Purification Or Recovery Patents (Class 568/854)
  • Patent number: 6586641
    Abstract: A process is provided for increasing the yield in the preparation of polyhydric alcohols obtained from methylolated alkanals by hydrogenation, wherein derivatives of these alcohols are decomposed by adding 5 ppm to 1% by weight, preferably 100 to 1000 ppm, of a suitable acid to an anhydrous mixture containing these derivatives, heating the mixture to temperatures of 100 to 300° C. and then separating off the polyhydric alcohol by distillation. This process makes it possible simply and efficiently to decompose compounds which boil above the polyhydric alcohol and are unwanted by-products of its synthesis.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: July 1, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Matthias Dernbach, Detlef Kratz, Achim Stammer, Gerhard Schulz
  • Patent number: 6586642
    Abstract: A process for greatly improving the color index of polyhydric alcohols, especially trimethylolpropane, by hydrogenation comprises using, in the hydrogenation, an alcohol which has already been purified by distillation. The catalysts used are those conventionally employed in hydrogenations, preferably copper, nickel, palladium or ruthenium catalysts.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: July 1, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Matthias Dernbach, Detlef Kratz, Achim Stammer, Mathias Haake, Michael Koch, Gerhard Schulz
  • Patent number: 6515036
    Abstract: A method of recovering a decomposition product from a polyurethane, the method comprising the steps of thermally decomposing a polyurethane into a liquid containing a polyol and a urea compound which is soluble in the polyol, and solids containing a urea compound which is insoluble in the liquid in the presence of a polyamine compound at a temperature of 120 to 250° C.; removing the solids; hydrolyzing the residue with water retained at a high temperature of 200 to 320° C. and a high pressure; and recovering the resulting polyamine and/or polyol.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: February 4, 2003
    Assignee: Mitsui Takeda Chemicals Inc.
    Inventors: Koichi Murayama, Katsuhisa Kodama, Takashi Kumaki
  • Publication number: 20020189926
    Abstract: A process is disclosed for the purification, by distillation, of trimethylolpropane originating from the hydrogenation of 2,2-dimethylolbutanal, said process comprising the following steps:
    Type: Application
    Filed: June 26, 2002
    Publication date: December 19, 2002
    Inventors: Matthias Dernbach, Detlef Kratz, Achim Stammer, Harald Rust, Gerhard Schulz
  • Patent number: 6489373
    Abstract: The present invention provides a method of recovering a polyamine compound and/or a polyol compound useful for starting materials of polyurethane resin in an industrially advantageous manner by first dissolving the polyurethane resin such as polyurethane foams discharged in a large amount as industrial wastes in a solubilizing agent containing a polyamine compound, a low molecular glycol or an amino alcohol, hydrolyzing the resulting solution with liquid water at 200 to 320° C., then recovering the polyamino compound and/or polyol compound thus formed.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: December 3, 2002
    Assignee: Mitsui Takeda Chemicals Inc.
    Inventors: Katsuhisa Kodama, Kouichi Murayama, Takashi Kumaki
  • Patent number: 6448455
    Abstract: The invention relates to a process for preparing trimethylolpropane with simultaneous formation of formate salts of the formula M(OOCH)n  (I), where M represents the alkali metals lithium, sodium, potassium, rubidium, caesium and/or the alkaline earth metals beryllium, calcium, strontium, barium and n is 1 when M is an alkali metal and is 2 when M is an alkaline earth metal, where n-butyraldehyde, formaldehyde and a base are reacted by the inorganic Cannizzaro process and the reaction mixture formed is subjected to vapour pressure filtration as a suspension, if appropriate after partly removing distillable constituents, such as water.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: September 10, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Paul Wagner, Alexander Klausener
  • Patent number: 6441254
    Abstract: The present invention relates to a process for preparing trimethylol compounds and formic acid by reaction of formaldehyde and aldehydes in the presence of a nitrogen base and distillation of the resulting reaction mixture in the presence of an auxiliary.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: August 27, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Frank Döbert, Paul Wagner, Alexander Klausener, Wolfgang Eymann, Rolf Feller
  • Patent number: 6433192
    Abstract: In a process for preparing 1,4-butanediol, tetrahydrofuran and &ggr;-butyrolactone by oxidation of butane to give a product stream comprising maleic anhydride, absorption of maleic anhydride from the product stream using a high-boiling alcohol to give a liquid absorption product comprising monoesters and diesters of maleic acid and also high-boiling alcohol, after-esterification of the liquid absorption product and subsequent hydrogenation of the after-esterified product in the liquid phase, the high-boiling alcohol is a polyhydric alcohol having a boiling point at atmospheric pressure of above 233° C. and the after-esterified product has an acid number of less than 30 mg KOH/g and a water content of less than 1% by weight.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: August 13, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Rolf Fischer, Gerd Kaibel, Rolf Pinkos, Ralf-Thomas Rahn
  • Publication number: 20020049258
    Abstract: The present invention provides a method of recovering a polyamine compound and/or a polyol compound useful for starting materials of polyurethane resin in an industrially advantageous manner by first dissolving the polyurethane resin such as polyurethane foams discharged in a large amount as industrial wastes in a solubilizing agent containing a polyamine compound, a low molecular glycol or an amino alcohol, hydrolyzing the resulting solution with liquid water at 200 to 320° C., then recovering the polyamino compound and/or polyol compound thus formed.
