Phosphorus Containing Catalyst Utilized Patents (Class 568/898)
  • Patent number: 8987530
    Abstract: A process for producing alcohols from carbonaceous materials such as biomass. The carbonaceous material, such as biomass, is gasified to produce synthesis gas. The synthesis gas then is subjected to a plurality of reactions to produce alcohols having at least four carbon atoms such as butanol and isobutanol.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 24, 2015
    Assignee: Enerkem, Inc.
    Inventors: Anthony S. Carbone, Stephane Marie-Rose, Esteban Chornet
  • Patent number: 8981165
    Abstract: A process for producing alcohols having three carbon atoms from carbonaceous materials such as biomass. The carbonaceous material, such as biomass, is gasified to produce synthesis gas. The synthesis gas then is subjected to a plurality of reactions to produce alcohols such as n-propanol and isopropanol.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 17, 2015
    Assignee: Enerkem, Inc.
    Inventors: Anthony S. Carbone, Stephane Marie-Rose, Esteban Chornet
  • Patent number: 8921619
    Abstract: A membrane-integrated hydration reactor that is operable to produce an associated alcohol product from an olefin using water includes a solid acid olefin hydration catalyst in a production zone and a hydrophilic membrane operable to selectively permit pervaporation of water one-way and not permit pervaporation of the associated alcohol or permeation of the olefin at olefin hydration process conditions in a separations zone. The production zone is operable to form a production zone product mixture made of the associated alcohol and any unreacted water. The associated separations zone is operable to form and produce both the associated alcohol product and a pervaporated water product from the production zone product mixture. A method of olefin hydration for forming an associated alcohol product from an olefin using water uses the membrane-integrated hydration reactor at olefin hydration process conditions.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 30, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Aadesh Harale, Wei Xu, Ibrahim Abba
  • Patent number: 8865950
    Abstract: An olefin hydration process and reactor are provided, wherein an integrated membrane selectively removes alcohol product from the reactor, thereby allowing for increased yields.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: October 21, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Ibrahim Abba, Aadesh Harale, Stephan Ralf Vogel, Wei Xu
  • Publication number: 20140249333
    Abstract: The present invention relates to an apparatus for coproducting iso-type reaction product and alcohol from olefin, and a method for coproducting using the apparatus, in which the hydroformylation reactor provides a sufficient reaction area due to the broad contact surface area between the olefin and the synthesis gases that are the raw materials by a distributor plate installed in the reactor, and the raw materials can be sufficiently mixed with the reaction mixture due to the circulation of the reaction mixture so that the efficiency of the production of the aldehyde is excellent; and also the hydrogenation reactor suppresses the side reaction so that the efficiency for producing aldehyde and alcohol are all increased, and also iso-type reaction product and alcohol can be efficiently co-produced.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Dong-Hyun KO, Moo-Ho HONG, Sung-Shik EOM, Yong-Jin CHOE, O-Hak KWON, Dae-Chul KIM, Jae-Hui CHOI
  • Patent number: 8779215
    Abstract: This invention provides a method for producing ethanol and 2-propanol from syngas, the method comprising: (a) converting syngas into methanol using a methanol-synthesis catalyst; (b) converting methanol into ethylene and propylene using a methanol-to-olefins catalyst; and (c) hydrating ethylene into ethanol and propylene into 2-propanol. As taught herein, the combined yield of the ethanol and the 2-propanol from biomass can be at least 100 gallons per dry ton biomass. In certain embodiments, the yield of ethanol is at least 100 gallons per dry ton biomass. In some embodiments, the yield of 2-propanol is at least 50 gallons per dry ton biomass.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: July 15, 2014
    Assignee: Maverick Synfuels, Inc.
