Catalyst Utilized Patents (Class 568/885)
  • Patent number: 7834223
    Abstract: Process for the conversion of carbon oxide(s) and hydrogen containing feedstocks to oxygen-containing hydrocarbon compounds in the presence of a particulate catalyst, by reacting carbon oxide(s) and hydrogen in the presence of a particulate catalyst in a conversion reactor to form oxygen-containing hydrocarbon compounds. A saturated monocarboxylic acid having from 1 to 3 carbon atoms and/or an ester of a saturated monocarboxylic acid having from 1 to 3 carbon atoms with a monohydric aliphatic paraffinic alcohol having from 1 to 4 carbon atoms is added to the conversion reactor.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: November 16, 2010
    Assignee: BP Chemicals Limited
    Inventors: Martin Philip Atkins, Leslie William Bolton, Benjamin Patrick Gracey, John Glenn Sunley
  • Patent number: 7834224
    Abstract: Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: November 16, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Charles P. Casey, Hairong Guan
  • Publication number: 20100286454
    Abstract: A process for the co-production of a stream of a fatty alcohol having first carbon chain lengths and a stream of a fatty alcohol having a second carbon chain lengths, said second carbon chain lengths being longer than said first carbon chain lengths, said process comprising the steps of: (a) supplying a stream comprising lower alkyl esters of fatty acids having chain lengths comprising the first and second chain lengths to a first vaporisation zone and contacting said stream with an amount of hydrogen which is sufficient to vaporise the lower alkyl esters of the fatty acids having the first carbon chain lengths into the hydrogen; (b) supplying the hydrogen and the vaporised lower alkyl esters of fatty acids having the first carbon chain lengths to a first reaction zone comprising catalyst and operating under reaction conditions to allow hydrogenation to the desired alcohol having first carbon chain lengths; (c) recovering from the first reaction zone an alcohol product stream having first carbon chain lengths
    Type: Application
    Filed: October 3, 2008
    Publication date: November 11, 2010
    Applicant: DAVY PROCESS TECHNOLOGY LIMITED
    Inventors: Donald Hugh McKinley, Richard John Hensman, Andrew George Hiles, Rikard Umberto Andersson
  • Patent number: 7777083
    Abstract: A process for the reduction of compounds comprising one or more carbon-oxygen (C?0) double bonds, to provide the corresponding alcohol, comprising contacting the compound with hydrogen gas at a pressure greater than 3 atm and a catalyst comprising an iridium aminodiphosphine complex.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: August 17, 2010
    Assignee: Kanata Chemical Technologies Inc.
    Inventors: Kamaluddin Abdur-Rashid, Rongwei Guo, Xuanhua Chen, Wenli Jia
  • Patent number: 7772445
    Abstract: The present disclosure relates to a process for the hydrogenation of compounds comprising one or more carbon-oxygen (C?O) double bonds, to provide the corresponding alcohol, comprising contacting the compound with hydrogen gas at and a catalyst comprising a ruthenium-aryl-aminophosphine complex.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: August 10, 2010
    Assignee: Kanata Chemical Technologies Inc.
    Inventors: Xuanhua Chen, Wenli Jia, Kamaluddin Abdur-Rashid, Rongwei Guo
  • Publication number: 20100197985
    Abstract: A process for selective formation of ethanol from acetic acid by hydrogenating acetic acid in the presence of first metal, a silicaceous support, and at least one support modifier. Preferably, the first metal is selected from the group consisting of copper, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, titanium, zinc, chromium, rhenium, molybdenum, and tungsten. In addition the catalyst may comprise a second metal preferably selected from the group consisting of copper, molybdenum, tin, chromium, iron, cobalt, vanadium, tungsten, palladium, platinum, lanthanum, cerium, manganese, ruthenium, rhenium, gold, and nickel.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 5, 2010
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Victor J. Johnston, Laiyuan Chen, Barbara F. Kimmich, Josefina T. Chapman, James H. Zink, Heiko Weiner, John L. Potts, Radmila Jevtic
  • Publication number: 20100137625
    Abstract: An objective is to provide a process for preparing 1,5-pentanediol and/or 1,6-hexanediol comprising esterifying, with an alcohol such as methanol, ethanol, butanol or 1,6-hexanediol, a mixture of carboxylic acids such as glutaric acid, adipic acid and 6-hydroxycaproic acid which are a by-product in preparation of cyclohexanone by oxidation of cyclohexane with oxygen or an oxygen-containing gas; and hydrogenating the resulting esterified product in the presence of a copper-containing catalyst, which process is an industrially suitable process for preparing 1,5-pentanediol and/or 1,6-hexanediol in a high yield while controlling deterioration of the catalyst. The above objective is achieved by hydrogenating the esterified product with a catalyst obtained by prereducing a copper-containing catalyst in an alcohol having an acid value (AV) of 0.5 mg KOH/g or less or an ester having an acid value (AV) of 0.5 mg KOH/g or less.