    Type: Application
    Filed: October 1, 1999
    Publication date: April 25, 2002
    Inventors: KATSUHISA KODAMA, KOUICHI MURAYAMA, TAKASHI KUMAKI
  • Patent number: 6376725
    Abstract: High purity 1,3-butylene glycol obtained from acetaldol by a liquid phase hydrogen reduction method, by adding a base to crude 1,3-butylene glycol free of high-boiling material, heat-treating the mixture and then distilling off 1,3-butylene glycol; and distilling off low-boiling materials from 1,3-butylene glycol. In high performance liquid chromatography analysis under specified conditions, each peak eluted in a relative retention time range of 4.0 to 5.5, taking a relative retention time of 1,3-butylene as 1.0, has an absorbance of 0.02 or less at a measuring wavelength of 210 nm. This has no odor and shows less change with time.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: April 23, 2002
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Yasuo Tsuji, Kunio Tagawa
  • Publication number: 20020033325
    Abstract: The present invention provides a process for recovering ditrimethylolpropane from a still residue obtained by extracting and then distilling off trimethylolpropane from a reaction solution obtained by reacting n-butyraldelhyde with formaldehyde in the presence of a basic catalyst, wherein the still residue is distilled to remove high-boiling components therefrom, and the resultant distillate is subjected to crystallization. When the above process is combined with the acid decomposition, it becomes possible to decompose a linear formal compound obtained from 2 molecules of TMP contained in the still residue as crude TMP and one molecule of formaldehyde, so that di-TMP having a higher purity is obtained.
    Type: Application
    Filed: August 1, 2001
    Publication date: March 21, 2002
    Inventors: Teruyuki Ninomiya, Toshio Watanabe, Atsushi Iwamoto, Soemu Miyashita, Masafumi Watanabe
  • Patent number: 6344592
    Abstract: A method of producing a highly pure trimethylolpropane from a crude trimethylolpropane obtained by a reaction of n-butyl aldehyde and formaldehyde in the presence of a basic catalyst in a two-stage process of an aldol condensation and a crossed Cannizzaro reaction. Since a high-boiling component and an inorganic salt are removed in advance from the crude trimethylolpropane, hardly removable impurities such as condensation products in the crude trimethylolpropane are changed in the subsequent heat treatment under acidic conditions to components easily removable by distillation. By distilling the heat-treated crude trimethylolpropane, a highly pure trimethylolpropane with a low content of remaining formaldehyde and a low coloring degree is easily obtained.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: February 5, 2002
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Atsushi Iwamoto, Teruyuki Ninomiya, Toshio Watanabe, Takaki Ikebe
  • Publication number: 20020010376
    Abstract: A method of producing a highly pure trimethylolpropane from a crude trimethylolpropane obtained by a reaction of n-butyl aldehyde and formaldehyde in the presence of a basic catalyst in a two-stage process of an aldol condensation and a crossed Cannizzaro reaction. Since a high-boiling component and an inorganic salt are removed in advance from the crude trimethylolpropane, hardly removable impurities such as condensation products in the crude trimethylolpropane are changed in the subsequent heat treatment under acidic conditions to components easily removable by distillation. By distilling the heat-treated crude trimethylolpropane, a highly pure trimethylolpropane with a low content of remaining formaldehyde and a low coloring degree is easily obtained.
