Substituting Fluorine For A Different Halogen Patents (Class 570/160)
  • Patent number: 11578022
    Abstract: The present invention pertains to a novel process of manufacturing the compound 2,3,3,3-tetrafluoropropene (1234yf). The compound 1234yf is the newest refrigerant with zero OPD (Ozone Depleting Potential) and zero GWP (Global Warming Potential). Thus, the invention relates to a process, involving a carbene generation route, for the manufacture of the compound 2,3,3,3-tetrafluoropropene (1234yf), of the compound 243db (2,3-dichloro-1,1,1-trifluoropropane), and optionally of the compound 2-chloro-1,1,1-trifluoropropene (1233xf) via carbene route and compound 243db (2,3-dichloro-1,1,1-trifluoropropane). The invention also relates to a process for the manufacture of the compound 2,3,3,3-tetrafluoropropene (1234yf), wherein the compound 243db (2,3-dichloro-1,1,1-trifluoropropane) serves as a starting material, for the manufacture of the compound 2,3,3,3-tetrafluoropropene (1234yf).
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: February 14, 2023
    Inventors: Changyue Zhou, Yong Wang
  • Patent number: 11339106
    Abstract: By fluorinating 1,2,3,3-tetrachloro-1-propene (1230xd) using hydrogen fluoride as a fluorinating agent, an efficient method for producing 1,2-dichloro-3,3-difluoro-1-propene (1232xd) is provided. Through this composition including 1232xd, there are also provided an environmentally friendly composition having excellent ability to dissolve various organic matters, a method for cleaning an article using the composition, a method for producing a lubricant solution using the composition, and a method for producing a component provided with a lubricant coating film.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: May 24, 2022
    Assignee: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Masamune Okamoto, Kei Matsunaga, Hideaki Imura, Shota Kawano
  • Patent number: 11261146
    Abstract: The present invention provides a process for preparation of 2,3,3,3-tetrafluoropropene and intermediates thereof. Owing to its low global warming potential and zero ozone depleting potential, it is been proposed as a replacement for existing chlorofluorocarbons and hydrofluorocarbons as refrigerant.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: March 1, 2022
    Assignee: SRF LIMITED
    Inventors: Sarathy Iyengar, Sridhar Jeyaraman, Karthic Natarajan, Nathan Rajamani, Rahul Saxena, Anurag Jain
  • Patent number: 11192837
    Abstract: A process for producing 2,3,3,3-tetrafluoropropene comprises i) in a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing hydrofluoric acid into contact, in the gas phase with at least one chlorinated compound in order to produce a stream A comprising 2-chloro-3,3,3-trifluoropropene, ii) in a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing the stream A into contact, in the gas phase in the presence of a catalyst, with hydrofluoric acid, to produce a stream B comprising 2,3,3,3-tetrafluoropropene. The temperature at the inlet of the fixed bed of one of said first or second reactors is between 300° C. and 400° C. The longitudinal temperature difference between the inlet and the outlet of the fixed bed of the reactor is less than 20° C.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 7, 2021
    Assignee: Arkema France
    Inventors: Bertrand Collier, Dominique Deur-Bert, Anne Pigamo, Audrey Riehl, Laurent Wendlinger
  • Patent number: 11186531
    Abstract: The present invention is to provide a method of producing an alkene that can further enhance the yield of an alkene, a reaction product, the method including bringing a gaseous halogenated alkane into contact with an alkaline aqueous solution in the presence of a phase-transfer catalyst. The objective above is achieved by a method of producing an alkene comprising bringing in the presence of a phase-transfer catalyst a liquid phase containing an alkaline aqueous solution and a water-insoluble solvent into contact with a gas phase containing a halogenated alkane that is soluble in the water-insoluble solvent.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: November 30, 2021
