Catalyst Utilized Patents (Class 570/156)
  • Patent number: 10351495
    Abstract: A process is provided comprising contacting and reacting the compound CF3CF2CHXCl, wherein X is H or Cl, or the compound CF3CF?CXCl, wherein X is H or Cl, with hydrogen in the presence of a catalyst consisting essentially of Cu, Ru, Cu—Pd, Ni—Cu, and Ni—Pd, to obtain as a result thereof reaction product comprising hydrofluoropropenes or intermediates convertible to said hydrofluoropropenes, notably CF3CF?CH2 and CF3CH?CHF.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: July 16, 2019
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Xuehui Sun
  • Patent number: 10207971
    Abstract: The invention relates to a composition comprising at least 99% by weight of 1,1,1,2,3-pentachloropropane, and comprising at least one compound chosen from a list of additional compounds consisting of trichloropropanes, tetrachloropropanes, pentachloropropanes other than 1,1,1,2,3-pentachloropropane, hexachloropropanes, heptachloropropanes, dichloropropenes, trichloropropenes, tetrachloropropenes, pentachloropropenes and hexachloropropene, said compound being present in the composition in a weight content of less than or equal to 500 ppm. The invention also relates to the use of this composition for manufacturing 2,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: February 19, 2019
    Assignee: ARKEMA FRANCE
    Inventors: Dominique Deur-Bert, Laurent Wendlinger, Bertrand Collier
  • Patent number: 10202321
    Abstract: Disclosed is a method of simultaneously preparing 1,1,1-trifluoro-2-chloropropene and 1,1,1,2-tetrafluoropropene, the method including i) a step of elevating a temperature of a reactor charged with a gas phase catalyst up to a reaction temperature; ii) a step of feeding 1,1,1-trifluoro-2,3-dichloropropane and 2-chloro-1,1,1,2-tetrafluoropropane into the reactor, the temperature of which has been elevated; iii) a step of performing dehydrochlorination while maintaining the temperature of the reactor; and iv) a step of performing washing and distillation after the dehydrochlorination. In accordance with the present disclosure, a high-efficient gas-phase process of continuously, simultaneously preparing 1,1,1-trifluoro-2-chloropropene and 1,1,1,2-tetrafluoropropene is provided.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: February 12, 2019
    Assignee: FOOSUNG CO., LTD.
    Inventors: Ook Jae Cho, Bong Seok Kim, Dong Hyuk Park, Su Jin Park, Jin A Jung, Dae Woo Kim
  • Patent number: 10183903
    Abstract: The present invention discloses a method for preparing 2,3,3,3-tetrafluoropropene using methylmagnesium chloride, comprising the following steps: 1) preparing 1,1,2-trifluoropropene (CH3CF?CF2); 2) preparing 1,1,1,2,2-pentafluoropane (CF3CF2CH3); 3) preparing 2,3,3,3-tetrafluoropropene (CF3CF?CH2). In the present invention, using a Grignard reagent, namely methylmagnesium chloride, and tetrafluoroethylene as starting raw materials, 2,3,3,3-tetrafluoropropene is prepared by three steps of nucleophilic addition-elimination, fluorine addition, and dehydrofluorination in sequence. The process flow is relatively short, and the product yield is high.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: January 22, 2019
    Assignee: JUHUA GROUP TECHNOLOGY CENTER
    Inventors: Hongfeng Li, Shuhua Wang, Xiaobo Xu, Liyong Ma
  • Patent number: 10138403
    Abstract: There are provided a composition for a heat cycle system containing a working medium for heat cycle that has a low global warming potential and high stability, which can be used as a substitute for HFC-134a and HFC-245fa, and a heat cycle system using this composition. The composition for a heat cycle system contains: a working medium for heat cycle containing 1-chloro-2,3,3,3-tetrafluoropropene; and a stabilizer suppressing deterioration of the working medium for heat cycle such as an oxidation resistance improver, a heat resistance improver, or a metal deactivator, and the heat cycle system uses this composition for a heat cycle system.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 27, 2018
    Assignee: AGC Inc.
    Inventors: Mai Tasaka, Masato Fukushima, Hiroaki Mitsuoka
  • Patent number: 10118879
    Abstract: A method for conversion of a composition containing HCFO-1233zd(Z) and HCFC-244fa to form HCFO-1233zd(E) by reacting a mixture including HCFO-1233zd(Z) and HCFC-244fa in a vapor phase in the presence of a catalyst to simultaneously isomerize HCFO-1233zd(Z) to form HCFO-1233zd(E) and dehydrohalogenate HCFC-244fa to form HCFO-1233zd(E). The catalyst may be a chromium-based catalyst such as chromium trifluoride, chromium oxyfluoride, or chromium oxide, for example.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: November 6, 2018
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel
  • Patent number: 10081749
    Abstract: A composition is provided containing HFO-1123 having a low GWP, which is useful as a heat transfer composition, an aerosol sprayer, a foaming agent, a blowing agent, a solvent or the like. A composition containing HFO-1123, and at least one first compound selected from the group consisting of HFO-1132, HFO-1132a, CFO-1113, HCFO-1122, HCFO-1122a, HFC-143 and methane.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: September 25, 2018
    Assignee: AGC Inc.