    Type: Application
    Filed: December 20, 1999
    Publication date: January 24, 2002
    Inventors: ATSUSHI IWAMOTO, TERUYUKI NINOMIYA, TOSHIO WATANABE, TAKAKI IKEBE
  • Patent number: 6316679
    Abstract: A process for treating a composition containing a substantial proportion of trimethyflolpropane bis-monolinear formal (TMP-BMLF) or trimethylolethane bis-monolinear formal (TME-BMLF), e.g., a heavy ends residue obtained from the purification of a crude trimethylolpropane (TMP) or trimethylolethane (TME) product, wherein the composition is contacted at an elevated temperature with a strong acid catalyst, e.g., methanesulfonic acid, to produce a composition containing significantly increased amounts of TMP and trimethylolpropane monocyclic formal (TMP-MCF) or TME and trimethylolethane monocyclic formal (TME-MCF) respectively. Also disclosed is a process for reacting TMP-MCF or TME-MCF, either in substantially pure form or as present in the light ends overhead stream obtained in a finishing treatment of crude TMP or TME, with a monohydric or dihydric alcohol, e.g., ethylene glycol, in the presence of a strong acid catalyst to obtain additional TMP or TME and an acetal by-product, e.g.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: November 13, 2001
    Assignee: Celanese International Corporation
    Inventors: Carolyn Supplee, Jerry A. Broussard, Tobin J. Marks, William E. Slinkard, Edwards G. Zey
  • Patent number: 6288287
    Abstract: A process for preparing a glycerol from a crude glycerol comprising a glycerol, a diol and water, comprising feeding the crude glycerol to a preparation apparatus comprising two or more, serially connected flash towers and a distillation tower connected to a final flash tower, wherein a bottom fraction of each flash tower is fed to a subsequent flash tower; and adjusting an internal pressure of each flash tower to from 0.13 to 40 kPa, an internal temperature of each flash tower to 140° C. or less, a water content of the bottom fraction of the final flash tower to 0.1% by weight or less, and a pressure at bottom of the distillation tower to from 0.13 to 0.90 kPa.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: September 11, 2001
    Assignee: Kao Corporation
    Inventors: Hideaki Ueoka, Takanobu Katayama
  • Patent number: 6288286
    Abstract: A process for preparing 1,6-hexanediol from a carboxylic acid mixture obtained as by-product in the oxidation of cyclohexane to cyclohexanone/cyclohexanol with oxygen or oxygen-comprising gases and by aqueous extraction of the reaction mixture and comprising adipic acid, 6-hydroxycaproic acid and small amounts of 1,4-cyclohexanediols by esterification of the acids and hydrogenation, by a) reacting the mono- and dicarboxylic acids in the aqueous dicarboxylic acid mixture with a low molecular weight alcohol to form the corresponding carboxylic esters, b) conducting a first distillation to remove excess alcohol and low boilers from the esterification mixture obtained, c) conducting a second distillation to separate the bottom product into an ester fraction which is essentially free from 1,4-cyclohexanediols and a fraction which includes at least the larger proportion of the 1,4-cyclohexanediols, d) subjecting the ester fraction essentially free from 1,4-cyclohexanediols to a catalytic hydrogenation, and e)
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: September 11, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Frank Stein, Thomas Krug, Martin Gall, Gabriele Iffland
  • Patent number: 6268539
    Abstract: Method and apparatus for producing neopentyl glycol which comprises hydrogenating hydroxypivaldehyde in a reactor provided with a self-aspirator agitator device in the presence of a hydrogenation catalyst. The method has high yield of neopentyl glycol, and does not have to be carried out under high pressure as do certain prior art methods.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: July 31, 2001
    Assignee: Nan Ya Plastics Corporation
    Inventors: Hsu Sen-Huang, Tsai Chia-Ruey, Chuang Jung-Jen
  • Patent number: 6265623
    Abstract: The reductive cleavage of linear and cyclic acetals, especially formals, in an aqueous medium containing a formate takes place by hydrogenation with hydrogen in the presence of a heterogeneous hydrogenation catalyst at a pH value of less than 7 at a temperature of over 200° C. The catalyst-poisoning effect of the formate is overcome at over 200° to 300° C., especially from over 200° to 280° C., so that, in a suspension procedure, the weight ratio of metal having hydrogenating activity to acetal is less than 0.1.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: July 24, 2001
    Assignee: Perstorp Specialty Chemicals AB
    Inventors: Marcus Morawietz, Thomas Haas, Olaf Burkhardt, Rudolf Vanheertum
  • Patent number: 6265624
    Abstract: A process is described for the continuous recovery of substantially pure pentane-1,5-diol from a crude product stream (1) containing pentane-1,5-diol and &dgr;-valerolactone. The feed stream (1) is continuously supplied to a vaporization zone (2) maintained under temperature and pressure conditions effective for the vaporization of pentane-1,5-diol and conducive to the thermal decomposition of reaction products of &dgr;-valerolactone thereby to form a vaporous stream. The resulting vaporous stream is continuously supplied to an intermediate section of a distillation zone (4). A reflux stream (5) of dimethyl glutarate is fed to an upper section of the distillation zone (4) and an overhead vapor product stream (8) comprising &dgr;-valerolactone and dimethyl glutarate is taken. Also an intermediate stream (11) comprising substantially pure pentane-1,5-diol is taken from the distillation zone (4), while from the bottom section of the distillation zone there is recovered a bottoms product (12).