    Assignee: KUREHA CORPORATION
    Inventors: Kensuke Suzuki, Hiraku Tohmiya
  • Patent number: 11124467
    Abstract: Provided is a method for producing HCFC and/or HFC by subjecting a halogenated hydrocarbon and anhydrous hydrogen fluoride to a fluorination reaction in the presence of a catalyst, whereby efficient production can be achieved, without the need to stop the production every time catalytic activity is regenerated or recovered, and without making facilities excessive. Provided as a solution therefor is a method comprising (A) subjecting a halogenated hydrocarbon and anhydrous hydrogen fluoride to a fluorination reaction in at least two reactors each in the presence of a catalyst to thereby obtain HCFC and/or HFC; and (B) while halting the reaction in at least one of the reactors, obtaining HCFC and/or HFC by the reaction in at least one other reactor.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: September 21, 2021
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuhiro Takahashi, Shuuzou Kida, Tatsuya Takakuwa, Masanobu Nishitsuji
  • Patent number: 11059767
    Abstract: The present invention relates to a process for the gas-phase production of 2,3,3,3-tetrafluoropropene, comprising the steps: i) providing a composition A comprising 2-chloro-3,3,3-trifluoropropene and/or 2,3-dichloro-1,1,1-trifluoropropane and/or 2-chloro-1,1,1,2-tetrafluoropropane or a composition B comprising 1,1,1,2,2-pentafluoropropane and/or 1,1,1,2,3-pentafluoropropane; ii) placing said composition A in contact with hydrofluoric acid in the presence of a catalytic composition comprising a chromium-based catalyst or placing said composition B in contact with a catalytic composition comprising a chromium-based catalyst to produce a composition C comprising 2,3,3,3-tetrafluoropropene, characterized in that step ii) is performed at a temperature of between 310° C. and 450° C. and in that the temperature of step ii) is controlled so as not to exceed 450° C.; and when said catalyst is deactivated, the temperature of step ii) is increased in increments from 0.5° C. to 20° C.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: July 13, 2021
    Assignee: Arkema France
    Inventors: Bertrand Collier, Dominique Deur-Bert, Anne Pigamo, Laurent Wendlinger
  • Patent number: 11034635
    Abstract: The present invention relates to a process for producing 2,3,3,3-tetrafluoropropene, comprising the steps of: a) providing a stream A comprising at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1,1-trifluoropropane; b) in a reactor, bringing said stream A into contact with HF in the presence or absence of a fluorination catalyst in order to produce a stream B comprising 2,3,3,3-tetrafluoropropene; characterized in that the electrical conductivity of said stream A provided in step a) is less than 15 mS/cm.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: June 15, 2021
    Assignee: ARKEMA FRANCE
    Inventors: Laurent Wendlinger, Dominique Deur-Bert, Anne Pigamo
  • Patent number: 10947173
    Abstract: The present invention relates to a process for purifying a stream including 1,1,1,2,2-pentafluoropropane, comprising the steps of i) providing a stream A comprising 1,1,1,2,2-pentafluoropropane and at least one of the compounds selected from the group consisting of 2-chloro-1,1,1,3,3-pentafluoropropane, 1,2-dichloro-3,3,3-trifluoropropene, 2-chloro-1,3,3,3-tetrafluoropropene; ii) purification, preferably by distillation, of the stream A provided in i) in order to form a first stream A1 comprising 1,1,1,2,2-pentafluoropropane, preferably recovered at the top of the distillation column, and a second stream A2 comprising said at least one of the compounds selected from the group consisting of 2-chloro-1,1,1,3,3-pentafluoropropane, 1,2-dichloro-3,3,3-trifluoropropene, 2-chloro-1,3,3,3-tetrafluoropropene, preferably recovered at the bottom of the distillation column.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: March 16, 2021
    Assignee: Arkema France
    Inventors: Dominique Deur-Bert, Dominique Garrait, Anne Pigamo, Laurent Wendlinger
  • Patent number: 10927060
