Abstract: The present technology relates to compositional blends that can be used as refrigerants, and more specifically to blends of vinylidene fluoride and at least one other component for use in very low temperature applications. In at least some examples, the second component can be selected from the group consisting of carbon dioxide and pentafluoroethane. Further, the compositions can be azeotropic or azeotrope-like.
Abstract: The present invention provides a process for producing highly pure fluoro-compounds by making use of less costly and readily handleable N-(2-chloro-1,1,2-trifluoroethyl)diethylamine. The process produces little or no chlorinated by-products.
Abstract: A process for the production of a fluorinated organic compound, characterized by fluorinating an organic compound having a hydrogen atoms using IF5; and a novel fluorination process for fluorinating an organic compound having a hydrogen atoms by using a fluorinating agent containing IF5 and at least one member selected from the group consisting of acids, bases, salts and additives.
Abstract: A method of simultaneous and selective prepararation of hexafluoropropylene and octafluorocyclebutane comprising the steps of:
(a) thermally decomposing difluorochloromethane to obtain tetrafluoroethylene and then supplying the resulting tetrafluoroethylene into a fluidized bed reactor equipped with a distributor for supplying steam; and
(b) supplying steam into a flow of tetrafluoroethylene supplied into the fluidized bed reactor, through a distributor for supplying steam at a certain molar ratio of tetrafluoroethylene/stream, and then performing dimerization of tetrafluoroethylene in the fluidized bed reactor under an atmospheric pressure.
Type:
Grant
Filed:
August 14, 2002
Date of Patent:
March 23, 2004
Assignee:
Korea Institute of Science and Technology
Inventors:
Dong Ju Moon, Moon Jo Chung, Young Soo Kwon, Byoung Sung Ahn
Abstract: Compounds each having a —CH2—CHF— group and a number of carbon atoms of 4 or above are prepared by hydrogenating a compound having a —CCl═CF— group and a number of carbon atoms of 4 or above in the presence of a noble metal catalyst in a liquid or gas phase. The compound having a —CCl═CF— group and a number of carbon atoms of 4 or above is preferably a C4-C10 alicyclic one, and can be prepared by reacting a compound having a —CCl═CCl— group and a number of carbon atoms of 4 or above with a fluorinating agent.
Abstract: Processes are disclosed for producing hydrohaloolefins having the formula CF.sub.2 .dbd.C(CH.sub.2 RF)CF.sub.3, the formula FRCF.dbd.C(CH.sub.2 RF)CF.sub.3 or the formula FRCF.dbd.C(CH.sub.2 RF)(CF.sub.2 RF) wherein each R is a difinctional group of the formula --C.sub.2 F.sub.2 XY-- where X and Y are attached to the same carbon, each X is H, Br, Cl or F and each Y is F or CF.sub.3. The processes involve reacting (CF.sub.3).sub.2 C.dbd.CH.sub.2 or certain olefinic adducts thereof with a second olefm of the formula CF.sub.2 .dbd.CXY in the liquid phase in the presence of a Lewis acid catalyst selected from the group consisting of antimony pentafluoride and aluminum chlorofluoride.Also disclosed is 1,1,2,2,-tetrafluoro-3,3-bistrifluoromethylcyclobutane and a process for its production which involves reacting (CF.sub.3).sub.2 C.dbd.CH.sub.2 with CF.sub.2 .dbd.CF.sub.
Abstract: Process for the preparation of dichloro-(2,2)-paracyclophane from p-methylbenzylhalide through 2(3)-chloro-p-methylbenzyltrimethylammonium halide by Hofmann elimination of 2(3)-chloro-p-methylbenzyl trimethylammonium hydroxide in an aqueous solution of alkali metal hydroxide, wherein the 2(3)-chloro-p-methylbenzyltrimethylammonium halide is prepared by chlorination of p-methylbenzyltrimethylammonium halide and the Hofmann elimination is conducted in the presence of dioxane.