    Inventors: Tomoaki Taniguchi, Hidekazu Okamoto, Shoji Furuta, Yu Takeuchi
  • Patent number: 10053404
    Abstract: The present invention provides a process for preparing 2,3,3,3-tetrafluoropropene from 1,1,1,2,3-pentachloropropane and/or 1,1,2,2,3-pentachloropropane, comprising the following steps: (a) catalytic reaction of 1,1,1,2,3-pentachloropropane and/or 1,1,2,2,3-pentachloropropane with HF into a reaction mixture comprising HCl, 2-chloro-3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene, unreacted HF, and optionally 1,1,1,2,2-pentafluoropropane; (b) separating the reaction mixture into a first stream comprising HCl and 2,3,3,3-tetrafluoropropene and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and optionally 1,1,1,2,2-pentafluoropropane; (c) catalytic reaction of the second stream into a reaction mixture comprising 2,3,3,3-tetrafluoropropene, HCl, unreacted 2-chloro-3,3,3-trifluoropropene, unreacted HF and optionally 1,1,1,2,2-pentafluoropropane and (d) feeding the reaction mixture of step (c) directly without separation to step (a).
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: August 21, 2018
    Assignee: Arkema France
    Inventors: Dominique Deur-Bert, Bertrand Collier, Laurent Wendlinger
  • Patent number: 9994503
    Abstract: A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: June 12, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Yuon Chiu, Stephen A. Cottrell, Hsueh Sung Tung, Haluk Kopkalli, Gustavo Cerri
  • Patent number: 9890097
    Abstract: Disclosed are the combinations containing Z and E stereoisomers of hydrofluoroolefins where the more toxic isomer is less than about 30% weight of the combination (vs the sum of Z+E), to minimize the toxicity impact in the applications they will be used for such as cooling and heat fluids, foams blowing agents or solvents. Also disclosed are means to obtain combinations containing Z and E stereoisomers of hydrofluoroolefins.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 13, 2018
    Assignee: Arkema Inc.
    Inventors: Philippe Bonnet, Maher Y. Elsheikh
  • Patent number: 9878969
    Abstract: Disclosed is a process for the preparation of 1,3,3,3-tetrafluoropropene, comprising: (a) a compound having the formula CF3-xClxCHClCHF2-yCly and in the presence of a compound catalyst, undergoes, through n serially-connected reactors, gas-phase fluorination with hydrogen fluoride, producing 1,2,3-trichloro-1,1,3-trifluoropropane, and 1,2-dichloro-1,1,3,3-tetrafluoropropane; in said formula, x=1, 2 or 3; y=1 or 2, and 3?x+y?5; (b) 1,2,3-trichloro-1,1,3-trifluoropropane, and 1,2-dichloro-1,1,3,3-tetrafluoropropane undergo, in the presence of a dehalogenation catalyst, gas-phase dehalogenation with hydrogen, producing 3-chloro-1,3,3-trifluoropropene, and 1,1,3,3-tetrafluoropropene; (c) 3-chloro-1,3,3-trifluoropropene and 1,1,3,3-tetrafluoropropene undergo, in the presence of a fluorination catalyst, gas-phase fluorination with hydrogen fluoride, producing 1,3,3,3-tetrafluoropropene. The present invention is primarily used to produce 1,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: January 30, 2018
    Assignee: Xi'an Modern Chemistry Research Institute
    Inventors: Jian Lv, Hui Ma, Yujie Gu, Bo Wang, Yue Qin, Zhenhua Zhang, Zhijun Hao, Chunying Li, Fengxian Li, Jing Lv, Yanbo Bai
  • Patent number: 9873649
    Abstract: A process for the joint preparation of 1,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene, comprising: (a) starting materials comprising at least one compound having the structure of formula I, II or III are reacted with hydrogen fluoride, producing 1,2,3-trichloro-3,3-difluoropropene, 1,2,3-trichloro-1,1,2-trifluoropropane, and 1,2,3-trichloro-1,1,3-trifluoropropane; in the compounds of said formulae CF2-mClm?CCl—CHF2-nCln (Formula I), CF3-pClpCHCl?CH2Cl (Formula II), and CF3-xClxCF2-yClyCHF2-zClz (Formula III), m=0, 1, 2; n=1, 2; p=2, 3; x=1, 2, 3; y=1, 2; z=1, 2 and 4?x+y+z?6; (b) the 1,2,3-trichloro-3,3-difluoropropene, 1,2,3-trichloro-1,1,2-trifluoropropane and 1,2,3-trichloro-1,1,3-trifluoropropane undergo dechlorination, producing 3-chloro-3,3-difluoropropyne, 3-chloro-2,3,3-trifluoropropene and 3-chloro-1,3,3-trifluoropropene; and (c) the 3-chloro-3,3-difluoropropyne, 3-chloro-2,3,3-trifluoropropene and 3-chloro-1,3,3-trifluoropropene are reacted with hydrogen fluoride, simultaneously yielding
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: January 23, 2018