    Type: Application
    Filed: May 15, 2008
    Publication date: June 3, 2010
    Inventor: Hirofumi II
  • Patent number: 7728182
    Abstract: The process for producing a predetermined CXHYOZ product from a primary feedstock containing hydrocarbons and a secondary feedstock is disclosed, wherein X, Y and Z are integers. The process includes the steps of: providing primary feedstock; indirectly heating it generally in the absence of oxygen; cleaning the gas stream produced therefrom by removing CO2 and solids; determining the amount of CO and H2 therein; comparing the percentage of CO and H2 in the cleaned gas stream with the required CO and H2 to produce the predetermined CXHYOZ product; determining the additional of CO and H2 required; determining the secondary feedstock; calculating the amount of CO, H2 and heat produced from the secondary feedstock; partially oxidizing the secondary feedstock to produce heat and a secondary gas stream; combining the CO and H2 from both feedstocks to produce a mixed gas stream; adding a catalyst; and distilling to produce the predetermined CXHYOZ product.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: June 1, 2010
    Assignee: Woodland Biofuels Inc.
    Inventors: Larry Jack Melnichuk, Karen (Sue) Venita Kelly
  • Publication number: 20100121114
    Abstract: A process for selective formation of ethanol from acetic acid includes contacting a feed stream containing acetic acid and hydrogen at an elevated temperature with catalyst comprising platinum and tin on a high surface area silica promoted with calcium metasilicate. Selectivities to ethanol of over 85% are achieved at 280° C. with catalyst life in the hundreds of hours.
    Type: Application
    Filed: October 26, 2009
    Publication date: May 13, 2010
    Inventors: Heiko Weiner, Victor J. Johnston, John L. Potts, Radmila Jevtic
  • Publication number: 20100113837
    Abstract: Compounds of the formula (I) wherein R2 is a branched or unbranched, saturated or ethylenically mono or di unsaturated aliphatic radical, Z is —CH2OH, —CH2OAc or —CHO, m is a whole positive integer of one or more, and Ac is an acetyl group are synthesized by a process wherein a 1-alken-3-yl alkylate, is reacted with a halo alkanol Grignard reagent.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: Robert H. Bedoukian, Linda C. Passaro
  • Publication number: 20100113843
    Abstract: Disclosed herein is a method for producing monohydric alcohols from monocarboxylic acids or derivatives thereof using a catalyst comprising ruthenium (Ru) and tin (Sn) using zinc oxide (ZnO) as both a catalyst support and an active promoter; a catalyst prepared by adding an inorganic binder such as silica, alumina or titania in a limited range to the catalyst comprising the above components in order to impart a shaping ability to the catalyst; or, a modified catalyst reformed by adding at least one reducing component selected from the group consisting of Co, Ni, Cu, Ag, Rh, Pd, Re, Ir, and Pt to the catalyst in order to improve the reducing ability of the catalyst.
    Type: Application
    Filed: February 27, 2009
    Publication date: May 6, 2010
    Applicant: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Jung Ho Lee, Jong San Chang, Young Kyu Hwang, Hyun Kwan Shin, Kwang Myung Cho, Bong Keun Song, Yong Hwan Kim
  • Patent number: 7709689
    Abstract: A homogenous process for the hydrogenation of the carboxylic acids and/or derivatives thereof in the presence of a catalyst comprising ruthenium, rhodium, iron, osmium or palladium, and an organic phosphine is described in which the hydrogenation is carried out in the presence of at least about 1% by weight water. A process for regenerating a catalyst comprising ruthenium, rhodium, iron, osmium or palladium and an organic phosphine is also described in which the regeneration is carried out in the presence of hydrogen and water.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: May 4, 2010
    Assignee: Davy Process Technololgy Limited
    Inventors: Melvyn Kilner, Derek Vincent Tyers, Simon Peter Crabtree, Michael Anthony Wood
  • Patent number: 7663003
    Abstract: A process for hydrogenating an organic compound which has at least one carbonyl group, in which the organic compound is brought into contact in the presence of hydrogen with a shaped article which can be produced in a process in which (i) an oxidic material comprising copper oxide, aluminum oxide and at least one of the oxides of lanthanum, tungsten, molybdenum, titanium or zirconium is prepared, (ii) powdered metallic copper, copper flakes, powdered cement, graphite or a mixture thereof is added to the oxidic material, and (iii) the mixture resulting from (ii) is shaped to a shaped article.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: February 16, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Sylvia Huber-Dirr, Michael Hesse, Andrea Haunert, Henrik Junicke
  • Publication number: 20100029996
    Abstract: The present invention provides a catalyst for producing alcohols from carboxylic acids by hydrogenation, containing Co metal as an essential component and one or more elements selected from Zr, Y, La, Ce, Si, Al, Sc, V and Mo as a first co-catalyst component, and having 20% or more of cubic phase in the crystal phase of the Co metal, the method for producing the catalyst, and the method for producing an alcohol from a carboxylic acid as a raw material by hydrogenation using the catalyst.
