Plural Chalcogens Bonded Directly To The Metal (e.g., Alkyl Titanates, Titanic Esters, Etc.) Patents (Class 556/54)
  • Patent number: 11732063
    Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization. In at least one embodiment, the catalyst compounds belong to a family of compounds comprising amido-phenolate-heterocyclic ligands coordinated to group 4 transition metals. The tridendate ligand may include a central neutral hetrocyclic donor group, an anionic phenolate donor, and an anionic amido donor. In some embodiments, the present disclosure provides a catalyst system comprising an activator and a catalyst of the present disclosure. In some embodiments, the present disclosure provides a polymerization process comprising a) contacting one or more olefin monomers with a catalyst system comprising: i) an activator and ii) a catalyst of the present disclosure.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: August 22, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Jo Ann M. Canich
  • Patent number: 11248070
    Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts (e.g., bis(aryl phenolate) five-membered ring catalysts), can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights or polymers having low to very molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: February 15, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Jo Ann M. Canich
  • Patent number: 11242422
    Abstract: The invention provides a process to form an olefin-based polymer, said process comprising polymerizing at least one olefin in the presence of at least one catalyst system comprising the reaction product of the following: A) at least one cocatalyst; and B) a procatalyst comprising a metal-ligand complex of Formula (I), as described herein:
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: February 8, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Philip P. Fontaine, Jerzy Klosin, Endre Szuromi, Carl N. Iverson, Zach T. Rickaway, Andrew J. Young, Susan G. Brown, Ruth Figueroa, Mehmet Demirors, Mridula Kapur
  • Patent number: 11214634
    Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high melting points, high isotacticity, and controllable molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: January 4, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Oleg V. Samsonov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, Jo Ann M. Canich, John R. Hagadorn
  • Patent number: 10519260
    Abstract: The invention provides a process to form an olefin-based polymer, said process comprising polymerizing at least one olefin in the presence of at least one catalyst system comprising the reaction product of the following: A) at least one cocatalyst; and B) a procatalyst comprising a metal-ligand complex of Formula (I), as described herein: (Formula I).
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: December 31, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Philip P. Fontaine, Jerzy Klosin, Endre Szuromi, Carl N. Iverson, Zach T. Rickaway, Andrew J. Young, Susan G. Brown, Ruth Figueroa, Mehmet Demirors, Mridula Kapur
  • Patent number: 10239994
    Abstract: The invention relates to a composition comprising a titanium or zirconium alkoxide or aryloxide, wherein the alkoxy group in the titanium or zirconium alkoxide is a group of formula R—O? wherein R is an alkyl group having 1 to 4 carbon atoms and the aryloxy group in the titanium or zirconium aryloxide is a group of formula Ar—O? wherein Ar is an aryl group having 6 to 12 carbon atoms, and wherein the composition additionally comprises 0.1 to 50 wt. % of an organic carbonate, based on the total weight of the composition.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 26, 2019
    Assignee: SHELL OIL COMPANY
    Inventors: Garo Garbis Vaporciyan, Kunquan Yu
  • Patent number: 9409842
    Abstract: A method for producing an aqueous solution of a redox-active coordination compound of a transition metal which can be used directly as an electrolyte in a flow battery wherein the method comprises reacting a freshly precipitated hydrous transition metal oxide with a chelating agent and a base in an aqueous reaction medium to produce a solution of the corresponding redox-active transition metal coordination compound.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: August 9, 2016
    Inventors: Guoyi Fu, Malcolm G. Goodman
  • Patent number: 8968789
    Abstract: The present invention is directed to sulfonic esters of metal oxides including those of formulas I and II:
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: March 3, 2015
    Assignees: California Institute of Technology, Children's Hospital of Los Angeles
    Inventors: Carl M. Blumenfeld, Harry B. Gray, Robert H. Grubbs, Karn Sorasaenee
  • Patent number: 8962875
    Abstract: Organometallic compounds suitable for use as vapor phase deposition precursors for metal-containing films are provided. Methods of depositing metal-containing films using certain organometallic precursors are also provided. Such metal-containing films are particularly useful in the manufacture of electronic devices.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: February 24, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Anthony Thomas Norman, Xinjian Lei
  • Patent number: 8952188