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: July 24, 2001
    Assignee: Kvaerner Process Technology, Ltd.
    Inventors: John Scarlett, Michael Anthony Wood, Paul Willett
  • Patent number: 6201159
    Abstract: A neopentyl glycol having a purity of 98% or more is produced continuously by a process comprising the steps of: conducting an aldol condensation of isobutyraldehyde with an aqueous formaldehyde solution containing methanol in an amount of 0.1 to 15 wt % in the presence of a tertiary alkylamine catalyst; extracting the condensation product mixture with octanol; distilling the extract; hydrogenating the distillation product; extracting the hydrogenation product mixture with water; and subjecting the extract to distillation.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: March 13, 2001
    Assignee: LG Chemical Limited
    Inventors: Jung-Uk Choi, Seong-Moon Jung, Kee-Hyouk Lee, Ji-Joong Moon, Young-Jin Kim, Kwang-Ik Moon
  • Patent number: 6191320
    Abstract: In a process for finishing neopentyl glycol by cooling, crystallizing and comminuting a neopentyl glycol melt and subsequent packing of the resulting neopentyl glycol particles in storage or transport containers, the melt is cooled at the commencement of cooling for at least 1/10 minutes without use of a coolant or with use of a coolant having a temperature in the range from 50 to 120° C. and the product is packed at a temperature below 30° C.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: February 20, 2001
    Assignee: BASF Aktiengesellchaft
    Inventors: Stefan Käshammer, Andreas Klein, Charles L. Smith, Winfried Müller
  • Patent number: 6184423
    Abstract: The present invention provides and relative equipment to eliminate formic acid and acetic acid from process water in ethylene glycol plant. First, we use weakly basic anion resin to absorb the weakly acidic ions of formic acid and acetic acid. The rest free ions then will be absorbed by strongly basic anion resin. In this invention, we use vertical strataed bed or horizontal series bed as the treating unit, which are packed with weakly basic and strongly basic anion resins. This can increase the efficiency of eliminating formic acid and acetic acid from process water, save cost, and reduce the amount of wastewater.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: February 6, 2001
    Assignee: Nanya Plastics Corporation
    Inventor: Zo-Chun Jen
  • Patent number: 6034285
    Abstract: High quality trimethylolalkane can be easily and efficiently produced at a high yield through a reaction between n-alkanal and formaldehyde in the presence of tertiary amine and water, in which a reaction mixture obtained aster the reaction is heated so that a salt of tertiary amine with formic acid produced as a by-product is decomposed into hydrogen and carbon dioxide and/or water and carbon monoxide, and tertiary amine; and the tertiary amine distilled from the reaction mixture is reused in producing trimethylolalkane.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: March 7, 2000
    Assignee: Koei Chemical Company, Limited
    Inventors: Kenji Doi, Takuhiko Jinno, Ayao Moriyama, Michiaki Matsuura
  • Patent number: 6034284
    Abstract: High quality trimethylolalkane can be easily and efficiently produced at a high yield through a reaction between n-alkanal and formaldehyde in the presence of tertiary amine and water, in which a reaction mixture obtained after the reaction is heated up to a temperature at which a salt of tertiary amine with formic acid produced as a by-product can be thermally dissociated so as to distill tertiary amine and water from the reaction mixture, and a formate of trimethylolalkane produced in the distillation of tertiary amine and contained in a residue is reacted with water, ammonia, primary amine or secondary amine; and the tertiary amine distilled from the reaction mixture is reused in producing trimethylolalkane.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: March 7, 2000
    Assignee: Koei Chemical Company, Limited
    Inventors: Kenji Doi, Takuhiko Jinno, Ayao Moriyama, Shingo Uji
  • Patent number: 6018074
    Abstract: A process for the preparation of polyalcohols comprises the stages:(a) Reaction of an alkanal or ketone with formaldehyde in aqueous solution in the presence of a tertiary amine, to form a formates containing polyalcohol product mixture,(b) removal of water, excess tertiary amine, excess formaldehyde(c) heating of remaining mixture from (b) with removal of further formaldehyde and tertiary amine with formation of the formates of the polyalcohol,(d) transfer of tertiary amine removed from stage (b) and/or from stage (c), to synthesis stage (a) and/or to the subsequent transesterification stage (e),(e) transesterification of the resulting formates of the polyalcohol from stage (c) with an alcohol of the formula ROH in the presence of a transesterification catalyst to give polyalcohols and formates of the formula ##STR1## where R is a hydrocarbon radical, preferably alkyl of 1-6, particularly preferably 1-2, carbon atoms, and(f) isolation of the polyalcohols.
