Group Vi Or Viii Metal Containing Catalyst Utilized Patents (Class 564/480)
  • Patent number: 10022709
    Abstract: Transition metal carbide, nitride, phosphide, sulfide, or boride nanoparticles can be made by transforming metal oxide materials coated in a ceramic material in a controlled environment. The coating prevents sintering while allowing the diffusion of reactive gases through the inorganic matrix that can then alter the metal nanoparticle oxidation state, remove oxygen, or intercalate into the lattice to form a carbide, nitride, phosphide, sulfide, or boride.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: July 17, 2018
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yuriy Roman-Leshkov, Sean Hunt
  • Patent number: 9708450
    Abstract: The present invention discloses a method for manufacturing a silicone hydrogel, including the steps of: preparing a polyethylene glycol-containing secondary or tertiary amino alcohol, a crosslinking agent having at least two epoxide rings, and a copolymerization mixture capable of performing a radical chain polymerization reaction, wherein the copolymerization mixture contains a linear silicone prepolymer, a silicone monomer, and a hydrophilic monomer, the linking process is activated by heating to let the epoxide rings of the crosslinking agent open and respectively link with the amino alcohol and any one component of the copolymerization mixture; and completing the radical chain polymerization reaction to obtain a silicone hydrogel. The present invention also provides a contact lens manufactured by the aforementioned method.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: July 18, 2017
    Assignee: VIZIONFOCUS INC.
    Inventor: Wen-Ching Lin
  • Patent number: 9707252
    Abstract: A biocompatible synthetic macromer composition is provided which includes a first polymer having stiffening linkages and at least one amine group, and a second component having at least one amine-reactive group. The biocompatible synthetic macromer composition can be used as an adhesive or sealant in human and/or animal medical applications.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: July 18, 2017
    Assignee: Covidien LP
    Inventors: Ahmad R. Hadba, John Kennedy, Mark Roby
  • Patent number: 9353044
    Abstract: The invention provides a method for the reductive amination of diethanolamine to form a product composition that includes piperazine (PIP) and aminoethylethanolamine (AEEA). A catalyst with a transitional alumina/second metal oxide support and a mixture of catalytic metals is used for the reaction which results in low levels of non-PIP and non-AEEA side products.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: May 31, 2016
    Assignee: Dow Global Technologies, LLC
    Inventors: Stephen W. King, Sadeka Onam, Thomas Z. Srnak
  • Patent number: 9315479
    Abstract: Process for preparing pyrrolidine of the formula I by reacting 1,4-butanediol (BDO) of the formula II with ammonia in the presence of hydrogen and a supported, metal-containing catalyst, wherein the catalytically active mass of the catalyst, prior to its reduction with hydrogen, comprises oxygen-containing compounds of aluminum, copper, nickel and cobalt and in the range from 0.2 to 5.0% by weight of oxygen-containing compounds of tin, calculated as SnO, and the reaction is carried out in the liquid phase at an absolute pressure in the range from 160 to 220 bar, a temperature in the range from 160 to 230° C., using ammonia in a molar ratio to BDO used of from 5 to 50 and in the presence of 1.0 to 4.5% by weight of hydrogen, based on the amount of BDO used.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: April 19, 2016
    Assignee: BASF SE
    Inventors: Roland Bou Chedid, Johann-Peter Melder, Roman Dostalek, Jörg Pastre, Aik Meam Tan
  • Patent number: 9193666
    Abstract: Process for preparing alkanolamines which have a primary amino group (—NH2) and a hydroxyl group (—OH) by alcohol amination of diols having two hydroxyl groups (—OH) by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: November 24, 2015
    Assignee: BASF SE
    Inventors: Thomas Schaub, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Patent number: 9067865
    Abstract: The present invention relates to an etheramine mixture containing a monoether diamine and its method of production by alkoxylating an initiator with an alkylene oxide to produce a precursor polyol and reductively aminating the precursor polyol to form the etheramine mixture. The etheramine mixture may be used in variety of applications including as a curing agent for an epoxy resin or as a reactant in the production of polyurea.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 30, 2015
    Assignee: HUNTSMAN PETROCHEMICAL LLC
    Inventors: Howard P. Klein, Terry L. Renken, Martin J. Renner, Bruce L. Burton, Katty Darragas
  • Patent number: 9035109
    Abstract: Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceeding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: May 19, 2015
    Assignee: Rennovia, Inc.