    Inventor: Karl Kharas
  • Patent number: 8637716
    Abstract: An object of the present invention is to provide, for the production of isobutene, a high-yielding, highly-selective, and long-term stable production process of isobutene from TBA. With respect to the production of TBA, an object of the present invention is to provide a TBA production process in which, through long-term stable maintenance of a high reaction activity, long-term continuous operation is enabled and the productivity is improved. The present invention discloses a process for producing isobutene that employs a dehydration temperature of from 200 to 450° C. in use of an alumina catalyst that contains a Na content of 0.6% by weight or less in terms of NaO2 and a Na content of 0.4% by weight in terms of NaO2, and has a specific surface area of from 200 to 600 m2/g.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: January 28, 2014
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Tatsuo Yamaguchi, Hiroyuki Noda, Toru Watanabe, Shumya Kirino
  • Publication number: 20130261348
    Abstract: Ethane is oxidized to ethylene and/or oxygenates that comprise acetic acid. The acetic acid may be converted to ethanol by hydrogenation. The ethylene may be converted to ethanol by hydration.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: Celanese International Corporation
    Inventors: Mark Scates, Heiko Weiner, Zhenhua Zhou, James Zink
  • Patent number: 8461400
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems include a method of hydrating an olefin that may include emulsifying an olefin gas in a water stream in a high shear device under high shear conditions to produce a dispersion; and contacting the dispersion with a catalyst to hydrate the olefin gas and form an alcohol.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: June 11, 2013
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory G. Borsinger, Aziz Hassan
  • Publication number: 20130123551
    Abstract: Processes for the production of an alcohol, esters and aliphatic hydrocarbons are provided. In one embodiment, a process for the production of an alcohol comprises: oligomerizing an olefin or a mixture of olefins having the structural formula Cn-2H2n-3—CH?CH2, wherein n is an integer from 4 to 22, in the presence of an oligomerization catalyst, so as to form a vinylidene containing olefin oligomer; hydroformylating the vinylidene containing olefin oligomer in the presence of a hydroformylation catalyst so as to form a hydroformylated olefin oligomer; and dimerizing the hydroformylated olefin oligomer by means of a Guerbet reaction so as to form the alcohol.
    Type: Application
    Filed: January 10, 2013
    Publication date: May 16, 2013
    Applicant: SHELL OIL COMPANY
    Inventor: SHELL OIL COMPANY
  • Publication number: 20130066118
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems include a method of hydrating an olefin that may include emulsifying an olefin gas in a water stream in a high shear device under high shear conditions to produce a dispersion; and contacting the dispersion with a catalyst to hydrate the olefin gas and form an alcohol.
    Type: Application
    Filed: November 6, 2012
    Publication date: March 14, 2013
    Applicant: H R D Corporation
    Inventor: H R D Corporation
  • Publication number: 20130041186
    Abstract: An olefin hydration process and reactor are provided, wherein an integrated membrane selectively removes alcohol product from the reactor, thereby allowing for increased yields.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: Saudi Arabian Oil Company
    Inventors: Ibrahim Abba, Aadesh Harale, Stephan Ralf Vogel, Wei Xu
  • Patent number: 8357826
    Abstract: This invention provides a method for producing ethanol and 2-propanol from syngas, the method comprising: (a) converting syngas into methanol using a methanol-synthesis catalyst; (b) converting methanol into ethylene and propylene using a methanol-to-olefins catalyst; and (c) hydrating ethylene into ethanol and propylene into 2-propanol. As taught herein, the combined yield of the ethanol and the 2-propanol from biomass can be at least 100 gallons per dry ton biomass. In certain embodiments, the yield of ethanol is at least 100 gallons per dry ton biomass. In some embodiments, the yield of 2-propanol is at least 50 gallons per dry ton biomass.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 22, 2013
    Inventor: Karl Kharas
  • Patent number: 8354563
    Abstract: This invention provides a method for producing ethanol and 2-propanol from syngas, the method comprising: (a) converting syngas into methanol using a methanol-synthesis catalyst; (b) converting methanol into ethylene and propylene using a methanol-to-olefins catalyst; and (c) hydrating ethylene into ethanol and propylene into 2-propanol. As taught herein, the combined yield of the ethanol and the 2-propanol from biomass can be at least 100 gallons per dry ton biomass. In certain embodiments, the yield of ethanol is at least 100 gallons per dry ton biomass. In some embodiments, the yield of 2-propanol is at least 50 gallons per dry ton biomass.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 15, 2013
    Assignee: Maverick Biofuels, Inc.