    Abstract: The present invention is related to a family of Group 4 metal precursors represented by the formula: M(OR1)2(R2C(O)C(R3)C(O)OR1)2 wherein M is a Group 4 metals of Ti, Zr, or Hf; wherein R1 is selected from the group consisting of a linear or branched C1-10 alkyl and a C6-12 aryl, preferably methyl, ethyl or n-propyl; R2 is selected from the group consisting of branched C3-10 alkyls, preferably iso-propyl, tert-butyl, sec-butyl, iso-butyl, or tert-amyl and a C6-12 aryl; R3 is selected from the group consisting of hydrogen, C1-10 alkyls, and a C6-12 aryl, preferably hydrogen. In a preferred embodiment of this invention, the precursor is a liquid or a solid with a melting point below 60° C.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 10, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Sergei Vladimirovich Ivanov, Xinjian Lei, Hansong Cheng, Daniel P. Spence, Moo-Sung Kim
  • Patent number: 8933138
    Abstract: The present invention provides photolatent Ti-chelate catalyst compounds of formula (I), wherein R1 is for example C6-C14 aryl which is substituted by one or more R?2, R?3 or R?4; or the two R1 together are unsubstituted linear or branched C1-C12alkylene; R2, R3, R4, R?2, R?3, and R?4 independently of each other are for example hydrogen, halogen or linear or branched C1-C20alkyl; R5, R6 and R7 independently of each other are hydrogen, linear or branched C1-C20alkyl, C6-C14aryl, Br or Cl, provided that not more than one of R5, R6 and R7 is hydrogen; as well as formulations comprising said compounds and defined 1,3-diketones.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: January 13, 2015
    Assignee: BASF SE
    Inventors: Tobias Hintermann, Didier Bauer, Antoine Carroy, Caroline Lordelot, Rachel Kohli Steck
  • Publication number: 20150008125
    Abstract: An object of the present invention is to provide a cationic electrodeposition coating composition which does not contain organic tin compound, and can sustain a superior coating curability under currently used baking conditions. According to the present invention, an electrodeposition coating composition containing a titanium compound (A) and a base resin (B), the titanium compound (A) being a titanium compound having a particular structure, is provided.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 8, 2015
    Applicant: Nitto Kasei Co., Ltd.
    Inventors: Shinichi Sasaoka, Hideo Haneda, Toshikazu Ishida
  • Publication number: 20140342143
    Abstract: The present invention relates to a process for subsequent surface modification of finely structured structures formed from hard inorganic materials, and to the structures obtainable by this process as such.
    Type: Application
    Filed: February 4, 2014
    Publication date: November 20, 2014
    Applicant: BASF SE
    Inventors: Michael Kutschera, Johann Martin Szeifert, Zhizhong Cai
  • Patent number: 8822713
    Abstract: Coordination complexes of at least one metal element with at least one aromatic monomer are provided. The at least one aromatic monomer may comprise at least one aromatic ring, which ring comprising at least one ethylenic group, at least one hydroxide group —OH, at least one oxime group and salts thereof. The metal element may be in the form of a metal alkoxide.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: September 2, 2014
    Assignee: Comissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Alexia Balland Longeau, Stéphane Cadra, Jérôme Thibonnet
  • Publication number: 20140227187
    Abstract: The present invention is directed to sulfonic esters of metal oxides including those of formulas I and II:
    Type: Application
    Filed: February 12, 2014
    Publication date: August 14, 2014
    Applicants: Children's Hospital Of Los Angeles, California Institute of Technology
    Inventors: Carl M. Blumenfeld, Harry B. Gray, Robert H. Grubbs, Karn Sorasaenee
  • Patent number: 8772522
    Abstract: This invention relates to methods for the production of various metal salts of 5-sulfoisophthalic acid including those where the metal cation is selected from the group consisting of silver (I), sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, manganese (II), iron (II), cobalt (II), nickel (II), copper (I), copper (II), zinc, yttrium, and cadmium. The methods utilize a solvent system that comprises acetic acid or water or a mixture of both. The invention also encompasses the various metal salts of 5-sulfoisophthalic acid.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: July 8, 2014
    Assignee: Futurefuel Chemical Company
    Inventor: Timothy A. Oster
  • Patent number: 8759560
    Abstract: The invention provides a surface-modified zirconia nanocrystal particle, wherein the surface of the zirconia nanoparticle is modified by organic sulfonyloxy groups, and a method of producing a zirconia nanocrystal particle whose surface is modified by carbonyloxy groups, organic phosphoryloxy groups or aryloxy groups. This makes it possible a highly stable surface-modified zirconia nanocrystal particle having a solvent dispersibility by a simple method. Further, it is possible to the surface-modified zirconia nanocrystal particle of the invention is equipped with a surface modifier having a structure that can be easily substituted with a desired functional group according to use. Furthermore, it is possible to the method of producing the surface-modified zirconia nanocrystal particle which is capable of easily producing that.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: June 24, 2014
    Assignee: Hoya Corporation
    Inventor: Shuzo Tokumitsu
  • Publication number: 20140155641
    Abstract: The present invention comprises compositions and methods for a selenium attachment agent and uses thereof, wherein the selenium attachment agent facilitates the attachment of desired molecules to a surface. In particular, surfaces are enhanced to include antimicrobial or biocidal characteristics, including an organoselenium compound for biocidal properties.
