Preparing Hexamethylene Diamine Patents (Class 564/492)
  • Patent number: 11359295
    Abstract: Provided are methods of making aliphatic or aromatic compounds (e.g., small molecules or polymers) having one or more amine groups and/or imine groups. A method of the present disclosure is an electrohydrogenation method, where a potential is applied to an aliphatic or aromatic compound (e.g., small molecule or polymer) having one or more nitrile groups, where after the potential is applied one or more of the nitrile groups are reduced to an amine or imine. The electrohydrogenation may be carried out using non-pulsed or pulsed potential waveforms.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: June 14, 2022
    Assignee: New York University
    Inventors: Miguel A. Modestino, Daniela Eugenia Blanco, Zainub Aaliyah Imran Dookhith
  • Patent number: 11192845
    Abstract: Provided is a hydrogenation method of a phthalate compound. According to the present invention, in the hydrogenation reaction, generation of by-products is suppressed, and thus catalytic activity is improved and life-time is extended, thereby increasing efficiency of a commercial process and economic efficiency. Further, since the hydrogenation product prepared by the present invention has high purity and a low acid value, its quality as a plasticizer is excellent, thereby being applied to a variety of products.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: December 7, 2021
    Assignee: HANWHA SOLUTIONS CORPORATION
    Inventors: Ki Taeg Jung, Hyo Suk Kim, Seong Min Park, Hye Won Lee, Jae Heum Jung
  • Patent number: 11148992
    Abstract: Provided is a hydrogenation method of a phthalate compound. According to the present invention, in the hydrogenation reaction, generation of by-products is suppressed, and thus catalytic activity is improved and life-time is extended, thereby increasing efficiency of a commercial process and economic efficiency. Further, since the hydrogenation product prepared by the present invention has high purity and a low acid value, its quality as a plasticizer is excellent, thereby being applied to a variety of products.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: October 19, 2021
    Assignee: HANWHA SOLUTIONS CORPORATION
    Inventors: Ki Taeg Jung, Hyo Suk Kim, Seong Min Park, Hye Won Lee, Jae Heum Jung
  • Patent number: 10519096
    Abstract: The present invention relates to a process for hydrogenating nitrile compounds to amino compounds, in which the cross-sectional loading of the reactor during the hydrogenation is less than or equal to 4.0 kg/m2*s, based on the liquid phase.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 31, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Anne Rittsteiger, Stephan Kohlstruk, Dirk Hoppe, Alexander Martin Rüfer, Sabrina Sowka, Sven Schneider, Norbert Schlüter, Axel Hengstermann, Markus Galle, Stefan Röder, Monika Berweiler
  • Patent number: 9822067
    Abstract: The present invention relates to a process for purifying adiponitrile (ADN), wherein crude ADN is introduced into a rectification apparatus (R1). The rectification apparatus (R1) comprises a first side draw and preferably also a second side draw, the first side draw being disposed below the crude ADN introduction point and the optional second side draw being disposed above the crude ADN introduction point. The first side draw is used to draw off a gaseous stream comprising ADN while the optional second side draw is used to draw off undesired by-products such as 1-amino-2-cyanocyclopentene (ACCP) which are often generated in ADN production and consequently may be present in the crude ADN. The gaseous stream from the first side draw of (R1) is introduced into a second rectification apparatus (R2). (R2) is used to separate off ADN from remaining high boilers and any other by-products present, pure ADN being drawn off from (D2) as overhead product.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: November 21, 2017
    Assignee: BASF SE (Ellwanger & Baier Patentanwälte)
    Inventors: Hermann Luyken, Peter Pfab, Tim Jungkamp
  • Patent number: 8933272
    Abstract: It is described a process for the production of hexamethylenediamine by hydrogenation of adiponitrile, comprising an improved step of regeneration of the catalyst. Also described are an equipment for the production of hexamethylenediamine, and a washing apparatus (14) for implementing the catalyst regeneration step.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: January 13, 2015
    Assignee: Radici Chimica S.p.A.