    Assignee: Xi'an Modern Chemistry Research Institute
    Inventors: Jian Lv, Hui Ma, Bo Wang, Wei Zhang, Zhiqiang Yang, Yujie Gu, Wei Mao, Jijun Zeng, Xiaobo Tang, Zhenhua Zhang
  • Patent number: 9809515
    Abstract: A method for producing a tetrafluoroolefin, such as 2,3,3,3-tetrafluoropropene (HFO-1234yf), comprises dehydrofluorinating a pentafluoroalkane in a gas phase in the presence of a catalyst comprising chromium oxyfluoride. In a preferred embodiment, 2,3,3,3-tetrafluoropropene (HFO-1234yf) is produced by forming a catalyst comprising chromium oxyfluoride by calcining CrF3.xH2O, where x is 1-10, in the presence of a flowing gas comprising nitrogen to form a calcined chromium oxyfluoride, and dehydrofluorinating 1,1,1,2,2-pentafluoropropane (HFC-245cb) in a gas phase in the presence of the catalyst to form the 2,3,3,3-tetrafluoropropene (HFO-1234yf).
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: November 7, 2017
    Assignee: Arkema Inc.
    Inventors: Maher Y. Elsheikh, Philippe Bonnet, Olga C. N. Keeley, Benjamin Bin Chen
  • Patent number: 9802878
    Abstract: A method to stably produce trifluoroethylene with a high selectivity by reacting 1,1,1,2-tetrafluoroethane with a solid reactant and suppressing the formation of by-products such as polymer carbon is provided. In the method, a material gas containing 1,1,1,2-tetrafluoroethane passes through a layer consisting of a particulate solid reactant having an average particle size of from 1 ?m to 5,000 ?m to bring the solid reactant and 1,1,1,2-tetrafluoroethane into contact with each other in a state where the layer consisting of the solid reactant is fluidized.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: October 31, 2017
    Assignee: Asahi Glass Company, Limited
    Inventors: Masahiko Nakamura, Hidekazu Okamoto
  • Patent number: 9724684
    Abstract: A dehydrochlorination process is disclosed. The process involves contacting RfCHClCH2Cl with a chromium oxyfluoride catalyst in a reaction zone to produce a product mixture comprising RfCCl?CH2, wherein Rf is a perfluorinated alkyl group.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: August 8, 2017
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Mario Joseph Nappa
  • Patent number: 9701599
    Abstract: The invention relates to a process to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) or 2-chloro-1,1,12-tetrafluoropropane (HCFC-244bb) using dichloro-trifluoropropanes and/or trichloro-difluoropropanes, and to prepare 2-chloro-3,3,3-trifluoropropene (HCO-1233xf) using various 242 and 243 isomers.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: July 11, 2017
    Assignee: HONEYWELL INTERNATIONAL. INC.
    Inventors: Haiyou Wang, Hsueh Sung Tung, Selma Bektesevic
  • Patent number: 9676687
    Abstract: The invention relates to a process to prepare tetrahalopropenes, such as 2-chloro-3,3,3-trifluoropropene (1233xf). The process comprises atomizing a feed material, such as 1,1,2,3-tetrachloropropene (1230xa) and the like, and mixing it with superheated HF to form a vaporized composition of feed material and HF with substantially instantaneous contact with a vapor phase fluorination catalyst. The invention extends catalyst life and forestalls catalyst deactivation.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: June 13, 2017
    Assignee: HONEYWELL INTERNATIONAL. INC.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Haiyou Wang, Haluk Kopkalli, Yuon Chiu
  • Patent number: 9643903
    Abstract: Disclosed is process for the production of (E) 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd(E)) by conducting a continuous reaction without the use of a catalyst. Also disclosed is an integrated system for producing hydrofluoro olefins, particularly 1233zd(E). The manufacturing process includes six major unit operations: (1) a fluorination reaction of HCC-240fa (in continuous or semi-batch mode) using HF with simultaneous removal of by-product HCl and the product 1233zd(E); (2) recycle of unreacted HCC-240fa and HF together with under-fluorinated by-products back to (1); (3) separation and purification of by-product HCl; (4) separation of excess HF back to (1); (5) purification of final product, 1233zd(E); and (6) isomerization of by-product 1233zd(Z) to 1233zd(E) to maximize the process yield.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: May 9, 2017
    Assignee: Honeywell International Inc.
