From Methane Or Halomethane Patents (Class 570/159)
  • Patent number: 11827831
    Abstract: To provide a fluid composition and a refrigerant composition having flammability suppressed; and an air conditioner in which restrictions in order to inhibit combustion of the refrigerant composition are reduced and it is thereby possible to omit or simplify measures for inhibiting combustion of the refrigerant composition. The fluid composition is either a composition (I) comprising at least one component (A) selected from the group consisting of alkanes, halogenated alkanes and alkenes and at least one component (B) selected from halogenated alkenes, or a composition (II) (excluding the composition (I)) comprising two or more ingredients (B) selected from halogenated alkenes. The fluid composition has a combustion inhibiting effect as defined by ?100×{(measured maximum burning velocity)?(estimated maximum burning velocity)}/(estimated maximum burning velocity), of at least 10%.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: November 28, 2023
    Assignees: AGC Inc., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Hidekazu Okamoto, Hiroki Hayamizu, Katsuya Ueno, Hirokazu Takagi, Masato Fukushima, Kenji Takizawa
  • Patent number: 10870613
    Abstract: The present invention provides an improved process for preparation of 2,3,3,3-tetrafluoropropene, wherein recyclization of the reaction by-products result in equilibrium between feed and outlet composition.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: December 22, 2020
    Assignee: SRF Limited
    Inventors: Jose George, Sunil Raj, Ambuj Mishra, Anurag Katiyar, Rajdeep Anand
  • Patent number: 10494320
    Abstract: The present invention concerns a method for producing for producing and purifying 2,3,3,3-tetrafluoro-1-propene (1234yf) from a first composition comprising 2,3,3,3-tetrafluoro-1-propene and chloromethane (40), said method comprising the steps of: (a) bringing said first composition into contact with at least one organic extractant in order to form a second composition; (b) extractive distillation of said second composition in order to form (i) a third composition comprising said organic extractant and chloromethane (40); and (ii) a stream comprising 2,3,3,3-tetrafluoro-1-propene (1234yf); (c) recovering and separating said third composition, preferably by distillation, in order to form a stream comprising said organic extractant and a stream comprising chloromethane (40).
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 3, 2019
    Assignee: Arkema France
    Inventors: Abdelatif Baba-Ahmed, Bertrand Collier, Dominique Deur-Bert, Laurent Wendlinger
  • Patent number: 9764999
    Abstract: Various compositions, including particularly aerosol compositions containing fluorinated olefins, including particularly 2,3,3,3-tetraluorpropene (HFO-1234yf), in a variety of applications are disclosed.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: September 19, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Rajiv R. Singh, Gary Knopeck
  • Patent number: 9315432
    Abstract: To provide an economically advantageous process for producing HFO-1234yf useful as a new refrigerant in sufficiently high yield by one reaction involving thermal decomposition. A process for producing HFO-1234yf and VdF from raw material containing R22, R40 and TFE, by a synthetic reaction involving thermal decomposition, which comprises (a) a step of supplying the R22, the R40 and the TFE to a reactor, as preliminarily mixed or separately, (b) a step of supplying a heat medium to the reactor, and (c) a step of bringing the heat medium in contact with the R22, the R40 and the TFE in the reactor to form the HFO-1234yf and the VdF.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: April 19, 2016
    Assignee: Asahi Glass Company, Limited
    Inventors: Shoji Furuta, Yu Takeuchi
  • Patent number: 9206096
    Abstract: To provide an economically advantageous process for producing industrially useful HFO-1234yf efficiently and in a sufficiently controlled state by one reaction involving thermal decomposition, by using readily available raw material. A process for producing 2,3,3,3-tetrafluoropropene from a raw material composition containing chlorodifluoromethane and chloromethane, by a synthetic reaction involving thermal decomposition, which comprises (a) a step of supplying the chlorodifluoromethane and the chloromethane to a reactor, as preliminarily mixed or separately, in such amounts that the chloromethane would be in a ratio of from 0.01 to 3 mol to 1 mol of the chlorodifluoromethane, (b) a step of supplying a heat medium to the reactor, and (c) a step of bringing the heat medium in contact with the chlorodifluoromethane and the chloromethane in the reactor to form the 2,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: December 8, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Shoji Furuta, Yu Takeuchi
  • Patent number: 9029616
    Abstract: The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides routes for HCFO-1233zd from inexpensive and commercially available trifluoromethane (HFC-23).