    Inventors: Tommaso Crippa, Stefano Alini, Luciano Guida, Alberto Corona
  • Patent number: 8884064
    Abstract: The present invention relates to a process comprising at least the steps (A) chemical reaction of at least one organic compound in the presence of at least one heterogeneous catalyst in a reaction mixture and (B) removal of the at least one heterogeneous catalyst by means of a magnetic filter, and also the use of a magnetic filter for separating off catalyst particles in a process for the hydrogenation of at least one organic compound.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: November 11, 2014
    Assignee: BASF SE
    Inventors: Frank Kuhnke, Jörg Heilek, Daniela Rieck
  • Publication number: 20140024859
    Abstract: It is described a process for the production of hexamethylenediamine by hydrogenation of adiponitrile, comprising an improved step of regeneration of the catalyst. Also described are an equipment for the production of hexamethylenediamine, and a washing apparatus (14) for implementing the catalyst regeneration step.
    Type: Application
    Filed: April 15, 2011
    Publication date: January 23, 2014
    Applicant: Radici Chimica S.p.A.
    Inventors: Tommaso Crippa, Stefano Alini, Luciano Guida, Alberto Corona
  • Publication number: 20130324694
    Abstract: Processes for producing nitrogen containing compounds include producing hexamethylenediamine (HMD), adiponitrile (ADN), adipamide (ADM) and derivatives thereof from adipic acid (AA) obtained from fermentation broths containing diammonium adipate (DAA) or monoammonium adipate (MAA).
    Type: Application
    Filed: June 10, 2011
    Publication date: December 5, 2013
    Applicant: BIOAMBER S.A.S.
    Inventors: Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
  • Patent number: 8362301
    Abstract: Amine compounds, more particularly diamine compounds, are prepared by hydrogenating compounds including nitrile functions. The preparation can include the use of a hydrogenation catalyst, adapted for the hydrogenation of nitrile compounds into amine compounds, including Raney nickel as well as iron, chromium, and zinc as doping elements.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: January 29, 2013
    Assignee: Rhodia Operations
    Inventors: Didier Letourneur, Stephan Verdier
  • Publication number: 20120329981
    Abstract: The invention provides a process for the preparation of valerolactone, said process comprising reacting levulinic acid with hydrogen by using a solid Ru catalyst, characterised in that the process is carried out in the presence of at least 0.08% (w/w) water relative to the amount of levulinic acid. Said process may be faster and more selective. This process advantageously allows the production of valerolactone from renewable sources. The valerolactone may be used in the preparation of methylpentenoate, adipic acid dimethylester, adipic acid, hexamethylenediamine, and polyamide 6,6 (all claimed).
    Type: Application
    Filed: June 20, 2012
    Publication date: December 27, 2012
    Applicant: DSM IP ASSETS B.V.
    Inventors: Anna Maria Cornelia Francisca Castelijns, Michele Catherine Christianne Janssen, Henricus Wilhemus Leonardus Marie Vaessen
  • Patent number: 8329955
    Abstract: Amino compounds are continuously prepared by hydrogenation of nitrile compounds in the presence of a catalyst, and more particularly diamines are prepared by the continuous hydrogenation of dinitrile compounds in the presence of a Raney metal catalyst and in the absence of an alcoholic solvent; the subject process includes extracting a portion of the catalyst present in the reaction medium, the extracted portion of the catalyst is submitted to a regeneration for providing a catalyst having a catalytic activity lower than that of a fresh catalyst but still high and the regenerated catalyst is recycled to the reaction medium together with fresh catalyst according to a predetermined ratio, whereby the consumption of catalyst is reduced per ton of amines produced.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: December 11, 2012
    Assignee: Rhodia Operations
    Inventors: Didier Letourneur, Philippe Leconte, Jean-Francis Spindler, Patrick Lermusiaux, Vincent Boschat
  • Patent number: 8227642
    Abstract: A method for producing amines by the hydrogenation of nitrile compounds in the presence of a catalyst, notably a method for producing diamines by the continuous hydrogenation of dinitrile compounds in the presence of a Raney-metal catalyst, includes controlling the molar flow of nitrile compounds and the mass flow of catalyst in a hydrogenation piston reactor in order to minimize the occurrence of impurities and deterioration of the catalyst.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: July 24, 2012
    Inventors: Philippe Roccati, Didier Letourneur, Philippe Denis
  • Publication number: 20110313187
    Abstract: The present invention relates to a process for improving the catalytic properties of a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, by contacting the catalyst with one or more basic compounds selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to a process for hydrogenating compounds which comprise at least one unsaturated carbon-carbon, carbon-nitrogen or carbon-oxygen bond in the presence of a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, by contacting the catalyst with one or more basic compounds selected from the group of the alkali metals, alkaline earth metals and rare earth metals.