    Inventors: Konstantin A. Pokrovski, Daniel C. Merkel, Hsueh Sung Tung
  • Patent number: 9567274
    Abstract: Process of catalytic fluorination in liquid phase of product 2-chloro-3,3,3-trifluoropropene into product 2-chloro-1,1,1,2-tetrafluoropropane, with an ionic liquid based catalyst. Process for manufacturing 2,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: February 14, 2017
    Assignee: Arkema France
    Inventors: Anne Pigamo, Laurent Wendlinger, Philippe Bonnet
  • Patent number: 9567275
    Abstract: The invention relates to a process for preparing a C3-6 (hydro)fluoroalkene comprising dehydrohalogenating a C3-6 hydro(halo)fluoroalkane in the presence of a zinc/chromia catalyst, wherein the C3-6 (hydro)fluoroalkene produced is isomerized in the presence of the zinc/chromia catalyst.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 14, 2017
    Assignee: MEXICHEM AMANCO HOLDING S.A. DE C.V.
    Inventors: Andrew Paul Sharratt, Leslie Richard Seddon
  • Patent number: 9512053
    Abstract: Processes for the production of chlorinated propenes are provided. The processes make use of 1,2-dichloropropane as a starting material and subject a feedstream comprising the same to an ionic chlorination process. At least a portion of any tri- and tetrachlorinated propanes not amenable to ionic chlorination conditions are removed from the ionic chlorination product stream, or, are subjected to chemical base dehydrochlorination step. In this way, recycle of intermediates not amenable to ionic chlorination reactions is reduced or avoided, as is the buildup of these intermediates within the process. Selectivity and, in some embodiments, yield of the process is thus enhanced.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: December 6, 2016
    Assignee: BLUE CUBE IP LLC
    Inventors: Max M. Tirtowidjojo, David S. Laitar, Barry B. Fish, Matthew L. Grandbois
  • Patent number: 9492816
    Abstract: A method for producing a tetrafluoroolefin, such as 2,3,3,3-tetrafluoropropene (HFO-1234yf), comprises dehydrofluorinating a pentafluoroalkane in a gas phase in the presence of a catalyst comprising chromium oxyfluoride. In a preferred embodiment, 2,3,3,3-tetrafluoropropene (HFO-1234yf) is produced by forming a catalyst comprising chromium oxyfluoride by calcining CrF3?xH2O, where x is 1-10, in the presence of a flowing gas comprising nitrogen to form a calcined chromium oxyfluoride, and dehydrofluorinating 1,1,1,2,2-pentafluoropropane (HFC-245cb) in a gas phase in the presence of the catalyst to form the 2,3,3,3-tetrafluoropropene (HFO-1234yf).
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: November 15, 2016
    Assignee: Arkema Inc.
    Inventors: Maher Y. Elsheikh, Philippe Bonnet, Olga C. N. Keeley, Benjamin Bin Chen
  • Patent number: 9458070
    Abstract: Disclosed is an HFO-1234ze preparation process. The present invention is realized by loading two fluorination catalysts into the same reactor, and controlling the temperature in each section. The preparation process of the present invention is of moderate reaction condition, stable catalyst activity, and simple process.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 4, 2016
    Assignees: SINOCHEM MODERN ENVIRONMENTAL PROTECTION CHEMICALS (XI'AN) CO., LTD., Sinochem Lantian Co., Ltd.
    Inventors: Lei Xu, Gang Yang, Huie Yang, Shukang Chen, Zhixia Zhao
  • Patent number: 9447003
    Abstract: The present invention relates to the preparation of trifluoroethylene (VF3 or TrFE) by hydrogenolyzis of chlorotrifluoroethylene (CTFE) in the gaseous phase over a group VIII metal catalyst deposited on a support. This method can be used to obtain VF3 in an economical manner in conditions which minimize the risk of explosion of this molecule. Using a catalyst containing a group VIII metal and, more specifically, containing Pd deposited on a support and a specific series of steps of separation and purification makes it possible to obtain excellent CTFE conversion rates and high selectivity in VF3 at atmospheric pressure and at low temperatures.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: September 20, 2016
    Assignee: ARKEMA FRANCE
    Inventors: Philippe Leduc, Thierry Lannuzel, Dominique Garrait, Serge Hub, Emmanuel Guiraud, Fabrice Domingues Dos Santos
  • Patent number: 9403742
    Abstract: A catalytic process for the synthesis of trifluoroethylene from chlorotrifluoroethylene which comprises contacting chlorotrifluoroethylene with hydrogen in the presence of a catalyst consisting of palladium or platinum supported on extruded activated carbon.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: August 2, 2016
    Assignee: SOLVAY SPECIALTY POLYMERS ITALY S.P.A.