    Abstract: The present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the stages: i) in a first reactor, bringing 2-chloro-3,3,3-trifluoropropene into contact with hydrofluoric acid in the gas phase in the presence of a catalyst, in order to produce a stream A comprising 2,3,3,3-tetrafluoropropene, HF and unreacted 2-chloro-3,3,3-trifluoropropene; and ii) in a second reactor, bringing hydrofluoric acid into contact, in the gas phase in the presence or absence of a catalyst, with at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane and 1,1,2,3-tetrachloropropene, in order to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene, characterized in that the stream A obtained in stage i) feeds said second reactor used for stage ii); and in that stage i) is carried out at a temperature which is lower than or equal to the temperature at which stage ii) is carried out.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: February 23, 2021
    Assignee: Arkema France
    Inventors: Bertrand Collier, Dominique Deur-Bert, Anne Pigamo, Laurent Wendlinger
  • Patent number: 10766838
    Abstract: Disclosed is a process for producing highly pure chlorinated alkane in which a chlorinated alkene is contacted with chlorine in a reaction zone to produce a reaction mixture containing the chlorinated alkane and the chlorinated alkene, and extracting a portion of the reaction mixture from the reaction zone, wherein the molar ratio of chlorinated alkane:chlorinated alkene in the reaction mixture extracted from the reaction zone does not exceed 95:5.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: September 8, 2020
    Assignee: SPOLEK PRO CHEMICKOU A HUTNI VYROBU A.S.
    Inventors: Zdenek Ondrus, Pavel Kubicek, Karel Filas, Petr Sladek
  • Patent number: 10689316
    Abstract: The present invention provides a process for preparing 3,3,3-trifluoropropene (1243zf), the process comprising: (a)fluorinating CCl3CH2CH2CI (250fb) to produce a reaction product comprising CF3CH2CH2CI (253fb) in the liquid phase in a first reactor, using HF as the fluorinating agent; and (b)(i) dehydrohalogenating 253fb to produce 1243zf in the vapour phase in the presence of a catalyst in a second reactor; or (b)(ii) dehydrohalogenating 253fb to produce 1243zf in a second reactor, wherein the reaction product comprising 253fb produced in step (a) has subjected to one or more purification steps before step (b). The present invention also provides an azeotropic or near-azeotropic composition comprising HF and 253fb.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: June 23, 2020
    Assignee: MEXICAN FLUOR S.A. DE C.V.
    Inventors: Emma Jayne Hodgson, Claire Elizabeth McGuinness, Clive Robert Giddis, James Henry Murray, Clare Mary Skae, Gary Lloyd
  • Patent number: 10640438
    Abstract: The present invention concerns a method for preparing tetrafluoropropene utilising three reactors and comprising the steps of (a) implementing, in the first and second reactors, at least one step of reacting, in the gas phase, a compound B in the presence of hydrofluoric acid and a catalyst, in alternation with a step of regenerating the catalyst by bringing it into contact with a regeneration flow comprising an oxidising agent, (b) implementing, in the third reactor, a preliminary step of producing the compound B, in alternation with a step of regenerating the preliminary catalyst with a regeneration flow comprising an oxidising agent. The step of regenerating the preliminary catalyst in the third reactor is implemented in the absence of a step of reacting the compound B in the presence of hydrofluoric acid in said first and second reactors. The present invention also concerns a facility configured to implement the present method.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: May 5, 2020
    Assignee: Arkema France
    Inventors: Dominique Deur-Bert, Dominique Garrait, Anne Pigamo, Laurent Wendlinger
  • Patent number: 10633309