    Type: Grant
    Filed: October 5, 1998
    Date of Patent: January 25, 2000
    Assignee: BASF Aktiengesellshcaft
    Inventors: Detlef Kratz, Achim Stammer, Tom Witzel, Martin Brudermuller
  • Patent number: 6008418
    Abstract: 1,6-Hexanediol is prepared from a carboxylic acid mixture comprising adipic acid, 6-hydroxycaproic acid and small amounts of 1,4-cyclohexanediols which is obtained as a by-product in the oxidation of cyclohexane to cyclohexanone/cyclohexanol by water extraction of the reaction mixture, by esterification of the acids and hydrogenation whereina) the monocarboxylic and dicarboxylic acids present in the aqueous dicarboxylic acid mixture are reacted with a low molecular weight alcohol to give the corresponding carboxylic esters,b) the resulting esterification mixture is freed of excess alcohol and low boilers in a first distillation stage,c) the bottoms are fractionated in a second distillation stage to give an ester fraction essentially free of 1,4-cyclohexanediols and a fraction comprising at least the major part of the 1,4-cyclohexanediols,d) the ester fraction essentially free of 1,4-cyclohexanediols is catalytically hydrogenated ande) in a pure distillation stage, 1,6-hexanediol is isolated from the hydrogena
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: December 28, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Karl Gerhard Baur, Rolf Fischer, Rolf Pinkos, Frank Stein, Harald Rust, Boris Breitscheidel
  • Patent number: 5981810
    Abstract: This invention relates to a process for purifying crude 1,4-butanediol by melt crystallization and a process for preparing 1,4-butanediol by utilizing the purification process. 1,4-Butanediol is important as a material for synthesizing polyester resins, .gamma.-butyrolactone, tetrahydrofuran, etc.
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: November 9, 1999
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Manabu Okuyama
  • Patent number: 5962749
    Abstract: This invention relates to a process for the purification of polyether polyols. This process enables the removal of residual alkaline metal catalyst from produced polyether polyol. It comprises a) adding glycerine to a polyether polyol that contains Group IA alkaline metal catalyst to form a precipitate, and b) separating the precipitate formed in a) to provide a purified polyether polyol. The present invention also relates to the purified polyether polyol produced by this process, the precipitate produced by this process, and the use of the precipitate as an alkaline metal catalyst in a process for the production of polyether polyols.