    Type: Application
    Filed: February 14, 2008
    Publication date: February 4, 2010
    Applicant: Kao Corporation
    Inventors: Hiroshi Danjo, Noriaki Fukuoka, Taku Mimura
  • Patent number: 7642386
    Abstract: The invention relates to a process for producing an alcohol from fats and oils, including: step 1 of reacting starting fats and oils with water to produce a reaction product containing a glycerin unit, and step 2 of subjecting the reaction product obtained in step 1 to a hydrogenation reaction in the presence of a catalyst in the coexistence of water in an amount of 0.5 mole or more relative to 1 mole of the glycerin unit contained in the reaction product.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: January 5, 2010
    Assignee: Kao Corporation
    Inventors: Toru Sakamoto, Masanori Namba, Nobuhiro Tatsumi
  • Patent number: 7608744
    Abstract: A process for the selective production of ethanol by vapor phase reaction of acetic acid over a hydrogenating catalyst composition to form ethanol is disclosed and claimed. In an embodiment of this invention reaction of acetic acid and hydrogen over either cobalt and palladium supported on graphite or cobalt and platinum supported on silica selectively produces ethanol in a vapor phase at a temperature of about 250° C.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: October 27, 2009
    Assignee: Celanese International Corporation
    Inventors: Victor J. Johnston, Josefina T. Chapman, Laiyuan Chen, Barbara F. Kimmich, James H. Zink, Jan Cornelis van der Waal, Virginie Zuzaniuk
  • Patent number: 7608743
    Abstract: An efficient and environmentally beneficial method of recycling and producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning powerplants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by chemical or electrochemical reduction secondary treatment to produce essentially methanol, dimethyl ether and derived products.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: October 27, 2009
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Patent number: 7605293
    Abstract: An environmentally beneficial method of producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning powerplants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by electrochemical reduction produces formic acid acid and some formaldehyde and methanol mixtures. The formic acid can be used as source of carbon as well as hydrogen to produce methanol, dimethyl ether and other products.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: October 20, 2009
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Patent number: 7579508
    Abstract: The invention provides a process for producing an alcohol, including the step of hydrogenating a glyceride in the presence of a catalyst, adding water, or a process for producing an alcohol, including the step of hydrogenating a glyceride in the presence of a catalyst and in the presence of from 0.5 or more of water per mole of the starting glyceride.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: August 25, 2009
    Assignee: Kao Corporation
    Inventors: Toru Sakamoto, Osamu Tabata, Hideaki Ueoka
  • Patent number: 7538060
    Abstract: Disclosed are catalysts comprising copper chromite, palladium and lanthanum having hydrogenation activity. The combination of copper chromite with palladium and lanthanum enhances catalyst activity more than the presence of either palladium alone or palladium in combination with alkali or alkaline earth metals. The catalysts are useful for the preparation of methanol from carbon monoxide and hydrogen and for the hydrogenation of carbonyl compounds such as, for example, aldehydes, ketones, and esters, to their corresponding alcohols. The catalysts may be used for the preparation of cyclohexanedimethanols from dialkyl cyclohexanedicarboxylates or of ethylene glycol from alkyl glycolates.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: May 26, 2009
    Assignee: Eastman Chemical Company
    Inventors: Scott Donald Barnicki, Bruce LeRoy Gustafson, Zhufang Liu, Steven Thomas Perri, Paul Randolph Worsham
  • Patent number: 7518022
    Abstract: The invention is directed to liquid vegetable unsaturated alcohol mixture having an iodine value of 88 to 100 and a cloud point less than 7° C., the unsaturated alcohol mixture being prepared by reduction of a vegetable unsaturated fatty acid mixture and/or an alkyl ester thereof in the presence of a zinc-type catalyst having a copper content of 30 ppm or less, the vegetable unsaturated fatty acid mixture being prepared from at least one vegetable oil selected from the group consisting of palm oil, coconut oil and palm kernel oil. The invention also concerns a liquid vegetable unsaturated alcohol mixture having an iodine value of 88 to 100, a cloud point less than 7° C. or lower and a conjugated diene content of 1 wt. % or less.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: April 14, 2009
    Assignee: New Japan Chemical Co., Ltd.