    Type: Application
    Filed: June 17, 2011
    Publication date: June 5, 2014
    Applicant: SELENIUM, LTD.
    Inventor: Robert Eugene Hanes
  • Publication number: 20140138576
    Abstract: Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Sun Catalytix Corporation
    Inventors: Arthur J. Esswein, Steven Y. Reece, Evan R. King, John Goeltz, Desiree D. Amadeo
  • Patent number: 8674126
    Abstract: A material which electronically isolates a rubidium or cesium atom, which is bonded to only one or two oxygen atoms. This electronic isolation is manifested in narrow photoluminescence emission spectral peaks. The material may be an alkali metal compound comprises the empirical formula: AM(R1)(OR)x; where A is selected from Rb and Cs; M is selected from Al, Ti and V; each R is an independently selected alkyl or aryl group, R1 is selected from alkyl alcohol, aryl alcohol, or a carboxyl group, where OR and R1 are not the same, and x is 2, 3, or 4.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: March 18, 2014
    Assignee: Battelle Memorial Institute
    Inventor: Steven Risser
  • Patent number: 8674041
    Abstract: A polymerization initiator for reactive monomers and unsaturated polymers which is the reaction product of a metal-organic titanium compound or a metal-organic zirconium compound and pinacol compound is disclosed. Further disclosed are methods for preparing the polymerization initiator and using the polymerization initiator for low temperature curing.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: March 18, 2014
    Assignee: Elantas PDG, Inc.
    Inventors: Thomas James Murray, David L. Vines
  • Publication number: 20140045323
    Abstract: Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Inventors: Zehra Serpil GONEN WILLIAMS, Yijun WANG, Robert J. WIACEK, Xia BAI, Linfeng GOU, Selina I. THOMAS, Wei XU, Jun XU, Rakesh PATEL
  • Patent number: 8633329
    Abstract: Disclosed are titanium-containing precursors and methods of synthesizing the same. The compounds may be used to deposit titanium, titanium oxide, strontium-titanium oxide, and barium strontium titanate containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 21, 2014
    Assignee: American Air Liquide, Inc.
    Inventors: Venkateswara R. Pallem, Christian Dussarrat
  • Publication number: 20140018461
    Abstract: A titanium-oxo-chelate catalyst formulation, comprising: (i) at least one compound of the formula (I), wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 and R12 independently of each other are for example hydrogen, halogen, C1-C20alkyl, C6-C14aryl which is unsubstituted or substituted; or R1, R2 and R3 and/or R4, R5 and R6 and/or R7, R8 and R9 and/or R10, R11 and R12 together with the C-atom to which they are attached each form a C6-C14aryl group which is unsubstituted or substituted; or R1 and R2 and/or R4 and R5 and/or R7 and R8 and/or R10 and R11 together with the C-atom to which they are attached form a 5- to 7-membered carbocyclic ring; at least one chelate ligand compound of the formula (IIa), (IIb) or (IIc), wherein R1, R2, R3, R4, R5 and R6 are defined as above for formula (I), is suitable as photolatent catalyst formulation for polymerizing compounds, which are capable to crosslink in the presence of a Lewis acid.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 16, 2014
    Applicant: BASF SE
    Inventors: Tobias Hintermann, Antoine Carroy, Caroline Lordelot, Didier Bauer, Rachel Kohli Steck, Marc Faller
  • Patent number: 8624042
    Abstract: The invention describes a process for the selective dimerization of ethylene to but-1-ene using a catalytic composition comprising at least one organometallic titanium complex, said organometallic complex containing at least one alkoxy type ligand functionalized by a heteroatom selected from nitrogen, oxygen, phosphorus, sulphur, arsenic and antimony or by an aromatic group.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: January 7, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Fabien Grasset, Lionel Magna
  • Publication number: 20130337179
    Abstract: The invention provides a composition comprising at least the following A and B: A) a polymer comprising, in polymerized from, at least one “monomer that comprises at least one hydroxyl group;” and B) an organometal compound comprising at least one metal selected from Ti, Zr, Hf, Co, Mn, Zn, or combinations thereof, and wherein the organometal compound is present in an amount greater than 5 weight percent, based on the sum weight of A and B.