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: October 5, 1999
    Assignee: Bayer Corporation
    Inventors: Harold R. Parsons, Donald C. Dunham, Steven L. Schilling, Keith J. Headley
  • Patent number: 5948943
    Abstract: Disclosed is a process for acquiring crude trimethylolpropane (TMP) of low reacted color. TMP is generally prepared by the condensation of n-butyraldehyde and formaldehyde in an alkali solution. The mixture is then concentrated and placed through an extractor. It has been found that a high concentration of low color TMP is present in the extractor and may by obtained by taking a slip stream of hot organic/water/TMP from the extractor and allowing the mixture to cool and phase separate. Upon separation of the phases, TMP generally having an acid wash color of about or less than 5 GU is recovered from the water phase. Disclosed is use of a single and multistage extractor.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: September 7, 1999
    Assignee: Celanese International Corporation
    Inventors: Carolyn Supplee, Rodolfo W. Laurel, George C. Seaman
  • Patent number: 5841002
    Abstract: An aldolisation process is disclosed for converting an aldehyde or mixture of aldehydes, such as iso-butyraldehyde and formaldehyde, to a desired polyhydroxy alcohol or glycol, such as neopentyl glycol. Aldolisation is effected in a stirred tank reactor using an alkali catalyst, such as sodium hydroxide. An aldolisation intermediate product is converted to the desired polyhydroxy alcohol or glycol by a hydrogenation or cross-Cannizzaro reaction step. The product is recovered and an aqueous catalyst-containing phase is recycled to the aldolisation zone. At least a portion of this catalyst recycle stream is purged to control the build up of cross-Cannizzaro products in the recycle stream. The purge stream is treated electrolytically to obtain an aqueous catalyst-containing solution for recycle to the aldolisation zone and an effluent stream comprising volatile organic materials and being substantially free from alkali catalyst.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: November 24, 1998
    Assignee: Davy Process Technology Limited
    Inventors: George Edwin Harrison, Arthur James Reason
  • Patent number: 5831078
    Abstract: A method is disclosed for producing a pentitol. The disclosed method more particularly relates to producing arabinitol from hexoses, e.g. galactose and/or glucose, and/or fructose, or lactose hydrolysate, or invert sugar, or starch hydrolysates. The hexose is oxidatively decarboxylated to a C.sub.5 -aldonic acid which is thereafter catalytically hydrogenated to obtain the desired arabinitol.
    Type: Grant
    Filed: July 23, 1997
    Date of Patent: November 3, 1998
    Assignee: Cerestar Holding B.V.
    Inventors: Myriam Elseviers, Hilde Odile Jozefine Lemmens, Sonia Marianne Jeannine Coomans, Harald Wilhelm Walter Roper
  • Patent number: 5712410
    Abstract: There is described a process for depolymerizing polyethylene naphthalate polyester to monomer components which then can be used to make virgin polyester.
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: January 27, 1998
    Assignee: Eastman Kodak Company
    Inventor: Andrius A. Naujokas
  • Patent number: 5654470
    Abstract: There is described a process for the depolymerization of polyethylene terephthalate into component monomers at ambient pressure. Monomer solids that deposit during cooling, as part of the recovery operation, are removed using a scraped wall heat exchanger.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: August 5, 1997
    Assignee: Eastman Kodak Company
    Inventors: Andrius Algimantas Naujokas, William James Gamble
  • Patent number: 5635542
    Abstract: The present invention relates to a process for the production of hydroxyl-group-containing compounds suitable for the polyisocyanate polyaddition process from polyurea and/or polyurethane polyurea wastes by treating polyurea and/or polyurethane polyurea wastes with diols and/or polyols at temperatures from 160.degree. to 260.degree. C., the water present in the reaction vessel preferably being removed by distillation during the heating-up phase, characterized in that 1,3-dicarbonyl compounds are added to the reaction mixture before or during the reaction.
    Type: Grant
    Filed: June 16, 1995
    Date of Patent: June 3, 1997
    Assignee: Bayer Aktiengesellschaft
    Inventors: Thomas Munzmay, Werner Rasshofer, Walter Meckel
  • Patent number: 5576456
    Abstract: There is described a process for the depolymerization of polyethylene terephthalate into component monomers using a reactor in which the polyethylene terephthalate is a discontinuous phase which contacts a continuous phase of superheated methanol vapor.