    Inventors: Stefano Millefanti, Vito Tortelli, Giuseppe Marchionni
  • Patent number: 9399609
    Abstract: The present process relates to a method for minimizing the formation of 1,1,1,2,2-pentafluoropropane in a liquid phase reaction of 2-chloro-3,3,3-trifluoropropene and HF in the presence of a hydrofluorination catalyst comprising: (a) reacting HF with sufficient amount of 2-chloro-3,3,3-trifluoropropene in the presence of a hydrofluorination catalyst under conditions effective to form 2-chloro-1,1,1,2-tetrafluoropropane, the hydrofluorination catalyst being present in sufficient amounts to catalyze said reaction and the 2-chloro-1,1,1,2-tetrafluoropropane being formed with both a conversion of greater than 80% and a 1,1,1,2,2-pentafluoropropane selectivity lower than 20%; and (b) maintaining the 2-chloro-1,1,1,2-tetrafluoropropane being formed with both a conversion of about 80% or more and a 1,1,1,2,2-pentafluoropropane selectivity of about 20% or less by adding said hydrofluorination catalyst to the reactor in small increments.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: July 26, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Daniel C. Merkel, Hsueh Sung Tung, Haluk Kopkalli
  • Patent number: 9394217
    Abstract: The invention relates to a process to produce 244bb from 1233xf in multiple reaction zones whereby the 1233xf starting material is at least 95% converted to 244bb and by-product such as 245cb forms in amounts less than about 2%.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: July 19, 2016
    Assignee: HONEYWELL INTERNATIONAL, INC.
    Inventors: Yuon Chiu, Haluk Kopkalli, Robert A. Smith, Daniel C. Merkel
  • Patent number: 9359274
    Abstract: Provided is a method for causing a dehydrofluorination reaction of 1,1,1,3,3-pentafluoropropane in the gas phase and in the presence of a catalyst thereby producing 1,3,3,3-tetrafluoropropene. In this method, the reaction is carried out at a pressure inside the reaction system of from 0.001 to 90 kPa (absolute pressure) at a reaction temperature ranging from 250 to 600° C.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: June 7, 2016
    Assignee: Centeral Glass Company, Limited
    Inventors: Satoshi Yoshikawa, Fuyuhiko Sakyu, Naoto Takada
  • Patent number: 9302963
    Abstract: A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: April 5, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Yuon Chiu, Stephen A. Cottrell, Hsueh Sung Tung, Haluk Kopkalli, Gustavo Cerri
  • Patent number: 9296670
    Abstract: A method for forming 2,3,3,3-tetrafluoropropene (HFO-1234yf) comprising providing a dehydrochlorination starting material having relatively low concentrations of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), especially and preferable less than about 8.0% when the dehydrochlorination reaction utilizes no substantial amount of catalyst or catalyst comprising austenitic nickel-based materials.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: March 29, 2016
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Haiyou Wang, Hsueh S. Tung, Haluk Kopkalli, Yuon Chiu, Gustavo Cerri, Jeffrey Ball, Philip L. Da Prato, Xuehui Sun, Mario Joseph Nappa
  • Patent number: 9255047
    Abstract: A subject-matter of the invention is a process for the preparation of 2,3,3,3-tetrafluoro-1-propene which comprises the following stages: (i) hydrogenation of hexafluoropropylene to give 1,1,1,2,3,3-hexafluoropropane; (ii) dehydrofluorination of the 1,1,1,2,3,3-hexafluoropropane obtained in the preceding stage to give 1,2,3,3,3-pentafluoro-1-propene; (iii) hydrogenation of the 1,2,3,3,3-pentafluoro-1-propene obtained in the preceding stage to give 1,1,1,2,3-pentafluoropropane; and (iv) dehydrofluorination of the 1,1,1,2,3-pentafluoropropane obtained in the preceding stage to give 2,3,3,3-tetrafluoro-1-propene. Stages (ii) and (iv) are carried out using a water and potassium hydroxide mixture with the potassium hydroxide representing between 58 and 86% by weight of the mixture and at a temperature of between 110 and 180° C.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: February 9, 2016
    Assignee: Arkema France
    Inventors: Anne Pigamo, Michel Devic, Laurent Wendlinger
  • Patent number: 9233897
    Abstract: Disclosed is an HFO-1234ze and HFC-245fa co-production preparation method. The HFO-1234ze and HFC-245fa are prepared through a two-stage gas phase fluorination reaction by using 1,1,1,3,3-pentachloropropane (HCC-240fa) as a raw material. With the processing method of the present invention, HFO-1234ze and HFC-245fa can be prepared at the same time, and the alkene is unlikely to polymerize or carbonize during the reaction, thus being suitable for industrialized promotion.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: January 12, 2016
    Assignees: SINOCHEM MODERN ENVIRONMENTAL PROTECTION CHEMICALS (XI'AN) CO., LTD., SINOCHEM LANTIAN CO., LTD.