    Type: Application
    Filed: February 1, 2010
    Publication date: December 22, 2011
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Patent number: 8076518
    Abstract: This invention provides chain extender compositions. These compositions comprise (i) an aliphatic secondary diamine, and (ii) a component selected from the group consisting of: (a) a cycloaliphatic primary diamine; (b) an aliphatic secondary diamine; (c) an aliphatic secondary diamine and an aliphatic primary diamine; (d) an aliphatic diimine; and (e) a combination of any two or more of (a) through (d), with the proviso that when (ii) is (a), (i) is a noncyclic aliphatic secondary diamine. Processes for producing polyurethanes, polyureas, and polyurea-urethanes are also provided.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: December 13, 2011
    Assignee: Albemarle Corporation
    Inventors: Paul L. Wiggins, John Y. Lee, Judit Orgad, David W. Owens
  • Publication number: 20110230681
    Abstract: Amine compounds, more particularly diamine compounds, are prepared by hydrogenating compounds including nitrile functions. The preparation can include the use of a hydrogenation catalyst, adapted for the hydrogenation of nitrile compounds into amine compounds, including Raney nickel as well as iron, chromium, and zinc as doping elements.
    Type: Application
    Filed: September 1, 2009
    Publication date: September 22, 2011
    Applicant: RHODIA OPERATIONS
    Inventors: Didier . Letourneur, Stephan Verdier
  • Patent number: 8003826
    Abstract: The invention relates to an improved process for preparing trimethylhexamethylenediamine, hereinafter referred to as TMD for short, by hydrogenation of trimethylhexamethylenedinitrile, hereinafter referred to as TMN for short, in the presence of a shaped hydrogenation catalyst of the Raney type.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 23, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Christian Lettmann, Gerda Grund, Juergen Lippe, Cord Knoop
  • Patent number: 7939027
    Abstract: The present invention relates to a process for the industrial preparation of a diamine starting from a corresponding alkenyl nitrile comprising at least one C—C double bond, which comprises the steps (a) reaction of the alkenyl nitrile with a corresponding monoamine in a first reactor so that the monoamine adds exothermically onto the at least one double bond to form an aminoalkyl nitrile, with the monoamine and water being charged initially and the alkenyl nitrile being fed in; (b) evaporation of unreacted alkenyl nitrile and monoamine to increase the concentration of the aminoalkyl nitrile product in the bottoms of the first reactor; (c) transfer of the aminoalkyl nitrile bottom product from step (b) to a second reactor; (d) batchwise catalytic hydrogenation of the aminoalkyl nitrile transferred in step (c) to the diamine in the second reactor, with each batch being obtained by initially charging a catalyst suitable for the hydrogenation of nitriles to amines and also water, the desired diamine and a bas
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: May 10, 2011
    Assignee: BASF SE
    Inventors: Martin Ernst, Steffen Oehlenschläger, Frank Kuhnke, Karl-Heinz Roβ, Roland Deeg, Johann-Peter Melder
  • Patent number: 7939691
    Abstract: Primary diamines are prepared by hydrogenation of a dinitrile compound in the presence of a catalyst, in particular hexamethylenediamine is prepared by hydrogenation of adiponitrile; the product diamines are recovered by distillation in several distillation columns mounted in series and the heavy impurities are separated from the second distillation.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: May 10, 2011
    Assignee: Rhodia Operations
    Inventors: Daniel Amoros, Denis Rachez
  • Patent number: 7915454
    Abstract: The invention relates to a process for preparing ethylenediamine by hydrogenation of aminoacetonitrile over a catalyst, wherein the hydrogenation is carried out in a solution comprising aminoacetonitrile, water in a proportion of from 0 to 60% by weight and a solvent and the aminoacetonitrile comprised in the solution is fed into the reaction vessel at a rate which is not greater than the rate at which the aminoacetonitrile reacts with hydrogen in the hydrogenation.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: March 29, 2011
    Assignee: BASF SE
    Inventors: Alfred Oftring, Kirsten Dahmen, Randolf Hugo, Thilo Hahn, Katrin Baumann, Johann-Peter Melder
  • Patent number: 7880036
    Abstract: The invention relates to a process for preparing an ethylene amine mixture, which comprises hydrogenating an amino nitrile mixture comprising at least two ?-amino nitriles in an amount of at least 5% by weight in each case in the presence of a catalyst and, if appropriate, a solvent.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: February 1, 2011
    Assignee: BASF SE
    Inventors: Kirsten Dahmen, Alfred Oftring, Katrin Baumann, Randolf Hugo, Thilo Hahn, Johann-Peter Melder
  • Patent number: 7875740
    Abstract: The iron-containing catalyst suitable for use as a catalyst contains a) iron or a mixture containing iron and an iron-based compound. The iron has an average crystallite size ranging from 1-35 nm measured by X-ray diffraction.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: January 25, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Ansmann, Christoph Benisch, Peter Baβler, Rolf-Hartmuth Fischer, Stefan Maixner, Johann-Peter Melder, Hermann Luyken
  • Publication number: 20100317823
    Abstract: The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 16, 2010
    Applicant: RENNOVIA, INC.