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: May 12, 2015
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Andrew Joseph Poss, David Nalewajek, Yian Zhai
  • Publication number: 20150045588
    Abstract: The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides routes for HCFO-1233zd from inexpensive and commercially available trifluoromethane (HFC-23).
    Type: Application
    Filed: July 14, 2014
    Publication date: February 12, 2015
    Inventors: Haridasan K. Nair, Andrew Joseph Poss, David Nalewajek, Yian Zhai
  • Patent number: 8936757
    Abstract: Apparatuses and processes are provided for stripping gaseous hydrocarbons from particulate material. One process comprises the step of contacting particles containing hydrocarbons with a stripping vapor in countercurrent flow to remove at least a portion of the hydrocarbons with the stripping vapor to form stripped particles. Contacting the particles includes advancing the particles down a sloping element of a structured packing toward a reinforcing rod that is disposed along a lower channel portion of the sloping element. The particles are advanced over the reinforcing rod. The particles are contacted with the stripping vapor that is rising up adjacent to the lower channel portion.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Erick D. Gamas-Castellanos, Mitchell John Kowalczyk
  • Patent number: 8933280
    Abstract: The present invention provides continuous, gas phase, free radical processes for the production of chlorinated and/or fluorinated propenes or higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes, wherein wherein at least a portion of any intermediate boiler by-products generated by the process are removed from the process.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 13, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Max Markus Tirtowidjojo, Patrick Ho-Sing Au-Yeung, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt Frederick Hirsekorn, Manfred Kokott, William J. Kruper, Jr., Thomas Ulrich Luebbe, Holger Meeman, Shirley Shaw Sexton, Peter Wenzel, Marcus Wobser
  • Publication number: 20150005537
    Abstract: To provide an economically advantageous process for producing industrially useful HFO-1234yf efficiently and in a sufficiently controlled state by one reaction involving thermal decomposition, by using readily available raw material. A process for producing 2,3,3,3-tetrafluoropropene from a raw material composition containing chlorodifluoromethane and chloromethane, by a synthetic reaction involving thermal decomposition, which comprises (a) a step of supplying the chlorodifluoromethane and the chloromethane to a reactor, as preliminarily mixed or separately, in such amounts that the chloromethane would be in a ratio of from 0.01 to 3 mol to 1 mol of the chlorodifluoromethane, (b) a step of supplying a heat medium to the reactor, and (c) a step of bringing the heat medium in contact with the chlorodifluoromethane and the chloromethane in the reactor to form the 2,3,3,3-tetrafluoropropene.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Shoji FURUTA, Yu Takeuchi
  • Publication number: 20150005538
    Abstract: To provide an economically advantageous process for producing HFO-1234yf useful as a new refrigerant in sufficiently high yield by one reaction involving thermal decomposition. A process for producing HFO-1234yf and VdF from raw material containing R22, R40 and TFE, by a synthetic reaction involving thermal decomposition, which comprises (a) a step of supplying the R22, the R40 and the TFE to a reactor, as preliminarily mixed or separately, (b) a step of supplying a heat medium to the reactor, and (c) a step of bringing the heat medium in contact with the R22, the R40 and the TFE in the reactor to form the HFO-1234yf and the VdF.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Shoji FURUTA, Yu TAKEUCHI
  • Publication number: 20140221655
    Abstract: The invention provides methods for substituting polyaromatic hydrocarbons or polyheterocyclic compounds with perfluoroalkyl groups. The methods can include heating a polyaromatic hydrocarbon substrate or a polyheterocyclic compound substrate in the presence of a perfluoroalkyl iodide, typically in a closed system, wherein the heating is sufficient to bring both the polyaromatic hydrocarbons or polyheterocyclic compound, and the perfluoroalkyl iodide, into the gas phase, thereby allowing the substrate to react with the perfluoroalkyl iodide in the gas phase to form polyaromatic hydrocarbons or polyheterocyclic compounds having one or more perfluoroalkyl substituents. The methods allow for the creation of versatile libraries of novel perfluoroalkyl-containing derivatives that can serve as important building blocks and active components in biomedical, electronic, and materials applications.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 7, 2014