    Inventor: Karl Kharas
  • Patent number: 8344188
    Abstract: This invention provides a method for producing ethanol and 2-propanol from syngas, the method comprising: (a) converting syngas into methanol using a methanol-synthesis catalyst; (b) converting methanol into ethylene and propylene using a methanol-to-olefins catalyst; and (c) hydrating ethylene into ethanol and propylene into 2-propanol. As taught herein, the combined yield of the ethanol and the 2-propanol from biomass can be at least 100 gallons per dry ton biomass. In certain embodiments, the yield of ethanol is at least 100 gallons per dry ton biomass. In some embodiments, the yield of 2-propanol is at least 50 gallons per dry ton biomass.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 1, 2013
    Assignee: Maverick Biofuels, Inc.
    Inventor: Karl Kharas
  • Patent number: 8329962
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: December 11, 2012
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Publication number: 20120232313
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 13, 2012
    Applicant: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 8217205
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 10, 2012
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Patent number: 7910068
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 22, 2011
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Publication number: 20090124835
    Abstract: An object of the present invention is to provide, for the production of isobutene, a high-yielding, highly-selective, and long-term stable production process of isobutene from TBA. With respect to the production of TBA, an object of the present invention is to provide a TBA production process in which, through long-term stable maintenance of a high reaction activity, long-term continuous operation is enabled and the productivity is improved. The present invention discloses a process for producing isobutene that employs a dehydration temperature of from 200 to 450° C. in use of an alumina catalyst that contains a Na content of 0.6% by weight or less in terms of NaO2 and a Na content of 0.4% by weight in terms of NaO2, and has a specific surface area of from 200 to 600 m2/g.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 14, 2009
    Inventors: Tatsuo Yamaguchi, Hiroyuki Noda, Toru Watanabe, Shumya Kirino
  • Patent number: 7482497
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 27, 2009
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Ebrahim Bagherzadeh, Rayford G. Anthony, Gregory Borsinger, Aziz Hassan
  • Publication number: 20090005613
    Abstract: Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
    Type: Application
    Filed: June 20, 2008
    Publication date: January 1, 2009
    Applicant: H R D CORPORATION
    Inventors: Abbas HASSAN, Ebrahim BAGHERZADEH, Rayford G. ANTHONY, Gregory BORSINGER, Aziz HASSAN
  • Patent number: 7211702
    Abstract: The invention disclosed relates to the production of alcohols. A first aspect of the invention relates to a process for production of alcohols, and in particular to a process for the catalytic hydration of an olefin to the corresponding alcohol in substantially anhydrous form, under selected mild reaction conditions, and using a selected catalyst. A second aspect of the invention relates to a process for dehydration of an azeotropic mixture, including a first alcohol and water. A hydration reaction between the water in the azeotropic mixture and an added olefin, under selected mild conditions, and using a selected catalyst, produces a product including a second alcohol corresponding to the olefin, and the first alcohol, in substantially anhydrous form.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: May 1, 2007
    Assignee: The Governors of the University of Alberta
    Inventors: Karl T. Chuang, Yung F. Chen
  • Patent number: 7179948
    Abstract: The invention relates to a process for preparing tert-butanol by reaction of a homogeneous mixture comprising water, tert-butanol and an isobutene-containing hydrocarbon mixture over an acidic ion-exchange resin at from 30 to 120° C., wherein the homogeneous mixture contains, at a proportion by mass of isobutene of above 10%, from 30 to 80% of the maximum amount of water made possible by the solubility of water in the mixture of tert-butanol and the isobutene-containing hydrocarbon mixture.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: February 20, 2007
    Assignee: Oxeno Olefinchemie GmbH
    Inventors: Bernhard Scholz, Franz Nierlich, Dieter Reusch, Silvia Santiago Fernandez, Andreas Beckmann, Wilfried Bueschken, Alfred Kaizik
  • Patent number: 7148387
    Abstract: Discloses a process for efficiently producing a hydroxyl group containing compound with a simple apparatus and simple procedures using a very small amount of a catalyst, which process reduces a catalyst recovering step and a catalyst neutralization step vastly and does not require catalyst regeneration and catalyst exchange. The process for producing a hydroxyl group containing compound comprises allowing an aqueous solution containing 1 ppb to 500 ppm of an acid catalyst to react with an aliphatic double bond having compound in a molar ratio (water/aliphatic double bond having compound) of water to aliphatic double bond having compound of from 1 to 50, at a reaction temperature of from 200 to 600° C. under a reaction pressure of from 1 to 100 MPa and thereby conducting hydration reaction of the aliphatic double bond containing compound with water.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: December 12, 2006
    Assignees: Mitsui Chemicals, Inc., National Institute of Advanced Industrial Science and Technology
    Inventors: Kenta Takahashi, Yutaka Ikushima
  • Patent number: 7115787
    Abstract: The invention relates to a process for preparing tert-butanol (TBA) from isobutene-containing mixtures, in which at least part of the conversion is achieved with the aid of a reactive rectification.