    Abstract: The present invention concerns a method for preparing tetrafluoropropene utilising three reactors each comprising a catalytic bed containing a catalyst or a preliminary catalyst, and comprising the implementation, separately in each of the reactors, of catalytic reactions or reactions regenerating the catalyst, the quantity of catalyst or preliminary catalyst in the catalytic bed of one of the reactors representing between 90% and 110% of the quantity of catalyst or preliminary catalyst contained in the catalytic bed of one of the other two reactors. The present invention also concerns a facility configured to implement the present method.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: April 28, 2020
    Assignee: ARKEMA FRANCE
    Inventors: Dominique Deur-Bert, Dominique Garrait, Anne Pigamo, Laurent Wendlinger
  • Patent number: 10590050
    Abstract: Disclosed is a method for co-producing various alkenyl halides and hydrofluoroalkanes: cis-1-chloro-3,3,3-trifluoropropene is introduced into a first reactor to carry out an isomerization reaction in the presence of a first catalyst, and the reaction product is rectified to obtain a product trans-1-chloro-3,3,3-trifluoropropene; and 30-70 wt % of trans-1-chloro-3,3,3-trifluoropropene and hydrogen fluoride are mixed and then introduced into a second reactor to carry out a reaction in the presence of a second catalyst to obtain a second reactor reaction product; the second reactor reaction product is introduced into a phase separator for separation, and the obtained organic phase is rectified to obtain the products trans-1,3,3,3-tetrafluoropropene, cis-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane. The invention has the advantages of simple process, high efficiency, high operation flexibility, less investment and low energy consumption.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: March 17, 2020
    Assignee: Zhejiang Quhua Fluor-Chemistry Co Ltd
    Inventors: Jiangyong Hong, Bo Yang, Yan Zhang, Guojun Yu, Yang Zhao, Hao Ouyang, Haitao Gong
  • Patent number: 10584270
    Abstract: Disclosed are compositions comprising HCFC-243db, HCFO-1233xf, HCFC-244db and/or HFO-1234yf and at least one additional compound. For the composition comprising 1234yf, the additional compound is selected from the group consisting of HFO-1234ze, HFO-1243zf, HCFC-243db, HCFC-244db, HFC-245cb, HFC-245fa, HCFO-1233xf, HCFO-1233zd, HCFC-253fb, HCFC-234ab, HCFC-243fa, ethylene, HFC-23, CFC-13, HFC-143a, HFC-152a, HFC-236fa, HCO-1130, HCO-1130a, HFO-1336, HCFC-133a, HCFC-254fb, CHF?CHCl, HFO-1141, HCFO-1242zf, HCFO-1223xd, HCFC-233ab, HCFC-226ba, and HFC-227ca. Compositions comprising HCFC-243db, HCFO-1233xf, and/or HCFC-244db are useful in processes to make HFO-1234yf. Compositions comprising HFO-1234yf are useful, among other uses, as heat transfer compositions for use in refrigeration, air-conditioning and heat pump systems.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: March 10, 2020
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Barry Asher Mahler, Mario Joseph Nappa
  • Patent number: 10508067
    Abstract: A process for the manufacture of halogenated olefins in semi-batch mode by dehydrohalogenation of halogenated alkanes in the presence of an aqueous base such as KOH which simultaneously neutralizes the resulting hydrogen halide. During the process, aqueous base is continuously added to the haloalkane which results in better yields, lower by-product formation and safer/more controllable operation.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 17, 2019
    Assignee: Honeywell International Inc.
    Inventors: George R. Cook, Haluk Kopkalli, Stephen A. Cottrell, Yuon Chiu, Peter Scheidle, Daniel C. Merkel
  • Patent number: 10487028
    Abstract: The invention relates to a method for producing 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) from at least one compound A selected from the group consisting of halopropane of formulae CX3CHClCH2X or CX3CFClCH3, or halopropenes of formula CQX2CCNCH2 and CX2?CClCH2X where X independently represents a fluorine or chlorine atom, characterised in that it comprises bringing said at least one compound A into contact with HF in a gaseous phase in the presence of a fluorination catalyst AlF3 or fluorine-bearing alumina in order to form a gaseous flow B comprising 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) et 3,3,3-trifluoropropene (HFO-1243zf).