    Inventors: Eric L. Dias, James A. W. Shoemaker, Thomas R. Boussie, Vincent J. Murphy
  • Patent number: 9018423
    Abstract: Disclosed herein are processes for preparing an ?,?-Cn-diol, wherein n is 5 or greater, from a feedstock comprising a Cn oxygenate. In one embodiment, the process comprises contacting the feedstock with hydrogen gas in the presence of a catalyst comprising Pt, Cu, Ni, Pd, Pt, Rh, Ir, Ru, or Fe on a WO3 or WOx support. In one embodiment, the process comprises contacting the feedstock with hydrogen in the presence of a catalyst comprising a metal M1 and a metal M2 or an oxide of M2, and optionally a support. In one embodiment, M1 is Pd, Pt, or Ir; and M2 is Mo, W, V, Mn, Re, Zr, Ni, Cu, Zn, Cr, Ge, Sn, Ti, Au, or Co. The Cn oxygenate may be obtained from a biorenewable resource.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: April 28, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Alan Martin Allgeier, Torren Ryan Carlson, David Richard Corbin, Wathudura Indika Namal De Silva, Ekaterini Korovessi, Carl Andrew Menning, Joachim C Ritter, H David Rosenfeld, Sourav Kumar Sengupta
  • Publication number: 20150104364
    Abstract: The present disclosure is directed to processes using a new crystalline molecular sieve designated SSZ-96, which is synthesized using a 1-butyl-1-methyl-octahydroindolium cation as a structure directing agent.
    Type: Application
    Filed: May 21, 2014
    Publication date: April 16, 2015
    Applicant: CHEVRON U.S.A. INC.
    Inventor: Saleh Ali ELOMARI
  • Patent number: 8952198
    Abstract: Disclosed is a process for the preparation of an amine (particularly diamines and polyamines) by reacting an alkanolamine or a polyol with ammonia in the presence of a catalyst composed of two active metals from the group of transition metals, namely nickel and chromium supported on a microporous refractory substrate, in a hydrogenated, trickle bed reactor.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: February 10, 2015
    Inventors: Ian Williams, John Christopher Williams, German Maya Maya-Hernandez, Lilia Patricia Hernandez Salas, Miguel Angel Lopez Guerrero
  • Patent number: 8946463
    Abstract: The present invention relates to a chemocatalytic liquid-phase process for the direct one-stage amination of alcohols to primary amines by means of ammonia in high yields using a catalyst system containing at least one transition metal compound and a xantphos ligand.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 3, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Florian Klasovsky, Thomas Tacke, Jan Christoph Pfeffer, Thomas Haas, Matthias Beller, Andreas Martin, Jens Deutsch, Angela Koeckritz, Sebastian Imm, Juergen Haberland
  • Patent number: 8927772
    Abstract: The present invention relates to a process for producing a tertiary amine, including the following steps (1) and (2): Step (1); introducing an alcohol having 1 to 36 carbon atoms and a raw amine represented by the following general formula (I) into a first reaction vessel to react with each other in the presence of a catalyst and hydrogen, and then continuing the reaction while discharging water produced in the reaction and a hydrogen-containing gas out of a reaction system in the first reaction vessel: R1R2NH??(I) wherein R1 and R2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 36 carbon atoms; and Step (2): introducing the hydrogen-containing gas discharged from the first reaction vessel into a second reaction vessel to reduce an amount of carbon monoxide contained in the hydrogen-containing gas, and then introducing a part or whole of the hydrogen-containing gas into the first reaction vessel.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Kao Corporation
    Inventors: Masahiko Watanabe, Gosuke Tateno, Hirofumi Mizukoshi
  • Patent number: 8927773
    Abstract: The invention relates to a process for preparing primary amines which comprises the process steps A) provision of a solution of a secondary alcohol in a fluid, nongaseous phase, B) contacting of the phase with free ammonia and/or at least one ammonia-releasing compound and a homogeneous catalyst and optionally C) isolation of the primary amine formed in process step B), characterized in that the volume ratio of the volume of the liquid phase to the volume of the gas phase in process step B is greater than or equal to 0.25, and/or in that the ammonia is used in process step B) in a molar ratio based on the hydroxyl groups in the secondary alcohol of at least 5:1.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: January 6, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Florian Klasovsky, Jan Christoph Pfeffer, Thomas Tacke, Thomas Haas, Andreas Martin, Jens Deutsch, Angela Koeckritz
  • Publication number: 20140371452
    Abstract: The invention provides a method for the reductive amination of diethanolamine to form a product composition that includes piperazine (PIP) and aminoethylethanolamine (AEEA). A catalyst with a transitional alumina/second metal oxide support and a mixture of catalytic metals is used for the reaction which results in low levels of non-PIP and non-AEEA side products.