    Inventors: Hisao Nakaoka, Mamoru Mototani
  • Publication number: 20090023962
    Abstract: The invention relates to a process for producing an alcohol from fats and oils, including: step 1 of reacting starting fats and oils with water to produce a reaction product containing a glycerin unit, and step 2 of subjecting the reaction product obtained in step 1 to a hydrogenation reaction in the presence of a catalyst in the coexistence of water in an amount of 0.5 mole or more relative to 1 mole of the glycerin unit contained in the reaction product.
    Type: Application
    Filed: March 7, 2006
    Publication date: January 22, 2009
    Applicant: KAO CORPORATION
    Inventors: Toru Sakamoto, Masanori Namba, Nobuhiro Tatsumi
  • Publication number: 20090018366
    Abstract: Method for the production of supported activated metal catalysts, whereby an alloy, a metal powder, a pore builder is dispersed in a water, the dispersion is sprayed on a support which is the dried, calcined and activated. The catalysts can be used for organic transformations, i.e. for hydrogenation reactions.
    Type: Application
    Filed: September 8, 2005
    Publication date: January 15, 2009
    Inventors: Monika Berweiler, Daniel Ostgard, Thomas Quandt, Stefan Roder
  • Patent number: 7459590
    Abstract: A method for producing methanol and dimethyl ether using the air as the sole source of materials is disclosed. The invention relates to a method for producing methanol by removing water from atmospheric air, obtaining hydrogen from the removed water, obtaining carbon dioxide from atmospheric air; and converting the carbon dioxide under conditions sufficient to produce methanol. Thereafter, the methanol can be dehydrated to produce dimethyl ether or further processed to produce synthetic hydrocarbons, polymers, and products derived from them.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: December 2, 2008
    Assignee: University of Southern California
    Inventors: George A. Olah, Robert Aniszfeld
  • Publication number: 20080275145
    Abstract: A catalyst including cobalt, zinc oxide and aluminium is described, having a total cobalt content of 15-75% by weight (on reduced catalyst), an aluminium content ?10% by weight (based on ZnO) and which when reduced at 425° C., has a cobalt surface area as measured by hydrogen chemisorption at 150° C. of at least 20 m2/g cobalt. A method for preparing the catalyst is also described including combining a solution of cobalt, zinc and aluminium with an alkaline solution to effect co-precipitation of a cobalt-zinc-aluminium composition from the combined solutions, separating of the co-precipitated composition form the combined solutions, heating the composition to form an oxide composition, and optionally reducing at least a portion of the cobalt to cobalt metal. The catalysts may be used for hydrogenation reactions and for the Fischer-Tropsch synthesis of hydrocarbons.
    Type: Application
    Filed: April 15, 2005
    Publication date: November 6, 2008
    Inventors: John Leonello Casci, Carl Leonard Huitson, Cornelis Martinus Lok
  • Publication number: 20080242899
    Abstract: A process for producing purified alcohols yielding good results in the acid wash color test which comprises the condensation step of subjecting an aldehyde to aldol condensation and dehydration to obtain a corresponding condensate, the hydrogenation step of hydrogenating the condensate into a crude alcohol, and the purification step of distilling the crude alcohol to obtain a purified alcohol, characterized by feeding into the purification step a crude alcohol containing compounds having oxygenic heterocycles bearing carbon-carbon double bonds in the cycle in a concentration of as low as 200 ppm by weight or below. In particular, the aldehyde is n-butyraldehyde, the condensate is 2-ethylhexenal, and the alcohol is 2-ethylhexanol.