    Applicant: Colorado State University Research Foundation
    Inventors: Steven S. Strauss, Olga V. Boltalina, Igor V. Kuvychko
  • Patent number: 8581012
    Abstract: The present invention provides continuous, gas phase, free radical processes for the production of chlorinated and/or fluorinated propenes or higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes, wherein wherein at least a portion of any intermediate boiler by-products generated by the process are removed from the process.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: November 12, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Max M. Tirtowidjojo, Patrick H. Au-Yeung, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt F. Hirsekorn, Manfred Kokott, William J. Kruper, Jr., Thomas U. Luebbe, Holger Meemann, Shirley S. Sexton, Peter Wenzel, Marcus Wobser
  • Patent number: 8581011
    Abstract: The present invention provides one-step processes for the production of chlorinated and/or fluorinated propenes. The processes provide good product yield with low, e.g., less than about 20%, or even less than 10%, concentrations of residues/by-products. Advantageously, the processes may be conducted at low temperatures than 500° C. so that energy savings are provided, and/or at higher pressures so that high throughputs may also be realized. The use of catalysts or initiators may provide additional enhancements to conversion rates and selectivity, as may adjustments to the molar ratio of the reactants.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: November 12, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Max M. Tirtowidjojo, Debashis Chakraborty, Juergen Eiffler, Kurt F. Hirsekorn, William J. Kruper, Jr.
  • Patent number: 8558041
    Abstract: The present invention provides isothermal multitube reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors utilize a feed mixture inlet temperature at least 20° C. different from a desired reaction temperature.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 15, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Max M. Tirtowidjojo, Hua Bai, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt F. Hirsekorn, Manfred Kokott, William J. Kruper, Jr., Thomas U. Luebbe, Avani M. Patel, Shirley S. Sexton, Peter Wenzel, Marcus Wobser
  • Patent number: 8383867
    Abstract: Disclosed is a method for producing fluorinated organic compounds, including hydrofluoropropenes, which preferably comprises converting at least one compound of formula (I): CF3CFnCHmXa-m??(I) to at least one compound of formula (II) CF3CZCHZ??(II). where each X is independently Cl, F, I or Br; each Z is independently H or F; n is 1 or 2; m is 1, 2 or 3, provided that when n is 1, m is 1 or 2; a is 2 or 3, and a-m?0. Certain embodiments include the step of reacting fluorinated C2 olefin, such as tetrafluoroethylene, with a Cl addition agent under conditions effective to produce a compound of formula (I).
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: February 26, 2013
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Rajesh K. Dubey, Rajiv R. Singh, George A. Shia
  • Patent number: 8088959
    Abstract: A process is disclosed for the conversion of fluorocarbons into fluorinated unsaturated compounds useful as monomers or other chemical precursors, such as C2H2F2. The process comprises reacting a hydrocarbon feed (20) arid a fluorocarbon feed (10) in a high temperature reactor (26), at sufficiently high temperature and sufficiently short resident time to form product mixture (28) having the fluorinated unsaturated compound as the major reaction product, and cooling (18) to a temperature sufficiently low to inhibit polymerisation of the unsaturated compound. The reaction product may then be processed by removal of higher molecular weight compounds (35) and acids (32) and optionally separated (44) into product components.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 3, 2012
    Assignee: Pacifitech Pty Limited
    Inventors: Eric Miles Kennedy, Bogdan Zygmunt Dlugogorski
  • Patent number: 8071826
    Abstract: A process for the preparation of 2,3,3,3-tetrafluoropropene (HFO-1234yf). HFO-1234yf is a refrigerant with low global warming potential. A process comprises a) reacting chlorotrifluoroethylene with a methyl halide to form an intermediate product stream; and b) reacting the intermediate product stream with hydrogen fluoride to thereby produce a result comprising 2,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: December 6, 2011
    Assignee: Honeywell International Inc.