    Type: Application
    Filed: February 25, 2013
    Publication date: December 19, 2013
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventor: Rohm and Haas Electronic Materials LLC
  • Patent number: 8598380
    Abstract: The present invention provides a method for producing an aryloxytitanium composition that can solve the problems of the clogging of the storage tank, the piping, the pump, and the like during storage and transfer, and the like, and a decrease in catalytic activity which occurs during long-term storage, and is extremely preferred as a catalyst for the production of a diaryl carbonate. A method for producing an aryloxytitanium composition, comprising a step (1) of adding a diaryl carbonate to an organic oxytitanium composition having an R—O—Ti linkage, wherein R represents an organic group containing 1 to 20 carbon atoms, and evaporating a component having a lower boiling point than that of the diaryl carbonate, together with the diaryl carbonate, so as to obtain an aryloxytitanium composition.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Nobuhisa Miyake, Budianto Nishiyama
  • Publication number: 20130190467
    Abstract: A polymerization initiator for reactive monomers and unsaturated polymers which is the reaction product of a metal-organic titanium compound or a metal-organic zirconium compound and pinacol compound is disclosed. Further disclosed are methods for preparing the polymerization initiator and using the polymerization initiator for low temperature curing.
    Type: Application
    Filed: July 20, 2012
    Publication date: July 25, 2013
    Applicant: ELANTAS PDG, Inc.
    Inventors: Thomas James Murray, David L. Vines
  • Patent number: 8460628
    Abstract: The invention relates to spiro compounds of the formula (I) and to monolithic materials prepared therefrom by twin ring-opening polymerization which consist of a porous metal oxide or semimetal oxide framework and are suitable for use as catalyst supports or as supports for active compounds.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: June 11, 2013
    Assignee: BASF SE
    Inventors: Matthias Koch, Stefan Spange, Arno Lange, Hans Joachim Haehnle, Rainer Dyllick-Brenzinger, Phillip Hanefeld, Marc Schroeder, Illshat Gubaydullin
  • Patent number: 8426623
    Abstract: A surface modified nanoparticle includes a nanoparticle and a phenol compound used for modifying the nanoparticle. The phenol compound has a formula of (a) or (b), wherein n=1˜9, X is selected from the group consisted of NH2, OH, PH4, COOH and SH, R1 is selected from the group consisted of C1-C5 alkyl group, aryl group, alkenyl group, alkynyl group, alkylamino group and alkoxy group. Each carbon atom of the phenol group may be independently substituted or non-substituted. The substituent of the carbon atom of the phenol may be selected from the group consisted of halogen, C1-C5 alkyl group, cyano (CN), trifluoromethyl (CF3), alkylamino group, amino and alkoxy group. The present invention may be used for anti-oxidant and/or decreasing the toxicity of the nanoparticle. A preparation method of surface modified nanoparticle is also herein provided.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 23, 2013
    Assignee: National Tsing Hua University
    Inventors: Yuh-Jeen Huang, Kuan-Yi Chen
  • Patent number: 8404878
    Abstract: Disclosed are titanium-containing precursors and methods of synthesizing the same. The compounds may be used to deposit titanium, titanium oxide, strontium-titanium oxide, and barium strontium titanate containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: March 26, 2013
    Assignee: American Air Liquide, Inc.