    Inventors: Thomas R. Boussie, Eric L. Dias, Zachary M. Fresco, Vincent J. Murphy, James Shoemaker, Raymond Archer, Hong Jiang
  • Patent number: 7767859
    Abstract: A method of producing a primary amine by the hydrogenation of a nitrile in the presence of a hydrogenation catalyst. The hydrogenation catalyst contains at least one metal selected from the group consisting of nickel, cobalt and iron. Before use in the hydrogenation of nitrile, the hydrogenation catalyst is pretreated with at least one treating agent selected from the group consisting of hydrocarbons, alcohols, ethers, esters and carbon monoxide at 150 to 500° C.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: August 3, 2010
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuhiko Amakawa, Yoshiaki Yamamoto
  • Publication number: 20100130789
    Abstract: A method for producing amines by the hydrogenation of nitrile compounds in the presence of a catalyst, notably a method for producing diamines by the continuous hydrogenation of dinitrile compounds in the presence of a Raney-metal catalyst, includes controlling the molar flow of nitrile compounds and the mass flow of catalyst in a hydrogenation piston reactor in order to minimize the occurrence of impurities and deterioration of the catalyst.
    Type: Application
    Filed: September 13, 2007
    Publication date: May 27, 2010
    Inventors: Philippe Roccati, Didier Letourneur, Philippe Denis
  • Publication number: 20100094058
    Abstract: Process for preparing trimethylhexamethylenediamine The invention relates to an improved process for preparing trimethylhexamethylenediamine, hereinafter referred to as TMD for short, by hydrogenation of trimethylhexamethylenedinitrile, hereinafter referred to as TMN for short, in the presence of a shaped hydrogenation catalyst of the Raney type.
    Type: Application
    Filed: January 30, 2008
    Publication date: April 15, 2010
    Applicant: Evonik Degussa GmbH
    Inventors: Christian Lettmann, Gerda Grund, Juergen Lippe, Cord Knoop
  • Publication number: 20100036169
    Abstract: Primary diamines are prepared by hydrogenation of a dinitrile compound in the presence of a catalyst, in particular hexamethylenediamine is prepared by hydrogenation of adiponitrile; the product diamines are recovered by distillation in several distillation columns mounted in series and the heavy impurities are separated from the second distillation.
    Type: Application
    Filed: June 15, 2007
    Publication date: February 11, 2010
    Inventor: Daniel Amoros
  • Publication number: 20090018366
    Abstract: Method for the production of supported activated metal catalysts, whereby an alloy, a metal powder, a pore builder is dispersed in a water, the dispersion is sprayed on a support which is the dried, calcined and activated. The catalysts can be used for organic transformations, i.e. for hydrogenation reactions.
    Type: Application
    Filed: September 8, 2005
    Publication date: January 15, 2009
    Inventors: Monika Berweiler, Daniel Ostgard, Thomas Quandt, Stefan Roder
  • Publication number: 20080319220
    Abstract: Hexamethylenediamine and aminocapronitrile are simultaneoussly produced by hemihydrogenation of adiponitrile, which includes a stage of separation of the hexamethylenediamine from the hydrogenate by distillation of the hexamethylenediamine, the distillation of the hexamethylenediamine being carried out from the hydrogenate containing a free acid and/or an alkali metal or ammonium acid salt, whereby a top fraction A recovered at the column top of the stage of distillation of the hexamethylenediamine is essentially crude hexamethylenediamine and a small amount of THA; the amount of THA (tetrahydroazepine) present in the crude hexamethylenediamine constitutes a small proportion of the THA present in the hydrogenate.