    Inventors: Gang Yang, Huie Yang, Lei Xu, Hua Chai, Xintang Zhao, Wenqing Zhang, Changhua Zeng, Jianping Fan, Shaohua Yan, Kunfeng Liu, Zhong Li, Shukang Chen
  • Patent number: 9193649
    Abstract: There is provided a method and an apparatus for efficiently obtaining 2,3,3,3-tetrafluoropropene with low contents of both organic impurities and water. The method for continuously purifying crude 2,3,3,3-tetrafluoropropene containing water and one or more organic impurities, the method including using an apparatus having a distillation column with X stages (3?X, the stage closest to a column top is the first stage) and a unit for cooling and condensing a distillate; supplying the crude 2,3,3,3-tetrafluoropropene to an m-th stage (n+1?m?X, 2?n?X?1) of the distillation column, recirculating at least part of the distillate cooled and condensed in the unit for cooling and condensing to an h-th stage (1?h?n?1) of the distillation column; and taking out a liquid phase part of an n-th stage of the distillation column to obtain a purified product of 2,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: November 24, 2015
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Satoshi Kawaguchi, Hirokazu Takagi, Masaaki Tsuzaki, Masato Fukushima, Hidekazu Okamoto
  • Patent number: 9181151
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in a liquid phase reaction in the presence of hydrogen chloride and a liquid phase fluorination catalyst. The hydrogen chloride is added into the reaction from an external source at a pressure of about 100 psig or more. The HCFC-244bb is an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: November 10, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel C. Merkel, Stephen A. Cottrell, Robert C. Johnson
  • Patent number: 9162946
    Abstract: The invention relates to a process for preparing a C3-6 (hydro)fluoroalkene comprising dehydrohalogenating a C3-6 hydro(halo)fluoroalkane in the presence of a zinc/chromia catalyst, wherein the C3-6 (hydro)fluoroalkene produced is isomerised in the presence of the zinc/chromia catalyst.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: October 20, 2015
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventors: Andrew Paul Sharratt, Leslie Richard Seddon
  • Patent number: 9115042
    Abstract: Provided are a fluorination catalyst for preparing 2,3,3,3-tetrafluoropropene and a method using the catalyst for preparing 2,3,3,3-tetrafluoropropene. The catalyst has the following structural formula: Crx(Y,Z)0.005-0.5O0.1-1.0F1.0-3.0, where Y is one or a combination of two or more among Al, Zn, and Mg, and where Z is a rare earth element having an oxygen-storing/releasing function. The catalyst has in preparing 2,3,3,3-tetrafluoropropene the advantages of increased raw material conversion rate, great product selectivity, and extended catalyst service life.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: August 25, 2015
    Assignees: SINOCHEM LANTIAN CO., LTD., SINOCHEM MODERN ENVIRONMENTAL PROTECTION CHEMICALS (XI'AN) CO., LTD.