    Type: Application
    Filed: November 14, 2012
    Publication date: December 18, 2014
    Inventors: Stephen W. King, Sadeka Onam, Thomas Z. Srnak
  • Patent number: 8912361
    Abstract: Process for preparing primary amines which have at least one functional group of the formula (—CH2—NH2) and at least one further primary amino group by alcohol amination of starting materials having at least one functional group of the formula (—CH2—OH) and at least one further functional group (—X), where (—X) is selected from among hydroxyl groups and primary amino groups, by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 16, 2014
    Assignee: BASF SE
    Inventors: Thomas Schaub, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Patent number: 8907084
    Abstract: The invention relates to a process for the production of 2AEE with selectivity towards 2AEE being significantly higher i.e. the ratio of 2AEE:morpholine >3. DEG and Ammonia are reacted in a continuous mode in hydrogen atmosphere in the presence of a catalyst at temperature of 150° C. to 250° C. and pressure of 10 Bar to 20 Bar, the products being separated by distillation. The catalyst used is metal and its oxide or metal oxide on silica or alumina support. The molar ratio of ammonia:DEG is >20 and the molar ratio of hydrogen:DEG is >1, preferably 1-30. The reactants are optionally fed in a downward flow mode. The catalyst charged into the reactor has metal and its oxide or metal oxide equivalent to a metal content of 10% to 70% on the support.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: December 9, 2014
    Assignee: Alkyl Amines Chemicals Ltd.
    Inventors: Sameer Sharad Katdare, Prasanna Krishna Somalwar, Vishwanathan Ramaswamy, Saimani Srinivasan
  • Patent number: 8895784
    Abstract: The present invention relates to a catalyst for reductive amination-reaction, and uses thereof. The catalyst according to the present invention can show high amine conversion rate because it can maintain the catalytic activity even in the presence of moisture especially while maintaining the balance of dehydrogenation and hydrogenation reaction basically. Accordingly, the catalyst can be usefully used for preparing a polyetheramine compound through reductive amination-reaction not only in a continuous preparation process but also in a batch preparation process, irrespective of the existence of moisture.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: November 25, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Kyung-Jun Kim, Chun-Sik Byun, Jin-Heung Kim, Hui-Chan Kim, Young-Jong Seo
  • Patent number: 8889912
    Abstract: Disclosed are processes for preparing 1,6-hexanediol from levoglucosenone. In one embodiment, the process comprises contacting levoglucosenone with hydrogen in the presence of a hydrogenation catalyst comprising palladium, platinum/tungsten, nickel/tungsten, rhodium/rhenium, or mixtures thereof at a first temperature between about 50° C. and 100° C. and at a first reaction pressure between about 50 psi and 2000 psi for a first reaction period, and at a second temperature between about 120° C. and 250° C. and at a second pressure between about 500 psi and 2000 psi for a second reaction period to form a product mixture comprising 1,6-hexanediol, wherein the first reaction period is the amount of time in which the levoglucosenone has a conversion of at least about 95%. In one embodiment, the 1,6-hexanediol is converted to 1,6-diaminohexane.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: November 18, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Alan Martin Allgeier, David Richard Corbin, Wathudura Indika Namal De Silva, Ekaterini Korovessi, Carl Andrew Menning, Joachim C Ritter, Sourav Kumar Sengupta
  • Patent number: 8877978
    Abstract: The present invention discloses the method for producing a tertiary amine, using the column reactor packed with catalyst layers, containing supplying a liquid and a gaseous raw materials from the bottom of the column, reacting these raw materials in the column, and discharging the product from the top of the column, wherein the column reactor includes two or more honeycomb catalyst layers as the catalyst layers, one or more spaces between each honeycomb catalyst layer, and one or more rectifying sections that prevents a partial or whole back flow of the raw materials, arranged in each space without contacting with the honeycomb catalyst layer.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: November 4, 2014
    Assignee: Kao Corporation
    Inventors: Yasumitsu Sakuma, Wataru Nomura, Goshi Yamamoto, Takeshi Narushima
  • Patent number: 8877977