    Type: Application
    Filed: March 14, 2005
    Publication date: October 2, 2008
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hirofumi Oota, Hiroki Kawasaki
  • Patent number: 7408087
    Abstract: Unsaturated coconut and/or palm nut fatty alcohols having an iodine number in the range from 65 to 85, which essentially comprise unsaturated fatty alcohols and mixtures of saturated fatty alcohols of the formula (I): R1OH ??(I) in which R1 is a saturated or unsaturated, linear or branched alkyl radical having 12 to 20 carbon atoms, obtainable by fractionating coconut and/or palm nut fatty acid methyl esters to obtain a fraction containing predominantly C16-C18 portions, fractionating the C16-C18 fatty acid methyl ester fraction into a predominantly saturated distillate and a predominantly unsaturated bottom product, and hydrogenating the bottom product with retention of the double bonds to give the corresponding alcohols; are disclosed.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: August 5, 2008
    Assignee: Cognis Deutschland GmbH & Co. KG
    Inventors: Stephan Heck, Norbert Klein, Horst-Dieter Komp, Christiane Boehr, Norbert Huebner, Alfred Westfechtel
  • Patent number: 7378561
    Abstract: A method for producing methanol and dimethyl ether using the air as the sole source of materials is disclosed. The invention relates to a method for separating the water (i.e., the moisture in the air) and carbon dioxide content of atmospheric air for their use in the subsequent production of methanol, dimethyl ether and derived synthetic hydrocarbons as products. The method includes the conversion of carbon dioxide and water under conditions sufficient to produce methanol and/or dimethyl ether. Methanol and/or dimethyl ether can be used as fuel or fuel additives or further converted to synthetic hydrocarbons and their products. Carbon dioxide is captured on a suitable absorbent, preferentially polyethyleneimine supported on nano-structured fumed silica. The process can also involve hydrogenation with hydrogen produced by electrolysis of water obtained from the air or from any other water source.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: May 27, 2008
    Assignee: University of Southern California
    Inventors: George A. Olah, Robert Aniszfeld
  • Patent number: 7265237
    Abstract: Certain chiral monophosphites and their monothio derivatives are suitable as ligands in the asymmetrical transition-metal-catalyzed hydrogenation, hydroborination and hydrocyanation of prochiral olefins, ketones and imines.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: September 4, 2007
    Assignee: Studiengesellschaft Kohle mbH
    Inventors: Manfred T. Reetz, Gerlinde Mehler, Andreas Meiswinkel
  • Patent number: 7217847
    Abstract: The invention relates to a process for preparing optically active 2-amino-, 2-chloro-, 2-hydroxy- or 2-alkoxy-1-alcohols by catalytically hydrogenating appropriate optically active 2-amino-, 2-chloro-, 2-hydroxy- and 2-alkoxycarboxylic acids or their acid derivatives in the presence of catalysts comprising palladium and rhenium or platinum and rhenium.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: May 15, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Rolf-Hartmuth Fischer, Nils Bottke
  • Patent number: 7208642
    Abstract: A production process and a catalyst are provided, which can be less decreased in activity of the catalyst even when CO2, water and the like are present in the starting material and/or the reaction system, and which can produce a formic ester or a methanol at a low temperature and a low pressure. The present invention relates to a process for producing methanol, comprising reacting carbon monoxide with an alcohol in the presence of an alkali metal-type catalyst, and/or an alkaline earth metal-type catalyst to produce a formic ester, wherein a hydrogenolysis catalyst of formic ester and hydrogen are allowed to be present together in the reaction system to hydrogenate the produced formic ester and thereby obtain a methanol.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: April 24, 2007
    Assignee: Nippon Steel Corporation
    Inventors: Kaoru Fujimoto, Noritatsu Tsubaki, Kenichiro Fujimoto
  • Patent number: 7208643
    Abstract: The invention relates to a process for producing a fatty alcohol, including hydrogenating a fatty acid ester to prepare a crude fatty alcohol product, and distilling and refining the resulting crude fatty alcohol to prepare a fatty alcohol, further including recovering a part or the whole of distillation residues obtained in the distillation step and removing an alkali component from the distillation residues, adding the treated distillation residues to hydrogenation step or to a starting fatty acid ester feed.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: April 24, 2007
    Assignee: Kao Corporation
    Inventors: Masanori Namba, Toru Sakamoto
  • Patent number: 7183443
    Abstract: Process for the preparation of enantiomerically enriched amino aldehydes and amino alcohols, wherein a corresponding enantiomerically enriched amino nitrile is subjected to hydrogenation in the presence of hydrogen, a hydrogenation catalyst, preferably a Pd-catalyst and a mineral acid. For the preparation of an amino aldehyde hydrogen preferably is present at a hydrogen-pressure between 0.1 and 2 MPa, in particular between 0.5 and 1 MPa. The amino aldehyde preferably is isolated in the form of a chemically and configurationally stable derivative. For the preparation of an amino alcohol, preferably at least during part of the hydrogenation hydrogen is present at a hydrogen-pressure between 2 and 10 MPa, in particular between 4 and 6 MPa. In a preferred embodiment the hydrogen-pressure initially is between 0.5 and 2 MPa and subsequently, after most of the nitrile starting material is converted, the hydrogen pressure is increased to a value between 2 and 10 MPa.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: February 27, 2007
    Assignee: DSM IP Assets B.V.