    Inventors: Gang Yang, Lei Xu, Huie Yang, En Jiang, Jianping Fan, Xintang Zhao, Changhua Zeng, Wenqing Zhang, Yunlong Lei, Zhong Li, Shukang Chen
  • Patent number: 9090529
    Abstract: The present invention has an object of providing a method for producing 1,2-dichloro-3,3,3-trifluoropropene by a vapor-phase reaction easily and in an industrial scale. A method for producing 1,2-dichloro-3,3,3-trifluoropropene of the present invention includes putting 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane with an activated carbon catalyst in a vapor phase. According to the present invention, 1,2-dichloro-3,3,3-trifluoropropene is produced in an industrial scale at a high yield by use of 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane, which is available at low cost, as a material.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: July 28, 2015
    Assignee: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Yoshio Nishiguchi, Satoru Okamoto, Fuyuhiko Sakyu
  • Patent number: 9079819
    Abstract: A production method of cis-1,3,3,3-tetrafluoropropene according to the present invention includes the steps of: subjecting 1,1,1,3,3-pentafluoropropane to dehydrofluorination to form a reaction mixture (A) containing cis-1,3,3,3-tetrafluoropropene, trans-1,3,3,3-tetrafluoropropene and unreacted 1,1,1,3,3-pentafluoropropane; distilling the reaction mixture (A) to separate the trans-1,3,3,3-tetrafluoropropene from the reaction mixture (A) and collect a reaction mixture (B) containing the cis-1,3,3,3-tetrafluoropropene and the 1,1,1,3,3-pentafluoropropane; and reacting the reaction mixture (B) with a base and thereby obtaining the cis-1,3,3,3-tetrafluoropropene from the reaction mixture (B). This production method enables efficient production of high-purity cis-1,3,3,3-tetrafluoropropene and thus has industrial advantages.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: July 14, 2015
    Assignee: Central Glass Company, Limited
    Inventors: Satoshi Yoshikawa, Satoru Okamoto, Yoshio Nishiguchi, Fuyuhiko Sakyu
  • Patent number: 9040760
    Abstract: This invention provides a process for producing 2,3,3,3-tetrafluoropropene, the process comprising: (1) a first reaction step of reacting hydrogen fluoride with at least one chlorine-containing compound selected from the group consisting of a chloropropane represented by Formula (1): CClX2CHClCH2Cl, wherein each X is the same or different and is CI or F, a chloropropene represented by Formula (2): CClY2CCl?CH2, wherein each Y is the same or different and is CI or F, and a chloropropene represented by Formula (3): CZ2?CClCH2Cl, wherein each Z is the same or different and is CI or F in a gas phase in the absence of a catalyst while heating; and (2) a second reaction step of reacting hydrogen fluoride with a reaction product obtained in the first reaction step in a gas phase in the presence of a fluorination catalyst while heating. According to the process of this invention, 2,3,3,3-tetrafluoropropene (HFO-1234yf) can be obtained with high selectivity, and catalyst deterioration can be suppressed.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: May 26, 2015
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuhiro Takahashi, Yuzo Komatsu, Akinori Ueda
  • Patent number: 9029617
    Abstract: The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides several routes for forming HCFO-1233zd from 3,3,3-trifluoropropene (FC-1234zf).
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: May 12, 2015
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, David Nalewajek, Andrew Joseph Poss, Yian Zhai
  • Patent number: 9018428
    Abstract: Disclosed is a reactor and agitator useful in a high pressure process for making 1-chloro-3,3,3-trifluoropropene (1233zd) from the reaction of 1,1,1,3,3-pentachloropropane (240fa) and HF, wherein the agitator includes one or more of the following design improvements: (a) double mechanical seals with an inert barrier fluid or a single seal; (b) ceramics on the rotating faces of the seal; (c) ceramics on the static faces of seal; (d) wetted o-rings constructed of spring-energized Teflon and PTFE wedge or dynamic o-ring designs; and (e) wetted metal surfaces of the agitator constructed of a corrosion resistant alloy.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 28, 2015
    Assignee: Honeywell International Inc.
    Inventor: Stephen A. Cottrell
  • Patent number: 9012702
    Abstract: A dehydrochlorination process is disclosed. The process involves contacting RfCFClCH2X with a catalyst in a reaction zone to produce a product mixture comprising RfCF?CHX, wherein said catalyst comprises MY supported on carbon, and wherein Rf is a perfluorinated alkyl group, X ?H, F, Cl, Br or I, M=K, Na or Cs, and Y?F, Cl or Br.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 21, 2015
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Xuehui Sun, Mario Joseph Nappa
  • Publication number: 20150105595
    Abstract: The present invention relates to an improved method for manufacturing 2-chloro-3,3,3,-trifluoropropene (HCFC-1233xf) by reacting 1,1,2,3-tetrachloropropene, 1,1,1,2,3-pentachloropropane, and/or 2,3,3,3-tetrachloropropene with hydrogen fluoride, in a vapor phase reaction vessel in the presence of a vapor phase fluorination catalyst and stabilizer. HCFC-1233xf is an intermediate in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf) which is a refrigerant with low global warming potential.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 16, 2015
    Inventors: Daniel C. Merkel, Hsueh S. Tung
  • Patent number: 9000241
    Abstract: The disclosure describes a process for dehalogenation of chlorofluorocompounds. The process comprises contacting a saturated chlorofluorocompound with hydrogen in the presence of a catalyst at a temperature sufficient to remove chlorine and/or fluorine substituents to produce a fluorine containing terminal olefin.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 7, 2015
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mario Joseph Nappa, Ekaterina N. Swearingen, Allen Capron Sievert, Xuehui Sun
  • Patent number: 9000239
    Abstract: The present invention provides processes for the production of HCFO-1233zd, 1-chloro-3,3,3-trifluoropropene, from the starting material, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf). In a first process, HCFO-1233zd is produced by the isomerization of HCFO-1233xf. In a second process, HCFO-1233zd is produced in a two-step procedure which includes (i) dehydrochlorination of HCFO-1233xf into trifluoropropyne; and (ii) hydrochlorination of the trifluoropropyne into HCFO-1233zd.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 7, 2015
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Publication number: 20150094432
    Abstract: The present invention relates to the preparation of trifluoroethylene (VF3 or TrFE) by hydrogenolysis of chlorotrifluoroethylene (CTFE) in the gaseous phase over a group VIII metal catalyst deposited on a support. This method can be used to obtain VF3 in an economical manner in conditions which minimize the risk of explosion of this molecule. Using a catalyst containing a group VIII metal and, more specifically, containing Pd deposited on a support and a specific series of steps of separation and purification makes it possible to obtain excellent CTFE conversion rates and high selectivity in VF3 at atmospheric pressure and at low temperatures.