    Abstract: Process for the preparation of polyalkylenepolyamines by homogeneously catalyzed alcohol amination, in which aliphatic amino alcohols are reacted with one another or aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a homogeneous catalyst and in the presence of hydrogen gas. Polyalkylenepolyamines obtainable by such processes and polyalkylenepolyamines comprising hydroxy groups, secondary amines or tertiary amines. Uses of such polyalkylenepolyamines as adhesion promoters for printing inks, adhesion promoters in composite films, cohesion promoters for adhesives, crosslinkers/curing agents for resins, primers for paints, wet-adhesion promoters for emulsion paints, complexing agents and flocculating agents, penetration assistants in wood preservation, corrosion inhibitors, immobilizing agents for proteins and enzymes.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 4, 2014
    Assignee: BASF SE
    Inventors: Julia Strautmann, Thomas Schaub, Stephan Hueffer, Steffen Maas, Rocco Paciello
  • Patent number: 8865940
    Abstract: Disclosed are processes for preparing 1,6-hexanediol and synthetic intermediates useful in the production of 1,6-hexanediol from renewable biosources. In one embodiment, a process comprises contacting levoglucosenone with hydrogen in the presence of a first hydrogenation catalyst at a first temperature to form product mixture (I); and heating product mixture (I) in the presence of hydrogen and a second hydrogenation catalyst at a second temperature to form product mixture (II) which comprises 1,6-hexanediol. In one embodiment, the 1,6-hexanediol is converted to 1,6-diaminohexane.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: October 21, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Alan Martin Allgeier, Wathudura Indika Namal De Silva, Ekaterini Korovessi, Carl Andrew Menning, Joachim C Ritter, Sourav Kumar Sengupta, Christina S Stauffer
  • Publication number: 20140305339
    Abstract: Process for the preparation of lipophilic polyalkylenepolyamines by homogeneously catalyzed alcohol amination, where aliphatic amino alcohols are reacted with one another or aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a homogeneous catalyst, at least one of the reactants comprising an alkyl or alkylene group having five or more carbon atoms, and after the reaction a phase separation into at least one apolar phase and at least one polar phase being present, the lipophilic polyalkylenepolyamines being present in enriched form in the apolar phase. Polyalkylenepolyamines obtainable by such processes, and polyalkylenepolyamines comprising hydroxyl groups, secondary amines or tertiary amines.
    Type: Application
    Filed: November 19, 2012
    Publication date: October 16, 2014
    Applicant: BASF SE
    Inventors: Julia Strautmann, Thomas Schaub, Stephan Hueffer, Steffen Maas, Claudia Wood
  • Publication number: 20140309460
    Abstract: Process for increasing the molar mass of polyalkylenepolyamines by homogeneously catalyzed alcohol amination, which comprises carrying out a reaction of the polyalkylenepolyamines in a reactor with elimination of water in the presence of a homogeneous catalyst and removing the water of reaction from the reaction system. Polyalkylenepolyamines obtainable by such processes, and polyalkylenepolyamines comprising hydroxyl groups, secondary amines or tertiary amines. Uses of such polyalkylenepolyamines as adhesion promoters for printing inks, adhesion promoters in composite films, cohesion promoters for adhesives, crosslinkers/curing agents for resins, primers for paints, wet-adhesion promoters for emulsion paints, complexing agents and flocculating agents, penetration assistants in wood preservation, corrosion inhibitors, immobilizing agents for proteins and enzymes.
    Type: Application
    Filed: November 19, 2012
    Publication date: October 16, 2014
    Applicant: BASF SE
    Inventors: Julia Strautmann, Thomas Schaub, Stephan Hueffer, Rocco Paciello
  • Patent number: 8853400
    Abstract: The invention relates to a process for preparing primary amines by alcohol amination of alcohols with ammonia with the elimination of water, where the alcohol amination is carried out under homogeneous catalysis in the presence of at least one complex catalyst which comprises ruthenium and at least one at least bidental donor ligand, but no anionic ligands.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: October 7, 2014
    Assignee: BASF SE
    Inventors: Mathias Schelwies, Marion Brinks, Thomas Schaub, Johann-Peter Melder, Rocco Paciello, Martin Merger
  • Patent number: 8853458
    Abstract: Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceeding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 7, 2014
    Assignee: Rennovia, Inc.