    Type: Application
    Filed: October 16, 2006
    Publication date: December 25, 2008
    Applicant: RHODIA OPERATIONS
    Inventor: Philippe Leconte
  • Publication number: 20080306305
    Abstract: A process for hydrogenating oligonitriles which have at least two nitrile groups in the presence of a catalyst which, before commencement of the hydrogenation, is pretreated by contacting with a compound A which is selected from alkali metal carbonates, alkaline earth metal carbonates, ammonium carbonate, alkali metal hydrogencarbonates, alkaline earth metal hydrogencarbonates, ammonium hydrogencarbonate, alkaline earth metal oxocarbonates, alkali metal carboxylates, alkaline earth metal carboxylates, ammonium carboxylates, alkali metal dihydrogen phosphates, alkaline earth metal dihydrogen phosphates, alkali metal hydrogen phosphates, alkaline earth metal hydrogen phosphates, alkali metal phosphates, alkaline earth metal phosphates and ammonium phosphate, alkali metal acetates, alkaline earth metal acetates, ammonium acetate, alkali metal formates, alkaline earth metal formates, ammonium formate, alkali metal oxalates, alkaline earth metal oxalates and ammonium oxalate.
    Type: Application
    Filed: December 5, 2006
    Publication date: December 11, 2008
    Applicant: Basf SE
    Inventors: Thilo Hahn, Martin Ernst, Johann-Peter Melder
  • Patent number: 7453012
    Abstract: A process for the hydrogenation of compounds comprising nitrile or nitro functional groups to amine, aminonitrile or aminonitro compounds is provided. The process can be a continuous process conducted in the presence of a heterogeneous hydrogenation catalyst in divided form and a basic compound. The reaction can be conducted in a stirred reactor comprising an external loop for circulating the reaction mixture, allowing one portion of the hydrogenated products to be separated without withdrawing the catalyst, by using tangential filtration. The process may be especially useful in the hydrogenation of adiponitrile to an aminocapronitrile/hexamethylenediamine mixture.
    Type: Grant
    Filed: January 20, 2003
    Date of Patent: November 18, 2008
    Assignee: Rhodia Polyamide Intermediates
    Inventors: Gérald Bocquenet, André Chesnais, Jean-Michel Desire, Philippe Leconte, Lionel Sever
  • Patent number: 7381845
    Abstract: A process for hydrogenating nitrile functions present in organic compounds over at least one heterogeneous catalyst, in which the hydrogenation is carried out in the presence of an ionic liquid, is described.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: June 3, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Verena Weiskopf, Till Gerlach, Kirsten Wenz
  • Patent number: 7291754
    Abstract: Process for the catalytic hydrogenation of a nitrite in the presence of an amine and a catalyst wherein the catalyst is a liquid-rinsed Raney-type catalyst contacted with a hydroxide prior to contacting the catalyst with the amine. The process results in higher selectivity in the formation of diamines from diniriles.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: November 6, 2007
    Assignee: DSM IP Assets B.V.
    Inventors: Franciscus H. A. M. Vandenbooren, Hubertus J. M. Bosman, Alexander V. Peters, Maria J. G. Van Den Boer
  • Patent number: 7214829
    Abstract: The present invention relates to an improvement in a process for preparing primary amines by hydrogenating nitriles. The improvement in the hydrogenation process is that a hydrogenation catalyst modified ex situ with preadsorbed alkali metal carbonate or hydrogencarbonate such as K2CO3 or KHCO3 is used.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: May 8, 2007
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Sandor Goeboeloes, Andras Fasi, Jozsef Margitfalvi, Laszlone Millian
  • Patent number: 7208448
    Abstract: The invention relates to a passivated hydrogenation catalyst that is embedded in a primary amine, a derivative thereof, and/or a nitrile, the process to make such catalysts, as well as the use of such catalysts in a hydrogenation process in which an amine or a derivative thereof is produced.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: April 24, 2007
    Assignee: Akzo Nobel N.V.
    Inventors: Thale Jacob Ottens, Jacobus Van Den Berg, Paul Van Poecke
  • Patent number: 7196223
    Abstract: A nitrile-containing mixture, which includes a nitrile dissolved in a higher alcohol solvent, and hydrogen are fed to a reactor containing a catalyst. An amine is produced by hydrogenating the nitrile that is dissolved in the higher alcohol solvent. In a preferred embodiment, the reactor also contains a caustic solution. The preferred nitrile-containing mixture includes octadecaneditrile (ODDN) and hexanol to produce a preferred octadecanediamine (ODDA) through hydrogenation.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: March 27, 2007
    Assignee: Solutia, Inc.