    Inventor: Michael Van Der Puy
  • Publication number: 20110178343
    Abstract: The present invention provides one-step processes for the production of chlorinated and/or fluorinated propenes. The processes provide good product yield with low, e.g., less than about 20%, or even less than 10%, concentrations of residues/by-products. Advantageously, the processes may be conducted at low temperatures relative to conventional processes, so that energy savings are provided, and/or at higher pressures so that high throughputs may also be realized. The use of catalysts may provide enhancements to conversion rates and selectivity over those seen in conventional processes, as may adjustments to the molar ratio of the reactants.
    Type: Application
    Filed: April 20, 2010
    Publication date: July 21, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES, INC.
    Inventors: William J. Kruper, JR., Max M. Tirtowidjojo, Kurt F. Hirsekorn, Debashis Chakraborty, Juergen Eiffler
  • Publication number: 20110172471
    Abstract: A process is disclosed for the conversion of fluorocarbons into fluorinated unsaturated compounds useful as monomers or other chemical precursors, such as C2H2F2. The process comprises reacting a hydrocarbon feed (20) arid a fluorocarbon feed (10) in a high temperature reactor (26), at sufficiently high temperature and sufficiently short resident time to form product mixture (28) having the fluorinated unsaturated compound as the major reaction product, and cooling (18) to a temperature sufficiently low to inhibit polymerisation of the unsaturated compound. The reaction product may then be processed by removal of higher molecular weight compounds (35) and acids (32) and optionally separated (44) into product components.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicant: PACIFITECH PTY LIMITED
    Inventors: Eric Miles Kennedy, Bogdan Zygmunt Dlugogorski
  • Patent number: 7951982
    Abstract: Disclosed is a process for the preparation of fluorinated olefins. In preferred embodiments C3 olefins are produced by methods comprising contacting a compound of the Formula (I) C(R1aR2bR3c)??(I) with a compound of Formula (II) C(R1aR2bR3c)Cn(R1aR2bR3c)??II wherein R1a, R2b, and R3c are independently a hydrogen atom or a halogen selected from the group consisting of fluorine; chlorine, bromine and iodine, provided that the compound of formula I has at least three halogen substituents and that said at three halogen substituents comprise at least one fluorine; a, b and c are independently=0, 1, 2 or 3 and (a+b+c)=2 or 3; and n is 0 or 1, under conditions effective to produce at least one C3 fluoroolefin.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 31, 2011
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Hsueh S. Tung, Michael Van Der Puy, Robert C. Johnson, Daniel C. Merkel
  • Patent number: 7928272
    Abstract: A process is disclosed for the conversion of fluorocarbons into fluorinated unsaturated compounds useful as monomers or other chemical precursors, such as C2H2F2. The process comprises reacting a hydrocarbon feed (20) and a fluorocarbon feed (10) in a high temperature reactor (26), at sufficiently high temperature and sufficiently short resident time to form a reaction product mixture (28) having the fluorinated unsaturated compound as the major reaction product, and cooling (18) to a temperature sufficiently low to inhibit polymerization of the unsaturated compound. The reaction product may then be processed by removal of higher molecular weight compounds (35) and acids (32) and optionally separated (44) into product components.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: April 19, 2011
    Assignee: Pacifitech Pty Limited
    Inventors: Eric Miles Kennedy, Bogdan Zygmunt Dlugogorski
  • Publication number: 20110087055
    Abstract: The present invention provides continuous, gas phase, free radical processes for the production of chlorinated and/or fluorinated propenes or higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes, wherein wherein at least a portion of any intermediate boiler by-products generated by the process are removed from the process
    Type: Application
    Filed: October 8, 2010
    Publication date: April 14, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES
    Inventors: Max M. Tirtowidjojo, Patrick H. Au-Yeung, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt F. Hirsekorn, Manfred Kokott, William J. Kruper, JR., Thomas U. Luebbe, Holger Meeman, Shirley S. Sexton, Peter Wenzel, Marcus Wobser
  • Publication number: 20110083955
    Abstract: The present invention provides one-step processes for the production of chlorinated and/or fluorinated propenes. The processes provide good product yield with low, e.g., less than about 20%, or even less than 10%, concentrations of residues/by-products. Advantageously, the processes may be conducted at low temperatures than 500° C. so that energy savings are provided, and/or at higher pressures so that high throughputs may also be realized. The use of catalysts or initiators may provide additional enhancements to conversion rates and selectivity, as may adjustments to the molar ratio of the reactants.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 14, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES, INC
    Inventors: Max M. Tirtowidjojo, Debashis Chakraborty, Juergen Eiffler, Kurt F. Hirsekorn, William J. Kruper, JR.
