. Further, use of these catalysts can afford hydrogenated products with high optically purity and is also extremely useful from the industrial standpoint.Type: GrantFiled: November 6, 2003Date of Patent: January 17, 2006Assignee: Takasago International CorporationInventors: Hideo Shimizu, Takao Saito, Izuru Nagasaki
-
Ortho substituted chiral phosphines and phosphinites and their use in asymmetric catalytic reactions
Patent number: 6855657Abstract: 3,3?-Substituted chiral biaryl phosphine and phosphinite ligands and metal complexes based on such chiral ligands useful in asymmetric catalysis are disclosed. The metal complexes are useful as catalysts in asymmetric reactions, such as, hydrogenation, hydride transfer, allylic alkylation, hydrosilylation, hydroboration, hydrovinylation, hydroformylation, olefin metathesis, hydrocarboxylation, isomerization, cyclopropanation, Diels-Alder reaction, Heck reaction, isomerization, Aldol reaction, Michael addition, epoxidation, kinetic resolution and [m+n] cycloaddition. The metal complexes are particularly effective in Ru-catalyzed asymmetric hydrogenation of beta-ketoesters to beta-hydroxyesters and Ru-catalyzed asymmetric hydrogenation of enamides to beta amino acids.Type: GrantFiled: September 11, 2003Date of Patent: February 15, 2005Assignee: The Penn State Research FoundationInventor: Xumu Zhang -
Publication number: 20040176622Abstract: A catalyst system containing a) Ni (0), b) 4-10 mol per mol Ni (0) according to a) a compound (I) of formula P (X1R1) (X2R2) (X3R3) (I) wherein X1, X2, X3 independently represent oxygen or a single bond R1, R2, R3 represent independently, the same or different organic radicals, and c) 1-4 mol per mol Ni (0) according to a) a compound (II) of formula (II) wherein X11, X12, X13, X21, X22, X23 independently oxygen or a single bond, R11, R12 independently represent the same or different individual or bridged organic radicals, R21, R22 independently represent the same or different, individual or bridged organic radicals, Y represents a bridge group.Type: ApplicationFiled: January 20, 2004Publication date: September 9, 2004Inventors: Michael Bartsch, Robert Baumann, Dagmar Pascale Kunsmann-Keietel, Gerd Haderlein, Tim Jungkamp, Marco Altmayer, Wolfgang Seigel
-
Publication number: 20040170547Abstract: A process is provided for removing one or more metals from liquids.Type: ApplicationFiled: December 2, 2003Publication date: September 2, 2004Inventor: Wansheng Liu
-
Publication number: 20040171478Abstract: The present invention relates to a process for recovery of homogeneous metal hydride catalyst from a reactor stream as catalyst suitable for recycle to a reactor comprising the steps of: removing a stream from a reactor, said stream comprising the homogeneous metal hydride catalyst; contacting the stream with a solid acidic absorbent under process conditions which allow at least some of the metal to become bound to the absorbent; subjecting the metal bound to the absorbent, under process conditions which allow desorption of the metal, to a fluid stripping medium comprising hydrogen and solvent; and recovering the active metal hydride catalyst.Type: ApplicationFiled: April 19, 2004Publication date: September 2, 2004Inventors: Simon Peter Crabtree, Robert Wild, Simon Wayne Jackson, James Andrew Banister
-
Patent number: 6777567Abstract: Compounds of the formula (I) and (Ia) in the form of racemates, mixtures of diastereomers or in essentially enantiomerically pure form, (I), (Ia), where R is hydrogen, C1-C8alkyl, C5-C12cycloakyl, phenyl or phenyl substituted by from 1 to 3 C1-C4alky or C1-C4alkoxy groups; n is 0 or an integer from 1 to 4 and R1 are identical or different substituents selected from the group consisting of C1-C4alkyl, C1-C4fluoroalkyl and C1-C4alkoxy; X1 and X2 are each, independently of one another, secondary phosphino; T is C6-C20arylene or C3-C16heteroarylene; and X2 is bound in the ortho position relative to the T-cyclopentadienyl bond.Type: GrantFiled: December 31, 2002Date of Patent: August 17, 2004Assignee: Solvias AGInventors: Walter Weissensteiner, Thomas Sturm, Felix Spindler
-
Patent number: 6750373Abstract: Disclosed is a new catalyst composition comprising a bimetallic Co—Fe catalyst, optionally complexed with a ligand selected from a N-heterocycle, phosphine, or porphorine ligand, that provides a lower cost alternative for the one step synthesis of 1,3-propanediol (1,3-PDO) from ethylene oxide and synthesis gas. For example, a catalyst containing cobalt carbonyl: iron carbonyl with no ligand, or a catalyst containing a cobalt carbonyl: octaethylporphine iron acetate provide moderate yields of 1,3-PDO in a one step synthesis under mild conditions.Type: GrantFiled: May 15, 2002Date of Patent: June 15, 2004Assignee: Shell Oil CompanyInventors: John Frederick Knifton, Talmadge Gail James, Lynn Henry Slaugh, Kevin Dale Allen, Paul Richard Weider, Joseph Broun Powell
-