    Type: Grant
    Filed: November 11, 2003
    Date of Patent: October 3, 2006
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Dieter Reusch, Andreas Beckmann, Franz Nierlich, Axel Tuchlenski
  • Patent number: 7026519
    Abstract: The invention relates to a process for preparing tert-butanol (TBA) by reacting isobutene-containing hydrocarbon mixtures with water over acidic solid catalysts in a plurality of reactors, wherein the conversion is increased upstream of the last reactor by removing a portion of the TBA present in the reaction mixture.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: April 11, 2006
    Assignee: Oxeno Olefinchemie GmbH
    Inventors: Silvia Santiago Fernandez, Andreas Beckmann, Franz Nierlich, Dieter Reusch
  • Patent number: 7002050
    Abstract: The present invention relates to a process for preparing tert-butanol (TBA) by reacting an isobutene-containing hydrocarbon mixture with water over a solid acid catalyst in a reactor cascade, wherein at least one reactor is supplied alternately with two different isobutene-containing hydrocarbon mixtures, of which one has both a higher tert-butanol content and a higher water content than the other mixture.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: February 21, 2006
    Assignee: Oxeno Olefinchemie GmbH
    Inventors: Silvia Santiago Fernandez, Jörg Sauer, Guido Stochniol, Dietrich Maschmeyer, Wilfried Büschken, Klaus-Diether Wiese
  • Patent number: 6953867
    Abstract: A catalyst support consisting mainly of synthetic silica, with 0.5-10 parts by weight of one or more oxides or phosphates of the elements of group IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides, wherein the support preparation method comprises mixing particulate synthetic silica with particulate oxides or phosphates of the elements of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides, or with precursors thereof, a forming step and calcinations. The catalyst support is used together with phosphoric acid in the production of alcohols from olefins by hydration.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: October 11, 2005
    Assignee: Innovene Europe Limited
    Inventors: Russell William Cockman, Gordon John Haining
  • Patent number: 6951967
    Abstract: Tertiary alcohols can be prepared by the hydration of tertiary olefins having the same number of carbon atoms on an acidic ion exchanger using special structured multi-purpose packings for heterogeneous reactive rectification. An excellent yield and purity of the alcohol and an extended service life of the catalyst are achieved.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: October 4, 2005
    Assignees: EC Erdolchemie GmbH, Bayer AG
    Inventors: Axel Gohrt, Joachim Grub, Stefan Kaminsky, Stephan Muller, Brian Schwegler
  • Patent number: 6906229
    Abstract: The invention relates to the production of isopropyl alcohol from di-isopropyl ether by catalytic distillation. The process solves, in particular, problems associated with the Sulfuric Acid Process.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: June 14, 2005
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventor: Paul E. Burton
  • Patent number: 6833483
    Abstract: The invention disclosed relates to the production of alcohols. A first aspect of the invention relates to a process for production of alcohols, and in particular to a process for the catalytic hydration of an olefin to the corresponding alcohol in substantially anhydrous form, under selected mild reaction conditions, and using a selected catalyst. A second aspect of the invention relates to a process for dehydration of an azeotropic mixture, including a first alcohol and water. A hydration reaction between the water in the azeotropic mixture and an added olefin, under selected mild conditions, and using a selected catalyst, produces a product including a second alcohol corresponding to the olefin, and the first alcohol, in substantially anhydrous form.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: December 21, 2004
    Assignee: The Governors of the University of Alberta
    Inventors: Karl T. Chuang, Yung F Chen
  • Publication number: 20040044257
    Abstract: A catalyst support consisting mainly of synthetic silica, with 0.5-10 parts by weight of one or more oxides or phosphates of the elements of group IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides characterised in that the support preparation method comprises mixing particulate synthetic silica with particulate oxides or phosphates of the elements of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides, or with precursors thereof, a forming step and calcination. The catalyst support is used together with phosphoric acid in the production of alcohols from olefins by hydration.