  • Publication number: 20110087054
    Abstract: The present invention provides isothermal multitube reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors utilize a feed mixture inlet temperature at least 20° C. different from a desired reaction temperature.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 14, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES
    Inventors: Max M. Tirtowidjojo, Hua Bai, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt F. Hirsekorn, Manfred Kokott, William J. Kruper, JR., Thomas U. Luebbe, Avani M. Patel, Shirley S. Sexton, Peter Wenzel, Marcus Wobser
  • Publication number: 20090253946
    Abstract: A process for the preparation of 2,3,3,3-tetrafluoropropene (HFO-1234yf). HFO-1234yf is a refrigerant with low global warming potential. A process comprises a) reacting chlorotrifluoroethylene with a methyl halide to form an intermediate product stream; and b) reacting the intermediate product stream with hydrogen fluoride to thereby produce a result comprising 2,3,3,3-tetrafluoropropene.
    Type: Application
    Filed: February 24, 2009
    Publication date: October 8, 2009
    Inventor: Michael Van Der Puy
  • Patent number: 6924402
    Abstract: The present invention relates to a process for simultaneously preparing tetrafluoroethylene and hexafluoropropylene by the pyrolysis of difluorochloromethane mixed in the molar ratio of super-heated steam/pre-heated difluorochloromethane ([H2O]/[R22]) of 5-10 under the conditions such as a temperature of 730° C. to 760° C. and a residence time of 0.01 to 0.2 seconds, where the unreacted R22 and produced HFP are recycled and controlled to have an appropriate molar ratio of HFP/R22 of 0.01 to 0.1 in order to obtain a high yield of HFP. Thus, the pyrolysis process of the present invention is efficient for preparing TFE and HFP, which are essential monomers in fluorinated resin industry.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: August 2, 2005
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Jung Jo Jung, Yong Joon Lee, Sang Deuk Lee, Byoung Sung Ahn
  • Patent number: 6806396
    Abstract: The present invention relates to the co-pyrolysis of fluoroform and chlorodifluoromethane to form a mixture of useful fluoroolefin and saturated HFCs, notably, tetrafluoroethylene and hexafluoropropylene and CF3CHF2 and CF3CHFCF3, respectively.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: October 19, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Peter Gideon Gelblum, Velliyur Nott Mallikarjuna Rao, Charles Joseph Noelke, Norman Herron
  • Patent number: 6784327
    Abstract: A process for the production of a fluorinated organic compound, characterized by fluorinating an organic compound having a hydrogen atoms using IF5; and a novel fluorination process for fluorinating an organic compound having a hydrogen atoms by using a fluorinating agent containing IF5 and at least one member selected from the group consisting of acids, bases, salts and additives.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: August 31, 2004
    Assignee: Daikin Industries, Ltd.
    Inventors: Norihiko Yoneda, Tsuyoshi Fukuhara, Kazuhiro Shimokawa, Kenji Adachi, Satoshi Oishi
  • Publication number: 20030098228
    Abstract: There is provided a process for recovering tetrafluoroethylene wherein an amount of energy required to obtain TFE is reduced.
    Type: Application
    Filed: October 7, 2002
    Publication date: May 29, 2003
    Inventors: Shigeyuki Yoshii, Yukio Homoto
  • Patent number: 6534456
    Abstract: The invention relates to a plurality of liquid cleansing compositions having at least one lamellar phase which possesses a lotion-like appearance conveying signals of enhanced moisturization and at least one abutting isotropic phase having enhanced cleansing ability. The inventive composition is contained in a partitionless container in one embodiment conveying signals of a plurality of compositions. This multiphase composition is stable upon storage and is dispensed as a striped product where typically one stripe has primarily a cleansing function and a second stripe has primarily a moisturization function.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: March 18, 2003
    Assignee: Unilever Home and Personal Care USA, division of Conopco, Inc.