    Inventors: Venkateswara R. Pallem, Christian Dussarrat
  • Publication number: 20130066082
    Abstract: Organometallic compounds suitable for use as vapor phase deposition precursors for metal-containing films are provided. Methods of depositing metal-containing films using certain organometallic precursors are also provided. Such metal-containing films are particularly useful in the manufacture of electronic devices.
    Type: Application
    Filed: March 13, 2012
    Publication date: March 14, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: John Anthony Thomas Norman, Xinjian Lei
  • Publication number: 20130059991
    Abstract: A stereoselective olefin polymerization catalyst contains a complex represented by Formula (1): wherein n is 2 or 3; R1 and R2 are independently an optionally substituted alkyl group or a halogen atom; L is a ligand represented by CH2R3, a halogen atom, OR4, or NR5R6; R3 is a hydrogen atom, an aromatic group, or a trialkylsilyl group; R4 is a lower alkyl group having 1 to 6 carbon atoms; and R5 and R6 are independently a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms. A method for manufacturing stereoselective polyolefin, includes polymerizing an olefin in the presence of the catalyst. The present invention provides a catalyst which enables highly isoselective polymerization generating a polymer having significantly high molecular weight and also can prepare stereoselective polyolefin with a narrow dispersity (Mw/Mn) or with a sharp molecular weight distribution, and provides a method for manufacturing stereoselective polyolefin with the catalyst.
    Type: Application
    Filed: February 10, 2011
    Publication date: March 7, 2013
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, NATIONAL UNIVERSITY CORPORATION SAITAMA UNIVERSITY
    Inventors: Akihiko Ishii, Norio Nakata, Tomoyuki Toda, Tsukasa Matsuo
  • Publication number: 20130011579
    Abstract: Organometallic compounds suitable for use as vapor phase deposition precursors for metal-containing films are provided. Methods of depositing metal-containing films using certain organometallic precursors are also provided. Such metal-containing films are particularly useful in the manufacture of electronic devices.
    Type: Application
    Filed: November 18, 2011
    Publication date: January 10, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: John Anthony Thomas Norman, Xinjian Lei
  • Publication number: 20120316355
    Abstract: The present invention provides a method for producing an aryloxytitanium composition that can solve the problems of the clogging of the storage tank, the piping, the pump, and the like during storage and transfer, and the like, and a decrease in catalytic activity which occurs during long-term storage, and is extremely preferred as a catalyst for the production of a diaryl carbonate. A method for producing an aryloxytitanium composition, comprising a step (1) of adding a diaryl carbonate to an organic oxytitanium composition having an R—O—Ti linkage, wherein R represents an organic group containing 1 to 20 carbon atoms, and evaporating a component having a lower boiling point than that of the diaryl carbonate, together with the diaryl carbonate, so as to obtain an aryloxytitanium composition.
    Type: Application
    Filed: February 23, 2011
    Publication date: December 13, 2012
    Inventors: Nobuhisa Miyake, Budianto Nishiyama
  • Publication number: 20120275991
    Abstract: A method for producing nanoscale particles by means of ionic liquids produces highly crystalline particles. The ionic liquids can be easily regenerated.
    Type: Application
    Filed: December 15, 2010
    Publication date: November 1, 2012
    Applicant: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Hechun Lin, Michael Veith
  • Publication number: 20120259033
    Abstract: The present invention provides photolatent Ti-chelate catalyst compounds of formula (I), wherein R1 is for example C6-C14 aryl which is substituted by one or more R?2, R?3 or R?4; or the two R1 together are unsubstituted linear or branched C1-C12alkylene; R2, R3, R4, R?2, R?3, and R?4 independently of each other are for example hydrogen, halogen or linear or branched C1-C20 alkyl; R5, R6 and R7 independently of each other are hydrogen, linear or branched C1-C20 alkyl, C6-C14 aryl, Br or Cl, provided that not more than one of R5, R6 and R7 is hydrogen; as well as formulations comprising said compounds and defined 1,3-diketones.