    Inventors: Eric L. Dias, James A. W. Shoemaker, Thomas R. Boussie, Vincent J. Murphy
  • Patent number: 8846985
    Abstract: Disclosed herein are processes for preparing an ?,?-Cn-diol, wherein n is 5 or greater, from a feedstock comprising a Cn oxygenate. In one embodiment, the process comprises contacting the feedstock with hydrogen gas in the presence of a catalyst comprising a first metal component comprising Ni, Ir, Pt, Rh, Ru, Pd, Fe, Ag, or Au; a heteropoly acid component comprising H3[P(W3O10)4], H4[Si(W3O10)4], H4[P(Mo3O10)4], H4[Si(Mo3O10)4], Cs2.5H0.5[P(W3O10)4]Cs2.5H0.5[Si(W3O10)4], or mixtures thereof; optionally a second metal component comprising Cr, a Cr oxide, Ni, a Ni oxide, Fe, a Fe oxide, Co, a Co oxide, Mn, a Mn oxide, Mo, a Mo oxide, W, a W oxide, Re, a Re oxide, Zn, a Zn oxide, SiO2, or Al2O3; optionally at least one promoter comprising Na, K, Mg, Rb, Cs, Ca, Sr, Ba, Ce, or mixtures thereof; and optionally a support.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 30, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Alan Martin Allgeier, Wathudura Indika Namal De Silva, Carl Andrew Menning, Joachim C Ritter, Sourav Kumar Sengupta
  • Patent number: 8846984
    Abstract: Disclosed herein are processes for preparing an ?,?-Cn-diol, wherein n is 5 or greater, from a feedstock comprising a Cn oxygenate. In one embodiment, the process comprises contacting the feedstock with hydrogen gas in the presence of a catalyst comprising Cu, a Cu oxide, or mixtures thereof; a heteropoly acid component comprising H3[P(W3O10)4], H4[Si(W3O10)4], H4[P(Mo3O10)4], H4[Si(Mo3O10)4], Cs2.5H0.5[P(W3O10)4], Cs2.5H0.5[Si(W3O10)4], or mixtures thereof; optionally a second metal component comprising Cr, a Cr oxide, Ni, a Ni oxide, Mn, a Mn oxide, Fe, an Fe oxide, Co, a Co oxide, Mo, a Mo oxide, W, a W oxide, Re, a Re oxide, Zn, or a Zn oxide, Ag, a Ag oxide, SiO2, or Al2O3; optionally at least one promoter comprising Na, K, Mg, Rb, Cs, Ca, Sr, Ba, Ce, or mixtures thereof; and optionally a support.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 30, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Alan Martin Allgeier, Wathudura Indika Namal De Silva, Carl Menning, Joseph E Murphy, Joachim C Ritter, Sourav Kumar Sengupta
  • Publication number: 20140288306
    Abstract: The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: David Milstein, Chidambaram Gunanathan
  • Patent number: 8835691
    Abstract: The present invention relates to a process for preparing primary amines comprising the process steps A) provision of a solution of a primary alcohol in a fluid, nongaseous phase, B) contacting of the phase with free ammonia and/or at least one ammonia-releasing compound and a homogeneous catalyst and optionally C) isolation of the primary amine formed in process step B), characterized in that the volume ratio of the volume of the liquid phase to the volume of the gas phase in process step B is greater than 0.05 and/or in that process step B is carried out at pressures greater than 10 bar.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 16, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Florian Klasovsky, Jan Christoph Pfeffer, Thomas Tacke, Thomas Haas, Matthias Beller, Angela Koeckritz, Jens Deutsch, Andreas Martin, Sebastian Imm
  • Publication number: 20140213823
    Abstract: Disclosed is a process for the preparation of an amine (particularly diamines and polyamines) by reacting an alkanolamine or a polyol with ammonia in the presence of a catalyst composed of two active metals from the group of transition metals, namely nickel and chromium supported on a microporous refractory substrate, in a hydrogenated, trickle bed reactor.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Inventors: Ian Williams, John Christopher Williams, German Maya Maya-Hervandez, Lilia Patricia Hernandez Salas, Miguel Angel Lopez Guerrero
  • Patent number: 8785693
    Abstract: Process for the preparation of primary amines which have at least one functional group of the formula (—CH2—NH2) by alcohol amination of starting materials which have at least one functional group of the formula (—CH2—OH), with ammonia, with the elimination of water, where the alcohol amination is carried out under homogeneous catalysis in the presence of at least one complex catalyst which comprises at least one element selected from groups 8 and 9 of the Periodic Table of the Elements, and also at least one phosphorus donor ligand of the general formula (I).