    Inventors: Christine Hayward, Rosa Paredes
  • Patent number: 6518467
    Abstract: A method of producing hydrofluorocarbons and/or hydrochlorofluorocarbons by using halogenated alkanes as a principal reactant. Generally, the method comprises the step of: (a) reacting a starting halogenated alkane corresponding to the formula (I): H3C—CX3  (I) wherein X is independently fluorine or chlorine, with a hydrohalocarbon adduct in the presence of a catalyst to form a hydrofluorocarbon and/or hydrochlorofluorocarbon.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: February 11, 2003
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Michael Van Der Puy
  • Publication number: 20020087038
    Abstract: The present invention relates to a process for preparing hexafluoropropylene(CF3CF=CF2, HFP) from the pyrolysis of trifluoromethane(CHF3, R23) and tetrafluoroethylene(C2F4, TFE) and more particularly, to the process for preparing hexafluoropropylene from the pyrolysis of an admixture of R23 and TFE mixed in an appropriate molar ratio at below 900 which is lower than the conventional reaction temperature and longer residence time, after investigating the pyrolysis reaction of R23 and TFE by the computer simulation. The process for preparing HFP is performed by carefully controlling reaction temperature with heat balance resulted from an endothermic pyrolysis of R23 and an exothermic dimerization of TFE to prevent from carbon formation, recycling unreacted R23 and TFE in the product separated and purified from distillation column, adding fresh R23 additionally to keep an appropriate molar ratio of R23 and TFE, to improve a total yield of HFP and to minimize heat supply from outside.
    Type: Application
    Filed: March 30, 2001
    Publication date: July 4, 2002
    Inventors: Dong J. Moon, Hong G. Kim, Byoung S. Ahn, Moon J. Chung, Young S. Kwon
  • Patent number: 6403848
    Abstract: The present invention relates to a process for preparing hexafluoropropylene(CF3CF═CF2, HFP) from the pyrolysis of trifluoromethane(CHF3, R23) and tetrafluoroethylene(C2F4, TFE) and more particularly, to the process for preparing hexafluoropropylene from the pyrolysis of an admixture of R23 and TFE mixed in an appropriate molar ratio at below 900 which is lower than the conventional reaction temperature and longer residence time, after investigating the pyrolysis reaction of R23 and TFE by the computer simulation. The process for preparing HFP is performed by carefully controlling reaction temperature with heat balance resulted from an endothermic pyrolysis of R23 and an exothermic dimerization of TFE to prevent from carbon formation, recycling unreacted R23 and TFE in the product separated and purified from distillation column, adding fresh R23 additionally to keep an appropriate molar ratio of R23 and TFE, to improve a total yield of HFP and to minimize heat supply from outside.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: June 11, 2002
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Hong Gon Kim, Byoung Sung Ahn, Moon Jo Chung, Young Soo Kwon
  • Patent number: 6025532
    Abstract: In order to manufacture pentafluoroethane (F125) and/or 1,1,1,2,3,3,3-haptafluoropropane (F227ea), a trifluoromethane gas stream is subjected to pyrolysis and then the mixture of gases which result from this pyrolysis is brought into contact with a fluorination catalyst.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: February 15, 2000
    Assignee: Elf Atochem S.A.
    Inventors: Jean-Marc Sage, Eric Lacroix, Philippe Bonnet, Eric Jorda
  • Patent number: 5910615
    Abstract: A process is disclosed for producing 1,1,1,3,3,3-hexafluoropropane and/or 1,1, 1,3,3-pentafluoropropene from (CF.sub.3).sub.2 CHCOOH and/or its water soluble salts. The process involves providing a mixture containing water and such carboxy compound(s) which has a pH of less than about 4, and reacting the mixture at a temperature of at least about 75.degree. C. Certain ether compounds may be included in the mixture along with (CF.sub.3).sub.2 CHCOOH and/or its water soluble salts. The reaction of the carboxy (and optionally ether) compound(s) with water may be employed in connection with a process for producing tetrafluoroethylene and/or hexafluoropropylene by pyrolysis, where by-product perfluoroisobutylene is reacted with water (and optionally an alkanol) to produce (CF.sub.3).sub.2 CHCOOH (and optionally one or more ether compounds).