    Type: Application
    Filed: February 22, 2013
    Publication date: April 2, 2015
    Applicant: ARKEMA FRANCE
    Inventors: Philippe Leduc, Thierry Lannuzel, Dominique Garrait, Serge Hub, Emmanuel Guiraud, Fabrice Domingues Dos Santos
  • Patent number: 8987532
    Abstract: Disclosed is a process for producing 1,2-dichloro-3,3,3-trifluoropropene, which is characterized by that 1-halogeno-3,3,3-trifluoropropene represented by the general formula [1]: (In the formula, X represents a fluorine atom, chlorine atom or bromine atom.) is reacted with chlorine in a gas phase in the presence of a catalyst. It is possible by this process to produce 1,2-dichloro-3,3,3-trifluoropropene in an industrial scale with good yield by using 1-halogeno-3,3,3-trifluoropropene, which is available with a low price, as the raw material.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: March 24, 2015
    Assignee: Central Glass Company, Limited
    Inventors: Satoru Okamoto, Yoshio Nishiguchi, Fuyuhiko Sakyu
  • Publication number: 20150080617
    Abstract: Disclosed is a method for preparing a metal fluoride catalyst as a dehydrofluorination catalyst having high activity under a mild condition using a trifluoroacetic acid solution with no use of HF gas having fluidity and corrosive property. Disclosed also is a dehydrofluorination method for preparing HFO-1225ye from HFP-236ea by using the catalyst with high efficiency.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 19, 2015
    Applicant: Korea Institute of Science and Technology
    Inventors: Hilman Hutama, Jeong-Myeong HA, Chang Soo KIM, Hong Gon KIM, Jae Wook CHOI, Dong Jin SUH, Hyun Joo LEE, Byoung Sung AHN
  • Publication number: 20150080618
    Abstract: A production method of cis-1,3,3,3-tetrafluoropropene according to the present invention includes the steps of: subjecting 1,1,1,3,3-pentafluoropropane to dehydrofluorination to form a reaction mixture (A) containing cis-1,3,3,3-tetrafluoropropene, trans-1,3,3,3-tetrafluoropropene and unreacted 1,1,1,3,3-pentafluoropropane; distilling the reaction mixture (A) to separate the trans-1,3,3,3-tetrafluoropropene from the reaction mixture (A) and collect a reaction mixture (B) containing the cis-1,3,3,3-tetrafluoropropene and the 1,1,1,3,3-pentafluoropropane; and reacting the reaction mixture (B) with a base and thereby obtaining the cis-1,3,3,3-tetrafluoropropene from the reaction mixture (B). This production method enables efficient production of high-purity cis-1,3,3,3-tetrafluoropropene and thus has industrial advantages.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 19, 2015
    Inventors: Satoshi Yoshikawa, Satoru Okamoto, Yoshio Nishiguchi, Fuyuhiko Sakyu
  • Patent number: RE46928
    Abstract: Provided are azeotropic and azeotrope-like compositions of 1,2,3,3,3-pentafluoropropene (HFO-1225ye) and water. Such azeotropic and azeotrope-like compositions are useful in isolating 1,2,3,3,3-pentafluoropropene from impurities during production. Azeotropes of the instant invention are similarly useful in final compositions or manufacturing final compositions, such as blowing agent, propellants, refrigerants, diluents for gaseous sterilization and the like.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: July 3, 2018
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Ryan Hulse, Haluk Kopkalli, Hang T. Pham