    Inventors: Bernardus Henricus Nicolaas Dassen, Bernardus Kaptein, Quirinus Bernardus Broxterman
  • Patent number: 7169749
    Abstract: Alkyl-substituted butenols having the formula (I): R1—CH2—CH?CR2—CH2OH ??(I) wherein R1 is a saturated or olefinically unsaturated alkyl or cycloalkyl group having from 4 to 16 carbon atoms and wherein R1 is optionally substituted by an alkyl, cycloalkyl, aryl or alkaryl having up to 12 carbon atoms; R2 is hydrogen or an alkyl group having from 1 to about 6 carbon atoms are produced by a process which comprises: (1) reacting an aldehyde of the formula (II): R1—CH2—CHO ??(II) wherein R1 has the same meaning as in formula (I), with the corresponding lower aldehyde to form an unsaturated aldehyde in an inert organic solvent; (2) continuously contacting an optionally calcined copper/zinc catalyst with the unsaturated aldehyde under isothermal conditions at temperatures of from about 45 to about 60° C. and under a hydrogen pressure of from 1 to about 300 bar.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: January 30, 2007
    Assignee: Kao Corporation
    Inventors: Lothar Friesenhagen, Stephan Heck, Norbert Klein, Thomas Markert, Gerrit Pelzer, Markus Schneider
  • Patent number: 7169959
    Abstract: Unsaturated palm oil fatty alcohols with an iodine number in the range from 65 to 85, which contain substantially unsaturated fatty alcohols and mixtures of saturated fatty alcohols of the formula (I): R1OH ??(I) in which R1 is a saturated or unsaturated, linear or branched alkyl radical having 14 to 20 carbon atoms, are obtained by (a) fractionating palm oil fatty acid methyl esters into a mainly saturated C16-distillate and a mainly unsaturated C16/18-bottom product; and (b) hydrogenating the bottom product with retention of the double bonds to give the corresponding alcohols.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: January 30, 2007
    Assignee: Cognis Deutschland GmbH & Co. KG
    Inventors: Stephan Heck, Norbert Klein, Horst-Dieter Komp, Christiane Boehr, Norbert Huebner, Alfred Westfechtel
  • Patent number: 7138552
    Abstract: The present invention relates to a process for preparing a C13-alcohol mixture which is suitable, in particular, as precursor for the preparation of compounds having surfactant properties and of plasticizers.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: November 21, 2006
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Alfred Kaizik, Walter Tötsch, Wilhelm Droste, Wilfried Büschken, Dirk Röttger, Klaus-Diether Wiese
  • Patent number: 7126034
    Abstract: Disclosed is a process for hydrogenating 3-hydroxypropionic acid, or esters thereof, or mixtures of the acid and the ester, in a liquid phase, in the presence of a ruthenium catalyst, alone, or in combination with at least one or more additional metal catalyst wherein the metal is molybdenum, tungsten, titanium, zirconium, niobium, vanadium, chromium, or mixtures of the metals.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: October 24, 2006
    Assignee: Cargill, Incorporated
    Inventors: Xiangsheng Meng, Timothy W. Abraham, Paraskevas Tsobanakis
  • Patent number: 7119237
    Abstract: Alcohols prepared by reacting carboxylic acids and/or carboxylic esters with hydrogen in the presence of a special catalyst.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: October 10, 2006
    Assignee: Bayer Aktiengesellschaft
    Inventors: Thomas Prinz, Jürgen Kintrup, Andreas Schulze Tilling, Jörg-Dietrich Jentsch, Gerald John, Hans-Jürgen Grob, Guido Giffels
  • Patent number: 7098369
    Abstract: A process for producing primary alcohols from secondary alcohols and/or tertiary alcohols and/or ketones, wherein the process comprises reacting a compound selected from a secondary alcohol, a tertiary alcohol, a ketone, or mixtures thereof, with carbon monoxide and hydrogen in the presence of a catalyst based on: (i) a source of Group VIII metal, (ii) a bidentate ligand having the general formula (I): R1R2M1-R-M2R3R4??(I) wherein M1 and M2 are independently P, As or Sb; R1 and R2 together represent a bivalent substituted or unsubstituted cyclic aliphatic group whereby the two free valencies are linked to M1; R3 and R4 independently represent a substituted or unsubstituted hydrocarbyl group, or together represent a bivalent or non-substituted cyclic group whereby the two free valencies are linked to M2; and R represents a bivalent aliphatic bridging group; and (iii) an acid having a pKa of 3 or less which is in excess over the Group VIII metal.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: August 29, 2006