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: November 26, 2019
    Assignee: Arkema France
    Inventors: Dominique Deur-Bert, Dominique Garrait, Anne Pigamo, Laurent Wendlinger
  • Patent number: 10427998
    Abstract: The present invention relates to compositions based on F-1230za (1,1,3,3-tetrachloropropene), or on a mixture consisting of F-1230za and F-1230zd (1,3,3,3-tetrachloropropene), the manufacture thereof, and also the use thereof in particular for the production of F-1233zdE (trans-1-chloro-3,3,3-trifluoropropene), F-1234zeE (trans-1,3,3,3-tetrafluoropropene), and/or F-245fa (1,1,1,3,3-pentafluoropropane).
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: October 1, 2019
    Assignee: ARKEMA FRANCE
    Inventors: Anne Pigamo, Bertrand Collier
  • Patent number: 10407369
    Abstract: The invention relates to a process for producing 2,3,3,3-tetrafluoropropene performed using a starting composition, comprising the steps of placing the starting composition in contact with HF, in the presence of a catalyst, to produce a composition A comprising 2,3,3,3-tetrafluoropropene (1234yf), intermediate products B consisting of 2-chloro-3,3,3-trifluoropropene (1233xf), 1,1,1,2,2-pentafluoropropane (245cb), and side products C consisting of E-1-chloro-3,3,3-trifluoro-1-propene (1233zdE), trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) and 1,1,1,3,3-pentafluoropropane (245fa); recovery of said composition A and purification thereof to form and recover a first stream comprising 2,3,3,3-tetrafluoropropene (1234yf) and one or more streams comprising 2-chloro-3,3,3-trifluoropropene (1233xf) and/or 1,1,1,2,2-pentafluoropropane (245cb); recycling into step a) of said one or more streams comprising 2-chloro-3,3,3-trifluoropropene (1233xf) and/or 1,1,1,2,2-pentafluoropropane (245cb).
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 10, 2019
    Assignee: ARKEMA FRANCE
    Inventors: Bertrand Collier, Dominique Deur-Bert, Joaquin Lacambra, Laurent Wendlinger
  • Patent number: 10407368
    Abstract: The present invention provides a method for producing a fluorine-containing haloolefin compound, the method easily inhibiting catalyst deactivation, and the method being capable of inhibiting a decrease in conversion and selectivity in the reaction, even when the reaction is continued for a long period of time. The present invention is a method for producing a fluorine-containing haloolefin compound via a step of fluorinating a C3 halogenated hydrocarbon. The method comprises a step of removing a stabilizer contained in the C3 halogenated hydrocarbon before the fluorination step.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: September 10, 2019
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Karube, Masayuki Kishimoto, Yuzo Komatsu
  • Patent number: 10173952
    Abstract: This invention provides a method for stably producing 2,3,3,3-tetrafluoropropene for a long period of time wherein unreacted materials are reused after distillation without liquid-liquid separation to suppress catalyst deactivation.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: January 8, 2019
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Tatsuya Takakuwa, Kazuhiro Takahashi, Daisuke Karube, Takehiro Chaki, Masayuki Kishimoto, Yuzo Komatsu
  • Patent number: 9359273
    Abstract: The present invention relates, in part, to the discovery that the presence of impurities in 1,1,2,3-tetrachloropropene (1230xa) results in catalyst instability during the fluorination of 1230xa to 2-chloro-3,3,3-trifluoropropene. By substantially removing the impurities, it is shown that the catalyst life is extended and results in improved operation efficiency of the fluorination reaction. Such steps similarly result in an overall improvement in the production of certain hydrofluoroolefins, particularly 2,3,3,3-tetrafluoropropene (1234yf).