    Type: Grant
    Filed: January 22, 1996
    Date of Patent: November 19, 1996
    Assignee: Eastman Kodak Company
    Inventors: William J. Gamble, Andrius A. Naujokas
  • Patent number: 5545767
    Abstract: 1,3-propanediol is prepared in a process comprising the steps of:contacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a lipophilic phenol at a temperature within the range of about 50.degree. to about 100.degree. C. and a pressure within the range of about 500 to about 5000 psig, under reaction conditions effective to produce an intermediate product mixture comprising less than about 15 wt % 3-hydroxypropanal;adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: August 13, 1996
    Assignee: Shell Oil Company
    Inventors: Paul R. Weider, Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Thomas C. Semple
  • Patent number: 5463144
    Abstract: 1,3-propanediol is prepared in a process comprising the steps of:contacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a lipophilic quaternary ammonium salt at a temperature within the range of about 50.degree. to about 100.degree. C. and a, pressure within the range of about 500 to about 5000 psig, under reaction conditions effective to produce an intermediate product mixture comprising less than 15 wt % 3-hydroxypropanal;adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 31, 1995
    Assignee: Shell Oil Company
    Inventors: Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Terry B. Thomason, Thomas C. Semple, Paul R. Weider, Juan P. Arhancet
  • Patent number: 5463145
    Abstract: 1,3-Propanediol is prepared in a process comprising the steps of:contacting, in an essentially non-water-miscible organic solvent, ethylene oxide with carbon monoxide and hydrogen in the presence of a catalytic amount of a non-phosphine-ligated cobalt compound and an effective amount of a lipophilic quaternary phosphonium salt promoter at a temperature within the range of about 50.degree. to about 100.degree. C. and a pressure within the range of about 500 to about 5000 psig, to produce an intermediate product mixture comprising less than 15 wt % 3-hydroxypropanal;adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid a major portion of the 3-hydroxypropanal at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 31, 1995
    Assignee: Shell Oil Company
    Inventors: Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Thomas C. Semple, Paul R. Weider
  • Patent number: 5463146
    Abstract: 1,3-propanediol is prepared in a process comprising the steps of:(a) contacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a lipophilic arsine at a temperature within the range of about 50 to about 100.degree. C. and a pressure within the range of about 500 to about 5000 psig, under reaction conditions effective to produce an intermediate product mixture comprising less than about 15 wt % 3-hydroxypropanal;(b) adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 31, 1995
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Joseph B. Powell, Thomas C. Forschner, Thomas C. Semple, Paul R. Weider
  • Patent number: 5457246
    Abstract: A process and arrangement for separating and recovering polyol production wastes, including polyol, potassium or sodium phosphate and magnesium silicates, is disclosed. According to the invention, the polyol product waste and caustic salt are combined in a vessel, emulsified and then deemulsified. This causes the contents of the vessel to stratify into three layers. A first stream containing primarily magnesium silicates and a minor amount of caustic salt solution is withdrawn from the vessel and then waterwashed. The water-washed magnesium silicates are then dehydrated and desiccated to obtain commercial grade magnesium silicates. The minor amount of caustic salt solution is dehydrated, crystallized and then desiccated to yield commercial grade anhydrous potassium or sodium phosphate. A second stream containing predominantly polyol oil is withdrawn from the vessel and subsequently filtered and dehydrated to obtain commercial grade polyol.
    Type: Grant
    Filed: August 24, 1994
    Date of Patent: October 10, 1995
    Inventor: Climent Ho
  • Patent number: 5449841
    Abstract: A process for reducing the level of metal ions and/or metal compounds in a polyoxyalkylene monool or polyol having a number average molecular weight of above 500-25000 by bringing the monool or polyol into contact with an extracting compound which is a polyol or a polyol mixture having a number average molecular weight of at most 500 and being immiscible with the polyoxyalkylene monool or polyol, mixing the extracting compound and the polyoxyalkylene monool or polyol, allowing the extracting compound and the polyoxyalkylene monool or polyol to separate and removing the extracting compound.
    Type: Grant
    Filed: October 12, 1994
    Date of Patent: September 12, 1995
    Assignee: Imperial Chemical Industries PLC
    Inventor: Patrick M. G. Goegebeur
  • Patent number: 5406006
    Abstract: Carbonaceous preformer catalysts used to convert cobalt salts to hydrido cobalt carbonyl for use in the oxonation of olefins are activated or regenerated by treatment with an aqueous cobalt salt solution in the presence of a light alcohol having from about 4 to 7 carbon atoms and syn gas prior to exposure to or processing with any other organic stream at a temperature of about 120.degree. C. to 190.degree. C. and a pressure of about 13 MPa to 32 MPa for about 2 to 50 hours.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: April 11, 1995
    Assignee: Exxon Chemical Patents Inc
    Inventors: Ronald R. Hill, Patricia B. Roussel
  • Patent number: 5149861
    Abstract: Trialkylamines and methyl formate are recovered from reaction mixtures obtained in the preparation of trimethylolalkanes by reaction of n-alkanals with from 2.2 to 4.5 moles of formaldehyde in aqueous solution in the presence of from 0.6 to 3 mole of trialkylamine, each quantity based on 1 mole of alkanal, and subsequent hydrogenation in a process wherein the crude reaction mixturea) is heated to from 100.degree. to 200.degree. C.