    Assignee: Shell Oil Company
    Inventors: Eit Drent, Renata Helena Van Der Made
  • Patent number: 7084313
    Abstract: Processes for separating supercritical or near-critical mixtures containing hydrogen, a solvent gas, methanol and a fatty alcohol under an initial pressure of from 100 to 300 bar are described, wherein the processes comprise: (a) reducing the pressure of such a mixture in a first stage to a pressure of from 50 to 150 bar to form a first recycle gas and a first partially-separated intermediate mixture, wherein the reduced pressure in the first stage is at least below the initial pressure; (b) reducing the pressure of the first partially-separated intermediate mixture in a second stage to a pressure of from 10 to 50 bar to form a second recycle gas and a second partially-separated intermediate mixture; and (c) reducing the pressure of the second partially-separated intermediate mixture in a third stage to a pressure of from 1 to 10 bar to form a third recycle gas and a fatty alcohol product.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 1, 2006
    Assignee: Cognis Deutschland GmbH & Co. KG
    Inventors: Bernhard Gutsche, Wilhelm Johannisbauer, Harald Roessler, Magnus Topphoff
  • Patent number: 7084312
    Abstract: A process for the hydrogenation of an organic compound containing at least one carbonyl group comprises bringing the organic compound in the presence of hydrogen into contact with a shaped body which can be produced by a process in which (i) an oxidic material comprising copper oxide, zinc oxide and aluminum oxide is made available, (ii) pulverulent metallic copper or pulverulent cement or a mixture thereof is added to the oxidic material, and (iii) the mixture resulting from (ii) is shaped to form a shaped body.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: August 1, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Sylvia Huber, Michael Jolyon Sprague, Boris Breitscheidel, Joachim Wulff-Döring, Michael Hesse, Rolf Pinkos, Shelue Liang, Otto Kumberger, Marc Walter
  • Patent number: 7049446
    Abstract: The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: May 23, 2006
    Assignee: Battelle Memorial Institute
    Inventor: Jonathan E. Holladay
  • Patent number: 6982340
    Abstract: There is provided a process wherein a lower alkyl ester of a fatty acid derived from natural fats and oils and a lower alcohol containing 1 to 4 carbon atoms is produced in a lower sulfur content at lower costs without causing a reduction in yield and a deterioration in selectivity, as well as a process for producing an alcohol without reducing the activity of a catalyst. The process comprises the step of adsorption treatment of an ester with at least one adsorbent selected from clay and activated carbon. Further are provided a process for producing an ester which further comprises adsorption treatment with a hydrogenating decomposition-type adsorbent containing Ni and/or Cu, in hydrogen or a mixed gas atmosphere of hydrogen and an inert gas, and a process for producing an alcohol which comprises hydrogenation reaction with an ester produced by any one of these processes as the starting material.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: January 3, 2006
    Assignee: Kao Corporation
    Inventors: Taku Mumura, Hidetoshi Kadowaki, Futoshi Nishigaki
  • Patent number: 6916457
    Abstract: A non-chrome, copper-containing catalyst, Cu—Al—O and method of preparing the same are provided wherein the Cu—Al—O catalyst is prepared by the co-precipitation of copper nitrate (Cu(NO3)2) and sodium aluminate (Na2Al2O4) solutions using sodium carbonate (Na2CO3) as a precipitant. The precipitate is filtered, washed to removed excess sodium, and dried. The dried product, to be used in a powder form, is calcined at a preferred temperature of approximately 700° to 900° C. for approximately 1 to 4 hours. The dry powder, to be tableted or extruded, is calcined at a temperature of approximately 400° to 700° C. The activity of the Cu—Al—O catalyst can be promoted in hydrogenolysis applications by the addition of various agents. The Cu—Al—O catalyst can be employed in applications in place of Cu/Cr, or other copper based catalysts.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: July 12, 2005