    Type: Application
    Filed: September 1, 2010
    Publication date: October 11, 2012
    Applicant: BASF SE
    Inventors: Tobias Hintermann, Didier Bauer, Antoine Carroy, Caroline Lordelot, Rachel Kohli Steck
  • Patent number: 8258361
    Abstract: The invention provides transition metal complex compounds, high-activity olefin oligomerization catalysts containing the compounds, and olefin oligomerization processes using the catalysts. A transition metal complex compound [A] according to the invention is represented by Formula (I) or Formula (I?) below. An olefin oligomerization catalyst includes the transition metal complex compound [A]. In an olefin oligomerization process of the invention, an olefin is oligomerized in the presence of the catalyst.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: September 4, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasuhiko Suzuki, Shinsuke Kinoshita, Atsushi Shibahara, Naritoshi Yoshimura, Isao Hara, Tetsuya Hamada, Kazumori Kawamura, Kou Tsurugi, Yasunori Saito, Seiichi Ishii, Yasushi Nakayama, Naoto Matsukawa, Susumu Murata
  • Publication number: 20120215015
    Abstract: The disclosure provides for metal catecholate frameworks, and methods of use thereof, including gas separation, gas storage, catalysis, tunable conductors, supercapacitors, and sensors.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 23, 2012
    Applicant: The Regents of the University of California
    Inventors: Omar M. Yaghi, Felipe Gandara-Barragan, Zheng Lu, Shun Wan
  • Patent number: 8173569
    Abstract: A Ziegler-Natta procatalyst composition in the form of solid particles and comprising magnesium, halide and transition metal moieties, said particles having an average size (D50) of from 10 to 70 ?m, characterized in that at least 5 percent of the particles have internal void volume substantially or fully enclosed by a monolithic surface layer (shell), said layer being characterized by an average shell thickness/particle size ratio (Thickness Ratio) determined by SEM techniques for particles having particle size greater than 30 ?m of greater than 0.2.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: May 8, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Michael A. Kinnan, Michael D. Turner, Stephanie M. Whited, Laszlo L. Ban, Burkhard E. Wagner
  • Publication number: 20120088845
    Abstract: Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.
    Type: Application
    Filed: April 25, 2011
    Publication date: April 12, 2012
    Inventors: Zehra Serpil Gonen Williams, Yijun Wang, Robert J. Wiacek, Xia Bai, Linfeng Gou, Selina I. Thomas, Wei Xu, Jun Xu, Rakesh Patel
  • Patent number: 8153544
    Abstract: A method of preparing supported catalysts useful for olefin polymerization is described. The catalysts comprise a Group 4 metal complex that incorporates a tridentate dianionic ligand. An activator mixture is first made from a boron compound having Lewis acidity and an excess of an alumoxane. The activator mixture is then combined with a support and the Group 4 metal complex to give a supported catalyst. The method provides an active, supported catalyst capable of making high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 10, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Karen L. Neal-Hawkins
  • Publication number: 20120078001
    Abstract: A process for preparing an alkoxylation catalyst wherein a catalyst precursor which is formed from an alkoxylated alcohol and an alkaline earth metal compound to form a dispersion of an alkaline earth metal species is reacted with propylene oxide to propoxylate at least a portion of the ethoxylated alcohol.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Inventors: Kenneth Lee Matheson, Masikana Millan Mdleleni, Tad Curtis Hebdon, Herbert Olin Perkins
  • Publication number: 20120071680
    Abstract: The invention provides a surface-modified zirconia nanocrystal particle, wherein the surface of the zirconia nanoparticle is modified by organic sulfonyloxy groups, and a method of producing a zirconia nanocrystal particle whose surface is modified by carbonyloxy groups, organic phosphoryloxy groups or aryloxy groups. This makes it possible a highly stable surface-modified zirconia nanocrystal particle having a solvent dispersibility by a simple method. Further, it is possible to the surface-modified zirconia nanocrystal particle of the invention is equipped with a surface modifier having a structure that can be easily substituted with a desired functional group according to use. Furthermore, it is possible to the method of producing the surface-modified zirconia nanocrystal particle which is capable of easily producing that.