    Type: Application
    Filed: April 21, 2003
    Publication date: March 4, 2004
    Inventors: Russell William Cockman, Gordon John Haining
  • Patent number: 6432869
    Abstract: Moldings are disclosed for use as a catalyst or catalyst support for hydrating olefin, such as ethylene and propylene. The moldings are based on a pyrogenically produced mixed oxide having the following physicochemical parameters: External diameter 0.8-25 mm BET surface area 5-400 m2/g Pore volume 0.2-1.8 ml/g Fracture strength 5 to 350 N Composition At least two materials selected from the group of SiO2, Al2O3, TiO2 and ZrO2 in any desired combination, with the proviso that when the combination is a SiO2/Al2O3 mixed oxide, at least 75 wt. % of SiO2 is present based on the total weight of the mixed oxide. Other constituents <1 wt. % Bulk density 250-1500 g/l.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: August 13, 2002
    Assignee: Degussa AG
    Inventors: Helmfried Krause, Hermanus Gerhardus Josef Lansink Rotgerink, Thomas Tacke, Helmut Mangold, Heike Riedemann, Manfred Fuchs
  • Patent number: 6320080
    Abstract: Alpha-olefins are dimerized to form branched-chain feedstocks for detersive surfactants.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: November 20, 2001
    Assignee: The Procter & Gamble Company
    Inventor: Daniel Stedman Connor
  • Patent number: 6072090
    Abstract: This invention relats to a continuous process for the hydration of olefins with water in the vapour phase to the corresponding alcohol in the presence of a heteropolyacid salt as catalyst said process including the recycle of un-reacted olefin back to the hydration reaction characterised in that the heteropolyacid salt is a metal salt of silicotungstic acid or phosphotungstic acid which is soluble in a polar solvent below 40.degree. C. wherein the metal in the salt is an alkali metal or an alkaline earth metal.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: June 6, 2000
    Assignee: BP Chemicals Limited
    Inventors: Russell William Cockman, Mark Royston Smith
  • Patent number: 6037482
    Abstract: A process for the catalytic addition of nucleophilic agents to alkynes or allenes to form alkenes substituted by the nucleophile which may further react with the nucleophile and/or isomerize comprises using a catalyst comprising a wholly or partly ionized complex of univalent gold.
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: March 14, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Schulz, Joaquim Henrique Teles
  • Patent number: 5824825
    Abstract: A phosphoric acid catalyst on a shaped, inorganic support and its use for the hydration of olefins. At least 90 wt. % of the catalyst support consists of titanium dioxide and/or zirconium dioxide and has outstanding ageing stability under the hydrothermal conditions existing during hydration processes.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: October 20, 1998
    Assignee: Degussa Aktiengesellschaft
    Inventors: Hermanus Lansink-Rotgerink, Harald Hoecker, Stefan Wieland, Steffen Seebald, Heike Riedemann
  • Patent number: 5488185
    Abstract: An ethene stream which contains ethane as an impurity or a propene stream which contains propane as an impurity is hydrated with water vapor in the presence of a hydration catalyst to produce ethanol or isopropanol, respectively. After removal of the alcohol the gaseous product stream is subjected to adsorption, thereby producing an ethene-enriched stream or a propene-enriched stream. The ethene-enriched stream or the propene-enriched stream is recycled to the hydration reactor.
    Type: Grant
    Filed: April 22, 1994
    Date of Patent: January 30, 1996
    Assignee: The BOC Group, Inc.