    Type: Grant
    Filed: March 1, 1991
    Date of Patent: September 22, 1992
    Assignee: BASF Aktiengesellschaft
    Inventors: Franz Merger, Peter Hettinger, Leopold Hupfer, Juergen Paetsch, Heribert Deck, Heinz Auer, Erwin Brunner
  • Patent number: 5105029
    Abstract: A lower alcohol, for example, ethyl alcohol, is recovered from a reaction mixture resulted from a reaction of catechol with a lower alcohol in such a manner that the reaction mixture is distilled and separated into a distilled light vapor fraction comprising non-reacted lower alcohol and water and a residual fraction comprising a reaction product and non-reacted catechol; the distilled light vapor fraction is further distilled and separated into a distilled vapor fraction comprising the lower alcohol in an increased concentration and a residual water fraction; the distilled vapor fraction is fed to a gas-separating membrane module which allows water vapor to selectively permeate therethrough, and separated into a non-permeated fraction which comprises the lower alcohol in a high concentration, which is left in the feed side of the membrane, and a permeated fraction which comprises water in a high concentration, which is returned from the delivery side of the membrane to the further distilling step, and the no
    Type: Grant
    Filed: July 2, 1991
    Date of Patent: April 14, 1992
    Assignee: Ube Industries, Inc.
    Inventors: Kohei Ninomiya, Kanji Nakagawa, Yoichi Nishida
  • Patent number: 5072058
    Abstract: A process for the preparation of 2,2-dimethylpropane-1,3-diol by an addition reaction between isobutyraldehyde and formaldehyde in the presence of tertiary amines as the catalyst, hydrogenation of the reaction mixture, and subsequent distillation. Before the distillation, formaldehyde is added to the hydrogenation product to remove unwanted basic impurities.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: December 10, 1991
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Georg Dambkes, Peter Lappe, Franz Thonnessen, Helmut Springer
  • Patent number: 5051528
    Abstract: A method of recovering ethylene glycol and dimethyl terephthalate from scrap polyethylene terephthalate resins by dissolving the scrap in oligomers of the same monomers and passing methanol through the solution.
    Type: Grant
    Filed: April 24, 1990
    Date of Patent: September 24, 1991
    Assignee: Eastman Kodak Company
    Inventors: Andrius A. Naujokas, Kevin M. Ryan
  • Patent number: 5024772
    Abstract: A process for producing 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-hydroxypropionate (HPN) and neopentyl glycol (NP) blends from a neopentyl glycol production by-product stream containing neopentyl glycol, hydroxypivalic acid, and HPN using an acid catalyst.
    Type: Grant
    Filed: July 10, 1989
    Date of Patent: June 18, 1991
    Assignee: BASF Corporation
    Inventors: Laurance R. Thurman, Joseph P. Dowd, Kathy J. Fischer
  • Patent number: 4935555
    Abstract: In a process for the production of neopentyl glycol by hydrogenation of the aldol product of formaldehyde and isobutyraldehyde, an improvement comprises the wiped-film evaporator treatment of a saponified NPG-containing mixture. The process results in a very pure product and also eliminates the need for the addition of steam to the crude NPG, thus saving the cost of energy for removing the water from the NPG.A further yield improvement is achieved by extracting NPG from the caustic residue with isobutyraldehyde and water. The isobutyraldehyde selectively recovers the NPG while the water selectively removes the caustic. The isobutyraldehyde and NPG are then conveniently recycled to the aldol reaction zone.
    Type: Grant
    Filed: November 25, 1988
    Date of Patent: June 19, 1990
    Inventors: Carole L. Elias, Marvin C. Fields
  • Patent number: 4918247
    Abstract: Preparation of 2,2-dimethylpropanediol-1,3 by the aldol addition of isobutyraldehyde and formaldehyde using tri-n-propylamine as a catalyst, followed by hydrogenation of the reaction mixture, and subsequent distillation of the hydrogenation product in the presence of isobutanol and water.
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: April 17, 1990
    Assignee: Ruhrchemie Aktiengesellschaft
    Inventors: Norbert Breitkopf, Wolfgang Hofs, Heinz Kalbfell, Franz Thonnessen, Peter Lappe, Helmut Springer
  • Patent number: 4847439
    Abstract: Crystallization of trimethylolethane from supersaturated aqueous solutions is inhibited in the presence of effective amounts of methanol and formic acid as crystallization inhibitors.
    Type: Grant
    Filed: August 10, 1987
    Date of Patent: July 11, 1989
    Assignee: International Minerals & Chemical Corp.
    Inventor: Paul E. Eckler