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 22, 2014
    Assignee: BASF SE
    Inventors: Thomas Schaub, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Patent number: 8766009
    Abstract: A process for preparing ethylamines and monoisopropylamine (MIPA), in which bioethanol is reacted with ammonia in the presence of hydrogen and of a heterogeneous catalyst to give ethylamines, said bioethanol having a content of sulfur and/or sulfur compounds of ?0.1 ppm by weight (calculated S), and then isopropanol is reacted with ammonia in the presence of the same catalyst and in the presence of hydrogen to give MIPA.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: July 1, 2014
    Assignee: BASF SE
    Inventors: Norbert Asprion, Manfred Julius, Oliver Bey, Stefanie Werland, Frank Stein, Matthias Kummer, Wolfgang Mägerlein, Johann-Peter Melder, Kevin Huyghe, Maarten Moors
  • Patent number: 8664445
    Abstract: A method for providing a secondary or tertiary amine with formula (R1R2NR3)2NR4 is provided, wherein each of R1 and R2 are chosen from the group consisting of a methyl group, an ethyl group, an iso-propyl group and an n-propyl group; R3 being an alkoxyalkyl group chosen from the group consisting of —CH2CH2OCH2CH2-, —CH2CH2OCH2CH2CH2- and —CH2CH2CH2OCH2CH2CH2-; R4 is chosen from the group consisting of a hydrogen, a methyl group, an ethyl group, an iso-propyl group, an n-propyl group and a group with formula R1R2NR3. The method comprises the steps: (?)reacting R1R2NR3(OH) with ammonia, thereby providing a mixture comprising (R1R2NR3)2NR4; (?) separating (R1R2NR3)2NR4 from said mixture.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: March 4, 2014
    Assignees: Huntsman International LLC, Huntsman Corporation Hungary ZRT
    Inventors: Zsolt Gaspar, Heiko H. Humbert, Gabor Felber, Attila Gaspar, Robert A. Grigsby, Jr., Imre Kordas, Petra Emma Vanderstraeten
  • Publication number: 20140046054
    Abstract: The invention relates to a process for preparing amines (A) by alcohol amination of alcohols (Al) by means of an aminating agent (Am) with elimination of water, wherein the alcohol amination is carried out in the presence of a complex catalyst comprising iridium and an amino acid.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 13, 2014
    Applicant: BASF SE
    Inventors: Alexander WETZEL, Michael Limbach, Marion Brinks, Mathias Schelwies
  • Publication number: 20140039181
    Abstract: The invention relates to a method for producing a N-substituted amine compound by catalyzed alkylation. The method uses amine and alcohol or two kinds of amines as the reaction materials, employs composite metal oxides catalyst at a reaction temperature of 80-180° C. to catalyze the reaction for 6-36 hours, so as to produce the N-substituted amine compound. The reaction condition of the method of the invention is relatively moderate, using a catalyst made of cheap non-noble metals, which is non-caustic and easy to be separated and reused. The reaction does not need any medium and has relatively high conversion rate and selectivity.
    Type: Application
    Filed: December 28, 2012
    Publication date: February 6, 2014
    Applicant: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
    Inventor: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
  • Patent number: 8642811
    Abstract: The invention provides a method to produce primary diamines by catalytic conversion of diols having a linear main chain of from 4 to 31 carbon atoms into the corresponding diamines. The reaction is conducted in a liquid or supercritical phase and is catalyzed by a homogeneous ruthenium-containing complex. The primary diamines obtained may be suitable for polyamide syntheses.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: February 4, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Franz-Erich Baumann, Matthias Ullrich, Martin Roos, Peter Hannen, Frank-Martin Petrat, Harald Haeger, Angela Koeckritz, Guido Walther, Jens Deutsch, Andreas Martin
  • Patent number: 8637709
    Abstract: Preparing a primary amine by alcohol amination of alcohol with ammonia and elimination of water includes reacting, in a homogeneously catalyzed reaction, a mixture of alcohol, ammonia, nonpolar solvent, and catalyst, in a liquid phase, to obtain a product mixture. The process then includes phase separating the product mixture into a polar product phase and a nonpolar product phase, and separating off the nonpolar product phase. At least some of the nonpolar phase returns to the homogenously catalyzed reaction. The process further includes separating off amination product from the polar product phase. At least some of the catalyst is in the nonpolar phase, and the catalyst accumulates in the nonpolar phase.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: January 28, 2014
    Assignee: BASF SE
    Inventors: Thomas Schaub, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Publication number: 20130331580
    Abstract: The present invention relates to a chemocatalytic liquid-phase process for the direct one-stage amination of alcohols to primary amines by means of ammonia in high yields using a catalyst system containing at least one transition metal compound and a xantphos ligand.