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: June 7, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Selma Bektesevic, Daniel C. Merkel, Mario Joseph Nappa, Xuehui Sun, Hsueh Sung Tung, Haiyou Wang
  • Patent number: 9334207
    Abstract: Disclosed is an integrated manufacturing process to co-produce (E)1-chloro-3,3,3-trifluoropropene, (E)1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoro-propane starting from a single chlorinated hydrocarbon feed stock, 240fa. The process includes a combined liquid or vapor phase reaction/purification operation which directly produces (E)1-chloro-3,3,3-trifluoropropene (1233zd(E)) from 240fa. In the second liquid phase fluorination reactor 1233zd(E) is contacted with HF in the presence of catalyst to produce 1,1,1,3,3-pentafluoropropane (245fa) with high conversion and selectivity. A third reactor is used for dehydrofluorination of 245fa to produce (E)1,3,3,3-tetrafluoropropene (1234ze(E)) by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrofluorination catalyst. This operation may be followed by one or more purification processes to recover the 1234ze(E) product.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: May 10, 2016
    Assignee: Honeywell International Inc.
    Inventors: Konstantin A. Pokrovski, Daniel C. Merkel, Haiyou Wang, Hsueh Sung Tung, Ian Shankland
  • Patent number: 9315431
    Abstract: The present invention provides a process of fluorination in liquid phase in a solvent medium of a compound of formula (II) CX1X2=CZCX3X4X5, in which Z represents H, Cl or F, and each X1 represents independently hydrogen or chlorine, given that at least one of the X1 represents a chlorine.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: April 19, 2016
    Assignee: ARKEMA FRANCE
    Inventor: Anne Pigamo
  • Patent number: 9272968
    Abstract: This invention relates to a process for the suppression of 3,3,3-trifluoropropyne during the manufacture of fluorocarbons, fluoroolefins, hydrochlorofluoroolefins. More particularly, this invention is directed to a process to suppress the formation of 3,3,3-trifluoropropyne during processes for the manufacture of HCFO-1233zd(E), HCFO-1233zd(Z), HFO-1234ze(E), and/or HFO-1234ze(Z).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 1, 2016
    Assignee: Honeywell International Inc.
    Inventors: Haluk Kopkalli, Jeffrey A. Ball, Yuon Chiu, Hsueh Sung Tung, Konstantin A. Pokrovski, Daniel C. Merkel
  • Patent number: 9181153
    Abstract: The present invention provides a process for purifying a (E)-1-chloro-3,3,3-trifluoropropene composition (OF-1233E composition) in which at hydrogen fluoride and 2-chloro-1,1,1,3,3-pentafluoropropane are contained by bringing the (E)-1-chloro-3,3,3-trifluoropropene composition into contact with a weak base and a method for producing (E)-1-chloro-3,3,3-trifluoropropene composition by distilling the (E)-1-chloro-3,3,3-trifluoropropene composition obtained by such a purification process. This makes it possible to efficiently produce OF-1233E by removing the hydrogen fluoride from the OF-1233E composition, without generating any new component difficult to separate by distillation, and subjecting the resulting composition to distillation.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: November 10, 2015
    Assignee: Central Glass Company, Limited
    Inventors: Masamune Okamoto, Hideaki Imura, Naoto Takada, Tatsuya Hayasaka
  • Patent number: 9115044
    Abstract: Provided is a method for producing trans-1-chloro-3,3,3-trifluoropropene usable as a raw material for a foaming agent for a hard polyurethane foam, a solvent, a cleaning agent, a cooling medium, a working fluid, a propellant, a fluorinated resin, etc., the method involving a step of bringing cis-1-chloro-3,3,3-trifluoropropene into contact with a catalyst, wherein the catalyst includes a fluorinated metal oxide or a metal fluoride each produced by applying a fluorination treatment to a metal oxide containing one kind or two or more kinds of metals and containing aluminum atoms that make up 50 at. % or more of metal atoms to thereby substitute some or all of oxygen atoms in the metal oxide with fluorine atom(s), wherein the fluorinated metal oxide or the metal fluoride is a compound produced through a drying treatment at 400 to 600° C.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: August 25, 2015
    Assignee: Central Glass Company, Limited
    Inventors: Satoru Okamoto, Fuyuhiko Sakyu
  • Patent number: 9061956