Patent number: 6743932Abstract: An organometallic compound of the formula I where M1 is selected from among Fe, Ru and Os and M2 is selected from among the transition metals of groups IV to VI of the Periodic Table, which can be prepared by reacting an organometallic compound of the formula II with a transition metal compound of the formula III, M2L1L2(L3)x+1 III where the variables are as defined above and the organometallic compound of the formula II can, if desired, be doubly deproteinated beforehand, can be used as part of a catalyst system for the polymerization or copolymerization of olefins. This catalyst system comprises one or more organometallic compounds of the formula I and at least one activator.Type: GrantFiled: April 6, 2001Date of Patent: June 1, 2004Assignee: Basell Polyolefine GmbHInventors: Marc Oliver Kristen, Benno Bildstein, Michael Malaun, Ulrich Siemeling, Oliver Kuhnert
-
Publication number: 20040097672Abstract: The invention concerns a catalyst for olefin polymerisation, of formula (I) wherein: E is an oxygen or sulphur atom; X is a phosphorus, arsenic or antimony atom; M is a nickel, palladium or platinum atom comprising a non-attributed valency; a is 1 or 2; R1, R2, R3, identical or different can be selected among hydrogen, alkyl, cycloalkyl, aryl, alkylaryl, arylalkyl radicals, the hydroxyl radical, the alkoxide radicals (with 1 to 20 carbon atoms), the groups —C(O)OR′—, —SO3Y; and Z represents a hydrocarbon radical comprising 2 to 3 carbon atoms; R represents a hydrocarbon radical of valency a, provided that at least one of the radicals Z or R bears at least an electroattractive substituent.Type: ApplicationFiled: July 10, 2003Publication date: May 20, 2004Inventors: Jerome Claverie, Remi Soula, Roger Spitz
-
Patent number: 6717018Abstract: A process for producing oxygenated products from an olefinic feedstock, which process includes reacting, in a hydroformylation reaction stage, an olefin feedstock with carbon monoxide and hydrogen at elevated temperature and superatmospheric pressure in the presence of a hydroformylation catalyst. The hydroformylation catalyst comprises a mixture of a metal, M, where M is cobalt (Co), rhodium (Rh), ruthenium (Ru) or palladium (Pd); carbon monoxide; and a bicyclic tertiary phosphine having a ligating phosphorus atom. The ligating phosphorus atom is neither in a bridgehead position nor a member of a bridge linkage. The process produces oxygenated products comprising aldehydes and/or alcohols.Type: GrantFiled: February 5, 2003Date of Patent: April 6, 2004Assignee: Sasol Technology (Proprietary) LimitedInventors: Jan Petrus Steynberg, Khedaren Govender, Petrus Johannes Steynberg
-
Patent number: 6664462Abstract: A metal complex having a &bgr;-diketonate represented by the following formula (1): wherein M represents a metal atom of the VIII group, R1, R2 and R3 represent a group or an atom selected from the group consisting of an alkyl group, an aryl group, a hydroxyl group, an amino group, an alkoxy group, a hydrogen atom and a halogen atom; X−1 represents an ion selected from a halogen, nitric acid, sulfonic acid, fluoroboric acid, fluorophosphoric acid, or perchloric acid ion; L1 or L2 represents a 2,2′-bipyridine or 1,10-phenanthroline group where these groups may be substituted with a group or an atom selected from an alkyl group, a carboxyl group, a sulfonic acid group, a phosphonic acid group, a hydroxyl group, an amino group, a hydrogen atom and a halogen atom. A photoelectric conversion element and a photochemical cell using the above-mentioned metal complex.Type: GrantFiled: November 13, 2001Date of Patent: December 16, 2003Assignee: National Institute of Advanced Industrial Science and TechnologyInventors: Hironori Arakawa, Hideki Sugihara, Kohjiro Hara, Yoshiaki Takahashi
-
Patent number: 6660892Abstract: This invention is a process for synthesizing aliphatic 1,3-diols in one step by hydroformylation and hydrogenation of oxirane, carbon monoxide, and hydrogen employing a catalyst comprising a cobalt carbonyl compound and a cocatalyst metal compound ligated with a ligand in a ligand to cocatalyst metal atom molar ratio in the range of 0.2:1.0 to 0.6:1.0, optionally in the presence of a promoter, where recovery of product is preferably accomplished via water extraction of a diol rich phase from the bulk reaction mixture. The process modifications can, particularly in combination, be beneficial with respect to product recovery, catalyst recycle, and overall economics of a one-step process for producing aliphatic 1,3-diols.Type: GrantFiled: February 7, 2003Date of Patent: December 9, 2003Assignee: Shell Oil CompanyInventors: Joseph Broun Powell, Paul Richard Weider, John Frederick Knifton, Kevin Dale Allen, Lynn Henry Slaugh, Juan Pedro Arhancet
-
Patent number: 6620954Abstract: Disclosed are novel phosphinometallocenylamides that are useful as ligands for asymmetric catalysis. The novel ligands, which are readily modifiable, contain both a phosphine and an amide functionality linked by a metallocene backbone. In addition, the novel compounds are phosphine-amides derived from a phosphine-amine, rather than a phosphine-carboxylic acid. Further, described herein are both processes to make the novel ligands as well as processes that employ such ligands in a catalytically active composition comprising one or more phosphinometallocenylamide compounds in complex association with one or more Group VIb or Group VIII metals to provide chiral products. Further, we describe exemplary catalyst complexes incorporating the novel ligands.Type: GrantFiled: March 25, 2002Date of Patent: September 16, 2003Assignee: Eastman Chemical CompanyInventor: Neil Warren Boaz