    Type: Application
    Filed: December 14, 2011
    Publication date: December 12, 2013
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Florian Klasovsky, Thomas Tacke, Jan Christoph Pfeffer, Thomas Haas, Matthias Beller, Andreas Martin, Jens Deutsch, Angela Koeckritz, Sebastian Imm, Juergen Haberland
  • Patent number: 8563778
    Abstract: The present invention relates to a process to prepare ethylene amines by the amination of ethylene oxide, ethylene glycol or ethanolamine in the presence of a catalyst, comprising a step wherein methylamine and/or ethylamine are removed from the reaction effluents.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: October 22, 2013
    Assignee: Akzo Nobel N.V.
    Inventors: Martin Stefan Hanson, Leif Kenny Christian Gustafson, Johan Lif, Boris Kuzmanovic, Ulf Schröder
  • Publication number: 20130245276
    Abstract: The present invention relates to a process for preparing primary amines comprising the process steps A) provision of a solution of a primary alcohol in a fluid, nongaseous phase, B) contacting of the phase with free ammonia and/or at least one ammonia-releasing compound and a homogeneous catalyst and optionally C) isolation of the primary amine formed in process step B), characterized in that the volume ratio of the volume of the liquid phase to the volume of the gas phase in process step B is greater than 0.05 and/or in that process step B is carried out at pressures greater than 10 bar.
    Type: Application
    Filed: December 7, 2011
    Publication date: September 19, 2013
    Applicant: Evonik Degussa GmbH
    Inventors: Florian Klasovsky, Jan Christoph Pfeffer, Thomas Tacke, Thomas Haas, Matthias Beller, Angela Koeckritz, Jens Deutsch, Andreas Martin, Sebastian Imm
  • Publication number: 20130231505
    Abstract: Disclosed are processes for preparing 1,6-hexanediol from levoglucosenone. In one embodiment, the process comprises contacting levoglucosenone with hydrogen in the presence of a hydrogenation catalyst comprising palladium, platinum/tungsten, nickel/tungsten, rhodium/rhenium, or mixtures thereof at a first temperature between about 50° C. and 100° C. and at a first reaction pressure between about 50 psi and 2000 psi for a first reaction period, and at a second temperature between about 120° C. and 250° C. and at a second pressure between about 500 psi and 2000 psi for a second reaction period to form a product mixture comprising 1,6-hexanediol, wherein the first reaction period is the amount of time in which the levoglucosenone has a conversion of at least about 95%. In one embodiment, the 1,6-hexanediol is converted to 1,6-diaminohexane.
    Type: Application
    Filed: April 25, 2013
    Publication date: September 5, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Alan Martin Allgeier, Joachim C. Ritter, Sourav Kumar Sengupta
  • Publication number: 20130204037
    Abstract: A catalytic process is taught for non-oxidative alkylation of organic compounds, comprising alcohols, alkanes, glycols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, thiols or phosphines, by alkyl groups produced from alcohols or glycols, forming products comprising ethers and other higher molecular weight alkylated compounds. The process is conducted at a reflux temperature below 200° C. in the presence of an acid, alkali or neutral salt dehydrating agent comprising sulfuric acid, phosphoric acid or their salts, lime or anhydrous calcium sulfate in the absence of zero valent metals and air. Specifically, this catalytic process converts ethanol to ethyl butyl ethers, ethyl hexyl ethers and dibutyl ethers or oxygenated gasoline as well as amines comprising n-butyl amine plus butanol to dibutyl amine and butyl hexyl amines at ambient pressure.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: Carter Technologies
    Inventor: Melvin Keith Carter
  • Patent number: 8486183
    Abstract: An acid gas absorbent comprising an alkylamino alkyloxy (alcohol) monoalkyl ether and a process for the selective removal Of H2S from gaseous mixtures containing H2S and CO2 using an absorbent solution comprising an alkylamino alkyloxy alcohol monoalkyl ether.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 16, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Edmund John Mozeleski, Robert Basil Fedich, Frank Cheng-Yu Wang
  • Patent number: 8487135