    Assignee: Engelhard Corporation
    Inventor: Jianping Chen
  • Patent number: 6916964
    Abstract: The present invention relates to a continuous process for the selective hydrogenation of olefinically unsaturated carbonyl compounds to give unsaturated alcohols in particular of citral to give a mixture of geraniol and nerol, in a reactor containing a liquid phase, in which at least one catalyst is suspended, and which can additionally contain a gas phase, wherein the liquid phase and, if present, the gas phase are passed through a device in the reactor having openings or channels.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: July 12, 2005
    Assignee: BASF AG
    Inventors: Hans-Georg Göbbel, Till Gerlach, Frank Funke, Klaus Ebel, Signe Unverricht, Gerd Kaibel
  • Patent number: 6906228
    Abstract: In a process for preparing alcohols by catalytic hydrogenation of carbonyl compounds over a catalyst comprising rhenium on activated carbon, the catalyst used comprises rhenium (calculated as metal) in a weight ratio to the activated carbon of from 0.0001 to 0.5, platinum (calculated as metal) in a weight ratio to the activated carbon of from 0.0001 to 0.5 and, if appropriate, at least one further metal selected from among Zn, Cu, Ag, Au, Ni, Fe, Ru, Mn, Cr, Mo, W and V in a weight ratio to the activated carbon of from 0 to 0.25, and the activated carbon has been nonoxidatively pretreated It is also possible to prepare ethers and lactones if the hydrogen pressure is not more than 25 bar. In this case, the activated carbon in the catalyst may also have been nonoxidatively pretreated.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: June 14, 2005
    Assignee: BASF AG
    Inventors: Rolf Hartmuth Fischer, Rolf Pinkos, Stephan Andreas Schunk, Joachim Wulff-Döring, Frank Stein, Thomas Nöbel, Sylvia Huber
  • Patent number: 6878665
    Abstract: The invention relates to novel diphosphines, in optically pure or racemic form, of formula (I): in which: R1 and R2 are a (C5-C7)cycloalkyl group, an optionally substituted phenyl group or a 5-membered heteroaryl group; and A is (CH2—CH2) or CF2. The invention further relates to the use of a compound of formula (I) as a ligand for the preparation of a metal complex useful as a chiral catalyst in asymmetric catalysis, and to the chiral metal catalysts comprising at least one ligand of formula (I).
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: April 12, 2005
    Assignee: Synkem
    Inventors: Sébastien Duprat de Paule, Nicolas Champion, Virginie Vidal, Jean-Pierre Genet, Philippe Dellis
  • Patent number: 6878852
    Abstract: A process for the hydrogenation, using molecular hydrogen (H2) of a catalytic system, wherein the catalytic system includes a base and a complex of formula (II): Ru(P2N2)Y2??(II) wherein Y represent simultaneously or independently a hydrogen or halogen atom, a hydroxy group, or an alkoxy, carboxyl or other anionic radical, and P2N2 is a tetradentate diimino-diphosphine ligand.
    Type: Grant
    Filed: November 11, 2001
    Date of Patent: April 12, 2005
    Assignee: Firmenich SA
    Inventors: Valentin Rautenstrauch, Raphaël Churlaud, Robert Harold Morris, Kamaluddin Abdur-Rashid
  • Patent number: 6855851
    Abstract: The present invention relates to a process for producing aliphatic C3-C10-alcohols, in particular 2-ethylhexanol, from high boilers by thermal treatment in the presence of an alkali metal compound and subsequent hydrogenation of the volatile products.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: February 15, 2005
    Assignee: Celanese Chemicals Europe GmbH
    Inventors: Wolfgang Zgorzelski, Wilhelm Glick
  • Patent number: 6841499
    Abstract: A supported catalyst comprises a cationic rhodium(I) complex of the formula wherein R1 and R2 are the same or different hydrocarbon groups of up to 30 C atoms, or R1 and R2 are linked to form a ring, and a heterogeneous support medium that provides anionic binding sites. Such a complex is particularly useful as a catalyst in a process of hydrogenating an aldehyde to produce the corresponding primary alcohol.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: January 11, 2005
    Assignee: Chirotech Technology Limited
    Inventors: Mark Joseph Burk, Arne Gerlach