    Type: Application
    Filed: June 14, 2010
    Publication date: March 22, 2012
    Applicant: Hoya Corporation
    Inventor: Shuzo Tokumitsu
  • Publication number: 20120065383
    Abstract: A process is provided that includes performing a high-temperature high-pressure hydrothermal treatment for a reaction liquid prepared as a mixture of an acylated inorganic fine particle precursor and an organic modifying agent that has a carboxyl group. Because the reaction liquid contains the acylated inorganic fine particle precursor in advance, the grain growth during the high-temperature high-pressure hydrothermal treatment can be suppressed. The process thus enables production of organic-modified inorganic fine particles of a size about the same as or even smaller than that before the high-temperature high-pressure hydrothermal treatment.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Hirofumi HOKARI, Sukenori ICHIKAWA
  • Publication number: 20120034480
    Abstract: Polyester composition produced without antimony compound as a polycondensation catalyst including, 30 ppm or less antimony, 0.5-50 ppm titanium, and 0.1-100 ppm phosphorus, the number density of titanium-containing particles having an equivalent circular diameter of 1 ?m or more being less than 100/0.02 mg; and a composition as above, containing 0.1-5 wt % organic polymer particles which have an average particle diameter of 0.05-3 ?m and contain 0.01% or less of coarse particles which have a diameter at least twice the average particle diameter. Polyester catalyst including a reaction product between at least one of Ti(OR)4 and Ti(OH)m(OR)4-m, wherein Rs may be the same or different and each represents a C2-C10 organic group, and m represents an integer of 1-4, and a ligand including nitrogen, sulfur, and/or oxygen as a donor atom, and capable of coordinating with two or more sites.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 9, 2012
    Inventors: Jun Sakamoto, Masatoshi Aoyama, Yoshihiro Honma
  • Publication number: 20110313147
    Abstract: Ion exchange and hydrophobic interaction chromatographic materials are constructed by tethering a terminal binding functionality to a solid support via a hydrophobic linker. The backbone of the linker typically comprises sulfur-containing moieties. Suitable terminal binding functionalities are tertiary amines, quaternary ammonium salts, or hydrophobic groups. These chromatographic materials possess both hydrophobic and ionic character under the conditions prescribed for their use. The separation of proteins from crude mixtures at physiological ionic strength can be accomplished with a chromatographic material of this type by applying pH or ionic strength gradients, thereby effecting protein adsorption and desorption.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 22, 2011
    Applicant: PALL CORPORATION
    Inventors: Egisto Boschetti, Pierre Girot
  • Publication number: 20110295030
    Abstract: A surface modified nanoparticle includes a nanoparticle and a phenol compound used for modifying the nanoparticle. The phenol compound has a formula of (a) or (b), wherein n=1˜9, X is selected from the group consisted of NH2, OH, PH4, COOH and SH, R1 is selected from the group consisted of C1-C5 alkyl group, aryl group, alkenyl group, alkynyl group, alkylamino group and alkoxy group. Each carbon atom of the phenol group may be independently substituted or non-substituted. The substituent of the carbon atom of the phenol may be selected from the group consisted of halogen, C1-C5 alkyl group, cyano (CN), trifluoromethyl (CF3), alkylamino group, amino and alkoxy group. The present invention may be used for anti-oxidant and/or decreasing the toxicity of the nanoparticle. A preparation method of surface modified nanoparticle is also herein provided.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 1, 2011
    Applicant: National Tsing Hua University
    Inventors: Yuh-Jeen Huang, Kuan-Yi Chen
  • Publication number: 20110288308
    Abstract: The invention describes a process for the selective dimerization of ethylene to but-1-ene using a catalytic composition comprising at least one organometallic titanium complex, said organometallic complex containing at least one alkoxy type ligand functionalized by a heteroatom selected from nitrogen, oxygen, phosphorus, sulphur, arsenic and antimony or by an aromatic group.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 24, 2011
    Applicant: IFP Energies nouvelle
    Inventors: Fabian GRASSET, Lionel MAGNA
  • Publication number: 20110287927
    Abstract: The invention describes a process for oligomerization of olefins into compounds or into a mixture of compounds of general formula CpH2p with 4?p?80 that employs a catalytic composition that comprises at least one organometallic complex of an element of group IV that is selected from among titanium, zirconium, or hafnium, whereby said organometallic complex contains at least one alkoxy-type ligand that is functionalized by a heteroatom that is selected from among nitrogen, oxygen, phosphorus or sulfur, or by an aromatic group.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 24, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabien GRASSET, Stephane HARRY, David PRORIOL, Lionel MAGNA