    Inventors: Tom L. Flowers, Anthony K. Uriarte, Shannon Davis, Gregory J. Ward
  • Patent number: 7132562
    Abstract: Catalytic process for hydrogenating a dinitrile to produce both aminocapronitrile and hexamethylenediamine in which the dinitrile is contacted with hydrogen in the presence of a catalyst and a modifier selected from the group consisting of quaternary ammonium hydroxides, cyanides, fluorides and thiocyanides; quaternary phosphonium hydroxide; carbon monoxide; and hydrogen cyanide.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 7, 2006
    Assignee: Invista North America S.A R.L.
    Inventor: Alan Martin Allgeier
  • Patent number: 7115781
    Abstract: An oxidic composition which is suitable as a catalyst having divalent and trivalent iron in an atomic ratio of divalent to trivalent iron in the range from greater than 0.5 to 5.5 and oxygen as a counterion to the divalent and trivalent iron. The catalyst composition is useful in the hydrogenation of nitriles to amines.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: October 3, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Ansmann, Christoph Benisch, Peter Bassler, Rolf-Hartmuth Fischer, Stefan Maixner, Johann-Peter Melder, Hermann Luyken
  • Publication number: 20040182690
    Abstract: A method for recovering hexamethylene diamine (HMD) from a mixture comprising HMD, 6-aminocapronitrile (ACN) tetrahydroazepine (THA), and ADN comprising:
    Type: Application
    Filed: March 7, 2003
    Publication date: September 23, 2004
    Inventor: John J. Ostermaier
  • Patent number: 6790994
    Abstract: The present invention relates to a process for the hydrogenation of nitrile functional groups to amine functional groups. It relates more particularly to a process for the complete or partial hydrogenation of dinitrile compounds to diamine or aminonitrile compounds. The invention relates to a process for the hydrogenation of nitrile functional groups to amine functional groups using hydrogen in the presence of a hydrogenation catalyst and of a strong inorganic base preferably deriving from an alkali metal or alkaline earth metal. According to the invention, the process comprises a stage of conditioning the catalyst which consists in mixing the hydrogenation catalyst, a predetermined amount of strong inorganic base and a solvent in which the strong inorganic base is not very soluble. This solvent is an amine compound, such as hexamethylenediamine in the case of the hydrogenation of adiponitrile to HMD and/or aminocapronitrile.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: September 14, 2004
    Assignee: Rhodia Polyamide Intermediates
    Inventors: Vincent Boschat, Philippe Leconte
  • Patent number: 6790996
    Abstract: The invention relates to a process for preparing primary amines by hydrogenating nitrites in the presence of a catalyst comprising cobalt and optionally, in addition, nickel and also at least one further doping metal on a particulate support material, the cobalt and, if present, the nickel having an average particle size of from 3 to 30 nm in the active catalyst. The invention further relates to the use of the catalyst in a process for preparing primary amines by hydrogenating nitrites.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: September 14, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Ansmann, Christoph Benisch
  • Patent number: 6677486
    Abstract: Nitriles are hydrogenated to primary amines over an activated, alpha-Al2O3-containing, macroporous Raney catalyst based on an alloy of aluminum and at least one transition metal selected from the group consisting of iron, cobalt and nickel, and, if desired, one or more further transition metals selected from the group consisting of titanium, zirconium, chromium and manganese, which is obtainable by a process comprising the steps in the order (a)-(f): (a) preparing a kneadable composition comprising the alloy, a shaping aid, water and a pore former; (b) shaping the kneadable composition to form a shaped body; (c) calcining the shaped body; (d) activating the calcined shaped body by treatment with aqueous alkali metal hydroxide solution; (e) rinsing the shaped catalyst body with aqueous alkali metal hydroxide solution; (f) rinsing the shaped catalyst body with water.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: January 13, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Ansmann, Christoph Benisch, Frank Funke, Frank Ohlbach, Martin Merger
  • Patent number: 6649799
    Abstract: A method for producing amines by catalytic hydrogenation of nitrites or imines with hydrogen-containing gases in the presence of a molded hydrogenation catalyst of Raney type, where the Raney catalyst is in the form of hollow bodies.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 18, 2003
    Assignee: Degussa AG
    Inventors: Daniel Ostgard, Monika Berweiler, Stefan Röder
  • Publication number: 20030212298
    Abstract: The invention relates to the production of hexamethylene diamine from butadiene. The method comprises the successively performed stages of: (i) a catalytic epoxidation of butadiene to 1,2-epoxy-3-butene; (ii) a basically catalyzed addition of hydrogen cyanide to butadiene monoxide to form a reaction mixture containing 3-hydroxy-4-pentene nitrile (3HPN) and 2-hydroxymethyl-3-butene nitrile (2HMBN); (iii) an acidically catalyzed dehydration of the cyanohydrines 3HPN and 2HMBN of stage (ii) to cis/trans-pentadiene nitrile (PDN); (iv) a basically catalyzed addition of the products of stage (iii) to form cis/trans-1,4-dicyanobutene-1 and -2 (DCB); and (v) a catalytic hydrogenation of the isomeric cis/trans-1,4-dicyanobutene of stage (iv) to hexamethylene diamine.