    Inventors: Ramakrishnan Ramachandran, Loc H. Dao
  • Patent number: 5059737
    Abstract: A hydrocarbon conversion process which utilizes a solid phosphoric acid catalyst having a total X-ray intensity of at least 40 percent relative to alpha-alumina. The solid phosphoric acid catalyst is produced by crystallizing an amorphous mixture of an acid oxide of phosphorus and a siliceous material at a temperature of from 350.degree. to 450.degree. C. and in the presence of from 10 to 50 mole percent water vapor based upon the total vapor rate to the crystallizing means. Embodiments of the new hydrocarbon conversion process include alkylation, oligomerization, and hydration, of hydrocarbons and oxygenated hydrocarbons.
    Type: Grant
    Filed: July 2, 1990
    Date of Patent: October 22, 1991
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, Fiona P. Wilcher, Mark R. Ford, Andrzej Z. Ringwelski
  • Patent number: 4684751
    Abstract: A catalytic composition useful for producing amides and primary alcohols from nitriles and alkenes respectively, comprising in the first instance water, a suitable nucleophile, and MHCl[P(R).sub.3 ].sub.2 wherein M is platinum, palladium, or nickel, and R is CH.sub.3, CH.sub.3 CH.sub.2, or i-Pr and in the second instance comprising the same reagents but limited to R being CH.sub.3. The addition of a phase-transfer catalyst facilitates both reactions where the aqueous solubility of the nitriles or alkenes is limiting in the reaction.
    Type: Grant
    Filed: February 13, 1986
    Date of Patent: August 4, 1987
    Assignee: The Regents of the University of California
    Inventors: William C. Trogler, Craig M. Jensen
  • Patent number: 4484013
    Abstract: A process is disclosed for the production of isopropanol and tertiary butyl alcohol from C.sub.3 and C.sub.4 hydrocarbons. The preferred embodiment of the invention comprises dehydrogenation of paraffins and direct hydration of the resulting olefins. Fractional distillation steps are employed between the dehydrogenation and dehydration zones and in the recycle stream to recover unconverted hydrocarbons leaving the hydration zone. This accommodates different hydration rates and prevents the passage of propylene into the dehydrogenation zone. In an alternative embodiment, the feed stream comprises olefins and is fed to the fractionation system. The dehydrogenation zone may be deleted from this embodiment.
    Type: Grant
    Filed: December 30, 1983
    Date of Patent: November 20, 1984
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4482767
    Abstract: A hydrocarbon conversion process is disclosed for the production of lower alcohols and LPG from a mixture of C.sub.3 -minus paraffins and olefins. The feed stream is passed into a hydration zone wherein portions of the ethylene and propylene are converted to ethanol and propanol. The hydrocarbons which are not hydrated are passed into a hydrogenation zone wherein the remaining olefins are converted to paraffins. The feed stream is preferably a hydrogen-containing C.sub.1 to C.sub.3 cut separated from the effluent of a fluidized catalytic cracking unit.
    Type: Grant
    Filed: December 20, 1983
    Date of Patent: November 13, 1984
    Assignee: UOP Inc.
    Inventor: Tamotsu Imai
  • Patent number: 4469905
    Abstract: A process for producing and recovering a C.sub.2 to C.sub.6 alcohol, which comprises contacting water and a C.sub.2 to C.sub.6 olefin with a hydration catalyst comprising an acidic ion exchange resin in a reaction zone under reaction conditions, said reaction zone containing multiple water quench points and multiple olefin injection points, and counter-currently contacting the reaction product with a solvent to extract the C.sub.2 to C.sub.6 alcohols therefrom.
    Type: Grant
    Filed: November 4, 1981
    Date of Patent: September 4, 1984
    Assignee: Union Oil Company of California
    Inventors: Texas V. Inwood, Carlyle G. Wight, Jeffery W. Koepke
  • Patent number: 4465874
    Abstract: Olefins containing from 2 to about 6 carbon atoms may be directly hydrated by treatment with water in the presence of a catalyst comprising an alpha-zirconium phosphate. The use of this catalyst which possesses desirable thermal stability characteristics will enable the reaction to be effected at higher operating conditions than is possible when utilizing other catalysts.
    Type: Grant
    Filed: January 3, 1983
    Date of Patent: August 14, 1984
    Assignee: UOP Inc.