    Abstract: The present invention relates to a method for manufacturing 2,3,3,3-tetrafluoropropene from halopropanes having the formula CX3CHCICH2X and halopropenes having the formulas CX3CCI?CH2CCIX2CCI?CH2 and CX2?CCICH2X, where X is independently a fluorine or chlorine atom. The invention specifically relates to a method including at least one step during which 2-chloro-3,3,3-trifluoro-1-propene, optionally mixed with at least one halopropane having the formula CX3CHCICH2X and/or at least one halopropene having the formulas CCIX2CCI?CH2 and CX2?CCICH2X, where X is independently a fluorine or chlorine atom, reacts with HF in the gaseous phase in the presence of a fluoridation catalyst at a temperature of between 320 and 420° C. with a molar ratio of oxygen to 2-chloro-3,3,3-trifluoro-1-propene of more than 1 but no more than 2.5, and a molar ratio of HF to the total amount of organic compounds to be reacted of between 5 and 40.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: June 23, 2015
    Assignee: Arkema France
    Inventors: Anne Pigamo, Nicolas Doucet, Laurent Wendlinger
  • Publication number: 20150148571
    Abstract: The present invention provides a process for producing a fluoroolefin by reacting, in a gas phase, a fluorinating agent and a chlorine-containing alkene or a chlorine-containing alkane in the presence of at least one catalyst selected from the group consisting of chromium oxide, at least part of which is crystallized, and fluorinated chromium oxide obtained by fluorinating the chromium oxide. According to the present process, a target fluoroolefin can be obtained at a high conversion rate of the starting material and with high selectivity.
    Type: Application
    Filed: July 10, 2013
    Publication date: May 28, 2015
    Inventors: Takehiro Chaki, Daisuke Karube, Masami Nishiumi
  • Patent number: 9035112
    Abstract: Disclosed is a process for producing 2-chloro-1,3,3,3-tetrafluoropropene (1224), including a first step of separating 2,3-dichloro-1,1,1,3-tetrafluoropropane (234da) into erythro form and threo form, and a second step of bringing the separated erythro form or threo form in contact with a base to obtain 2-chloro-1,3,3,3-tetrafluoropropene (1224). The first step is a step of separating 234da by distillation to achieve a separation into a fraction containing mainly erythro form and a fraction containing mainly threo form. In the second step, 1224 cis form is obtained from the erythro form, and 1224 trans form is obtained from the threo form. By this process, it is possible to selectively and efficiently produce cis form or trans form of 2-chloro-1,3,3,3-tetrafluoropropene (1224).
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: May 19, 2015
    Assignee: Central Glass Company, Ltd.
    Inventors: Hideaki Imura, Yoshio Nishiguchi, Masamune Okamoto, Tatsuya Hayasaka, Minako Oomura, Satoru Okamoto, Naoto Takada
  • Publication number: 20150105596
    Abstract: This invention relates to methods and systems for producing hydrochlorofluoro-olefins, particularly 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) by the fluorination of a starting material selected from the group consisting of 1,1,1,3,3-pentachloropropane (HCC-240fa), 1,1,3,3-tetrachloropropene, and 1,1,1,3-tetrachloropropene, alone or in combination, in an ionic liquid.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 16, 2015
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Publication number: 20150094502
    Abstract: The present invention provides a process of fluorination in liquid phase in a solvent medium of a compound of formula (II) CX1X2=CZCX3X4X5, in which Z represents H, Cl or F, and each X1 represents independently hydrogen or chlorine, given that at least one of the X1 represents a chlorine.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 2, 2015
    Applicant: ARKEMA FRANCE
    Inventor: Anne PIGAMO
  • Publication number: 20150080619
    Abstract: The invention concerns a method for producing 2,3,3,3-tetrafluoropropene comprising: a fluoridation reaction of a halopropane and/or halopropene into 2,3,3,3-tetrafluoropropene by means of hydrogen fluoride; the recovery of a gas stream resulting from the reaction; the cooling and partial condensation of the gas stream resulting from the reaction into a partially condensed stream; the separation of the partially condensed stream into a gas fraction and a liquid fraction; the compression of the gas fraction into a compressed gas fraction; the compression of the liquid fraction into a compressed liquid fraction; the distillation of the compressed gas fraction and compressed liquid fraction in order to provide a stream of 2,3,3,3-tetrafluoropropene, a stream of hydrochloric acid, and a stream of unreacted hydrogen fluoride. The invention also concerns an installation suitable for implementing said method.