    Abstract: A process for preparing an amine by reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound selected from the group of ammonia and primary and secondary amines, in the presence of a supported copper-, nickel- and cobalt-containing catalyst, wherein the catalytically active material of the catalyst, before the reduction thereof with hydrogen, comprises oxygen compounds of aluminum, of copper, of nickel and of cobalt, and in the range from 0.2 to 5.0% by weight of oxygen compounds of tin, calculated as SnO, and catalysts as defined above.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: July 16, 2013
    Assignee: BASF SE
    Inventors: Petr Kubanek, Wolfgang Mägerlein, Johann-Peter Melder, Thomas Heidemann
  • Patent number: 8481787
    Abstract: The present invention provides a method for producing a tertiary amine by using a secondary amine and an alcohol as starting materials to obtain a corresponding tertiary amine. The method of the present invention includes reacting a secondary amine with an alcohol in the presence of a catalyst, wherein the catalyst is previously used in the reaction of a primary amine with an alcohol to obtain a tertiary amine.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 9, 2013
    Assignee: Kao Corporation
    Inventors: Toru Nishimura, Wataru Nomura, Yushin Takahashi
  • Publication number: 20130165672
    Abstract: The invention relates to a process for preparing primary amines which comprises the process steps A) provision of a solution of a secondary alcohol in a fluid, nongaseous phase, B) contacting of the phase with free ammonia and/or at least one ammonia-releasing compound and a homogeneous catalyst and optionally C) isolation of the primary amine formed in process step B), characterized in that the volume ratio of the volume of the liquid phase to the volume of the gas phase in process step B is greater than or equal to 0.25, and/or in that the ammonia is used in process step B) in a molar ratio based on the hydroxyl groups in the secondary alcohol of at least 5:1.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 27, 2013
    Applicant: Evonik Degussa GmbH
    Inventors: Florian Klasovsky, Jan Christoph Pfeffer, Thomas Tacke, Thomas Haas, Andreas Martin, Jens Deutsch, Angela Koeckritz
  • Patent number: 8471065
    Abstract: In another exemplary embodiment, an amine functional curing agent has an Amine Hydrogen Functionality (AHF) of at least 7 and an Amine-Hydrogen Equivalent Weight (AHEW) of at least about 50.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: June 25, 2013
    Assignee: Huntsman Petrochemical LLC
    Inventors: Bruce L. Burton, Terry L. Renken
  • Patent number: 8466322
    Abstract: Process for preparing tri-n-propylamine (TPA), wherein di-n-propylamine (DPA) is reacted in the presence of hydrogen and a copper-comprising heterogeneous catalyst. An integrated process for preparing TPA, which comprises the following operations: I) reaction of n-propanol with ammonia in a reactor in the presence of an amination catalyst and optionally hydrogen to form a mixture of mono-n-propylamine, DPA and TPA, II) separation of unreacted ammonia, unreacted n-propanol and possibly hydrogen from the reaction product mixture and recirculation of at least the ammonia and propanol to the reactor in I) and also separation of the n-propylamine mixture by distillation and isolation of the TPA, III) reaction of the DPA obtained in the separation by distillation in II) in a reactor in the presence of hydrogen and a copper-comprising heterogeneous catalyst to form TPA and IV) feeding of the reactor output from III) to operation II).
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 18, 2013
    Assignee: BASF SE
    Inventors: Kevin Huyghe, Steven Brughmans, Falk Simon, Johann-Peter Melder, Peter Raatz
  • Patent number: 8455693
    Abstract: A process for preparing 2-(2-tert-butylaminoethoxy)ethanol (tert-butylaminodiglycol, TBADG) by reacting diethylene glycol (DG) with tert-butylamine (TBA) in the presence of hydrogen and of a copper catalyst, by effecting the reaction at a temperature in the range from 160 to 220° C. in the presence of a copper- and aluminum oxide-containing catalyst, where the catalytically active material of the catalyst, before the reduction thereof with hydrogen, comprises 20 to 75% by weight of aluminum oxide (Al2O3), 20 to 75% by weight of oxygen compounds of copper, calculated as CuO, and ?5% by weight of oxygen compounds of nickel, calculated as NiO.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: June 4, 2013
    Assignee: BASF SE
    Inventors: Roland Bou Chedid, Johann-Peter Melder, Steven Brughmans, Torsten Katz