    Type: Application
    Filed: March 26, 2003
    Publication date: November 13, 2003
    Applicant: Degussa AG
    Inventors: Claudia Brasse, Thomas Haas, Robert Weber, Jurgen Neuroth
  • Patent number: 6600075
    Abstract: Disclosed is a method for preparing tertiary amine compounds from primary amines and nitrites in the presence of hydrogen gas and a metal catalyst, or metal-containing catalyst composition, at a temperature from about 50° C. to about 200° C. and at a pressure from about 100 psig to 1500 psig. The primary amines and the nitriles used in the process may be diamines and/or dinitriles, or may be combinations of primary amines and/or nitrites. Also disclosed are novel tertiary amine compounds made by the described method.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: July 29, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kelley Moran Whittle, Alan Martin Allgeier, Thomas Papin Gannett, David Page Higley
  • Patent number: 6469211
    Abstract: In a process for the continuous hydrogenation of nitrites to primary amines in the liquid phase over a suspended, activated Raney catalyst based on an alloy of aluminum and at least one transition metal selected from the group consisting of iron, cobalt and nickel, and, if desired, one or more further transition metals selected from the group consisting of titanium, zirconium, chromium and manganese, the hydrogenation is carried out in the absence of ammonia and basic alkali metal compounds or alkaline earth metal compounds.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: October 22, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Ansmann, Christoph Benisch, Frank Funke, Frank Ohlbach, Martin Merger
  • Patent number: 6399830
    Abstract: This invention pertains to an improvement in a process for the formation of secondary or tertiary amines by the catalytic reductive amination of a nitrile with a primary amine. The catalyst employed in the improved reductive amination process is one that has been promoted with an acidic promoter preferably a solid phase acidic promoter.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: June 4, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Nelson Armor, Michael Edward Ford, William Eamon Carroll
  • Patent number: 6384283
    Abstract: The present invention relates to a process for the preparation of aminonitrile and of diamine by catalytic hydrogenation of dinitrile. It consists of a process for the preparation of aminonitrile and of diamine by catalytic hydrogenation of aliphatic dinitrile having from 3 to 12 carbon atoms, characterized in that the final reaction mixture, the catalyst of which has been separated beforehand, is acidified by addition of a sufficient amount of an inorganic or organic acid, before being subjected to an operation of distillation of the products of the reaction and of the unconverted dinitrile. It relates more particularly to the preparation of 6-aminocapronitrile and of hexamethylenediamine by hydrogenation of adiponitrile. The 6-aminocapronitrile can be hydrolysed in the liquid phase or in the gas phase to result in caprolactam. The hexamethylenediamine can be used very particularly to prepare polyamide-6,6 by reaction with adipic acid.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: May 7, 2002
    Assignee: Rhodia Fiber & Resin Intermediates
    Inventor: Philippe Leconte
  • Patent number: 6380420
    Abstract: A process for preparing fatty amines by the cross-metathesis of normal alpha olefins and acrylonitrile to form an intermediate fatty acid nitrile which is hydrogenated to the corresponding fatty amine.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: April 30, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: William L. Schinski, Michael S. Driver
  • Patent number: 6376714
    Abstract: Process for converting a dinitrile to a diamine and optionally an aminonitrile, in which a Group VIII element catalyst is treated with a modifier either before or during a substantially solvent-free hydrogenation reaction in which the dinitrile is contacted with hydrogen in the presence of the catalyst.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: April 23, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Alan M. Allgeier, Theodore A. Koch, Sourav K. Sengupta