    Inventor: Joseph A. Kocal
  • Patent number: 4424388
    Abstract: A low temperature, low pressure process for the production of alcohol by the hydration of olefins. The olefin is contacted with a sulfonated ion-exchange resin in the presence of water and glycol diethyl solvent to hydrate said olefin, preferably propylene, and form from the olefin the corresponding aliphatic, monohydric alcohol. The solvent, a key and novel feature of the invention, at reaction conditions forms two liquid phases, a glycol diether phase and a water phase. The alcohol forms predominanty in the glycol diether phase and to a lesser extent in the water phase, with the products, inclusive of by product either, being distributed between the two phases. The glycol diethyl phase effectively displaces the equilibrium toward higher alcohol production, and the ether by product suppresses the equilibrium and minimizes formation of the ether product.
    Type: Grant
    Filed: June 25, 1982
    Date of Patent: January 3, 1984
    Assignee: Improtec
    Inventors: David G. Braithwaite, deceased, Joe D. Pickle
  • Patent number: 4358626
    Abstract: Secondary alcohols are produced by the hydration of a n-olefin substantially free from an isoolefin in the presence as catalyst of an acidic cation exchange resin such as a sulfonated styrene-divinylbenzene copolymer and in the presence of an oxy acid or lactone thereof such as .gamma.-valerolactone. The process is especially useful for hydrating a n-butene feed or a feed consisting essentially of n-butenes and butane to produce secondary butyl alcohol.
    Type: Grant
    Filed: August 6, 1981
    Date of Patent: November 9, 1982
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Yoshiharu Okumura, Tadamori Sakakibara, Katsumi Kaneko
  • Patent number: 4351970
    Abstract: A method is disclosed of preparing alcohols having 2 to 4 carbon atoms by catalytic hydration of the corresponding olefins on acid catalysts at elevated temperature and elevated pressure, characterized in that byproducts of the hydration, namely corresponding ethers and/or low-polymerized hydrocarbons and/or undesired alcohols, which form upon the passage of the input product through catalyst bed, are fed to the input product before entry into the reactor, said method being characterized in that:A. When ethylene is the olefin, the reaction is conducted at a temperature of 200.degree.-300.degree. C.; andB: When propylene is the olefin the reaction is conducted at a temperature of 150.degree. to 220.degree. C.
    Type: Grant
    Filed: May 21, 1980
    Date of Patent: September 28, 1982
    Assignee: Veba-Chemie Aktiengesellschaft
    Inventors: August Sommer, Wilhelm Heitmann, Rainer Brucker
  • Patent number: 4351971
    Abstract: Lower alcohols are prepared by hydrating the corresponding olefin in an aqueous solution containing a chromium compound, phosphoric acid and heteropolyacid. Phosphoric acid has a high catalytic activity for the hydration of lower olefins, but causes a remarkable corrosion to an apparatus material under the state of an aqueous solution. The catalytic composition consisting of phosphoric acid and heteropolyacid is improved in activity and stability. Owing to the coexistence of heteropolyacid an acid degree is raised, nevertheless the corrosion of apparatus materials is not increased. As an anti-corrosive a chromium compound is incorporated into the aqueous solution containing the catalytic composition of phosphoric acid and heteropolyacid.
    Type: Grant
    Filed: March 4, 1981
    Date of Patent: September 28, 1982
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Kanemaru, Kenji Yoshida, Thikashi Higashino, Tadashi Kozima
  • Patent number: 4339617
    Abstract: Olefinic hydrocarbons may be hydrated to form corresponding alcohols by treating said olefins with water in the presence of an acidic compound which acts as a catalyst, said hydration reaction being effected at a temperature in the range of from about 100.degree. to about 300.degree. C. and a pressure in the range of from about 1 to about 100 atmospheres. In addition, the reaction medium also contains a salt of a metal selected from the group consisting of magnesium, barium, beryllium and radium, said metal salts suppressing the corrosive nature of the acid catalyst and thus permitting the reaction to be effected in normal metal reactors.
    Type: Grant
    Filed: March 9, 1981
    Date of Patent: July 13, 1982
    Assignee: UOP Inc.
    Inventors: Tamotsu Imai, Robert J. Schmidt