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: June 8, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Scott C. Jackson, Paul Raphael Resnick, Steven H. Swearingen
  • Patent number: 5672784
    Abstract: In the process of pyrolyzing chlorodifluoromethane to form tetrafluoroethylene, yield is improved by having a controlled concentration of perfluorocyclobutane in the feed to pyrolysis.
    Type: Grant
    Filed: May 6, 1996
    Date of Patent: September 30, 1997
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Patrick Michael Murphy, Henry Max Schleinitz, David John Van Bramer
  • Patent number: 5594159
    Abstract: A process is disclosed for producing 1,1,1,3,3,3-hexafluoropropane and/or 1,1,1,3,3-pentafluoropropene from (CF.sub.3).sub.2 CHCOOH and/or its water soluble salts. The process involves providing a mixture containing water and such carboxy compound(s) which has a pH of less than about 4, and reacting the mixture at a temperature of at least about 75.degree. C. Certain ether compounds may be included in the mixture along with (CF.sub.3)2 CHCOOH and/or its water soluble salts. The reaction of the carboxy (and optionally ether) compound(s) with water may be employed in connection with a process for producing tetrafluoroethylene and/or hexafluoropropylene by pyrolysis, where by-product perfluoroisobutylene is reacted with water (and optionally an alkanol) to produce (CF.sub.3).sub.2 CHCOOH (and optionally one or more ether compounds).
    Type: Grant
    Filed: April 13, 1995
    Date of Patent: January 14, 1997
    Assignee: E I Du Pont De Nemours and Company
    Inventors: Scott C. Jackson, Paul R. Resnick, Steven H. Swearingen
  • Patent number: 5364990
    Abstract: A preparation of perfluoroolefins from fluoroform is described in which the fluoroform is pyrolyzed in a flame submerged in water in which the water acts as the walls of a reaction vessel.
    Type: Grant
    Filed: January 13, 1994
    Date of Patent: November 15, 1994
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jack Hegenbarth, Norman A. Street
  • Patent number: 5110996
    Abstract: Production of vinylidene fluoride by reacting dichlorodifluoromethane with methane in a heated reactor element containing a non-metallic packing material which is stable at the operating temperatures of the process, wherein the reactor element subjects the gaseous reactants to a temperature within the range 500.degree. C. to 1200.degree. C. and wherein the calculated residence time for the gaseous reactants in the reaction zone is within the range of from 0.1 to 10.0 seconds.
    Type: Grant
    Filed: October 17, 1988
    Date of Patent: May 5, 1992
    Assignee: Imperial Chemical Industries PLC
    Inventor: Derek W. Edwards
  • Patent number: 4973773
    Abstract: Preparation of high yields of tetrafluoroethylene by preferably contacting pentafluoroethane and/or trifluoromethane with hot gas, preferably argon (.gtoreq.2000.degree. K.) followed by rapid cooling of the reaction mixture, in less than one second, i.e., 0.001 to 0.1 second, to a temperature .gtoreq.800.degree. K.
    Type: Grant
    Filed: March 21, 1989
    Date of Patent: November 27, 1990
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Brian S. Malone
  • Patent number: 4849554
    Abstract: Production of tetrafluoroethylene and hexafluoropropylene in very high combined selectivity by pyrolysis of chlorodifluoromethane, optionally using gaseous diluent wherein the pyrolysis is effected under substantially isothermal and uniform conditions, the reaction temperature is within the range 750.degree.-980.degree. C. (preferably 800.degree.-980.degree. C.), and the gaseous residence time is within the range 1 to 50 milliseconds. A fluidphase electromagnetic induction reactor suitable for effecting the process is described.
    Type: Grant
    Filed: March 22, 1988
    Date of Patent: July 18, 1989
    Assignee: Imperial Chemical Industries plc
    Inventors: David L. Cresswell, Eric W. Sims