    Type: Application
    Filed: January 11, 2013
    Publication date: March 19, 2015
    Inventors: Dominique Deur-Bert, Bertrand Collier, Laurent Wendlinger
  • Publication number: 20150057473
    Abstract: Provided is a process for preparing 2-chloro-3,3,3-trifluoropropene, wherein at least one chlorine-containing compound selected from the group consisting of chloropropane represented by formula (1): CX3CHClCH2Cl, wherein each X is the same or different and each represents Cl or F, chloropropene represented by formula (2): CClY2CCl?CH2, wherein each Y is the same or different and each represents Cl or F, and chloropropene represented by formula (3): CZ2?CClCH2Cl, wherein each Z is the same or different and each represents Cl or F, is used as a starting compound, and said at least one chlorine-containing compound is reacted with hydrogen fluoride while being heated in a gaseous state in the presence of 50 ppm or more of water relative to the chlorine-containing compound. The process of the present invention makes it possible to produce 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) in a manner that is easily conducted, economically advantageous, and suitable for industrial scale production.
    Type: Application
    Filed: March 21, 2013
    Publication date: February 26, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Masayuki Kishimoto, Yuzo Komatsu
  • Patent number: 8933280
    Abstract: The present invention provides continuous, gas phase, free radical processes for the production of chlorinated and/or fluorinated propenes or higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes, wherein wherein at least a portion of any intermediate boiler by-products generated by the process are removed from the process.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 13, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Max Markus Tirtowidjojo, Patrick Ho-Sing Au-Yeung, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt Frederick Hirsekorn, Manfred Kokott, William J. Kruper, Jr., Thomas Ulrich Luebbe, Holger Meeman, Shirley Shaw Sexton, Peter Wenzel, Marcus Wobser
  • Publication number: 20140364658
    Abstract: The present invention relates to a method for preparing fluorinated olefin compounds, in particular (chloro)fluoropropenes and (chloro)fluorobutenes, and specifically, the fluorinated compound 2,3,3,3-tetrafluoro-1-propene, including at least one step of fluorination, in the gaseous phase, with HF and at least one compound selected from the halopropenes having formula the CX3CHClCH2X and the halopropenes having the formulas CX3CC1?CH2, CClX2CCl?CH2 and CX2?CClCH2X, where X is, independently, a fluorine or chlorine atom, in the presence of oxygen and a fluorination catalyst suspended in a fluidized-bed reactor.
    Type: Application
    Filed: November 29, 2012
    Publication date: December 11, 2014
    Inventor: Jean-Luc Dubois
  • Patent number: 8907146
    Abstract: Disclosed is a process in which the fluorination of an organic reactant comprising 1,1,1,3,3-pentachloropropane (240fa) with anhydrous HF is conducted in the presence of an effective amount of a phase-transfer catalyst which facilitates the reaction between these incompatible reaction components to produce 1-chloro-3,3,3-trifluoro-propene (1233zd). Other organic reactant materials include 1,1,3,3-tetrachloropropene (HCO-1230za), 1,3,3,3-tetrachloropropene (HCO-1230zd), and various mixtures with or without 240fa.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: December 9, 2014
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Haiyou Wang, Daniel C. Merkel, Stephen A. Cottrell, Konstantin A. Pokrovski, Ian Shankland
  • Publication number: 20140350312
    Abstract: Provided are a fluorination catalyst for preparing 2,3,3,3-tetrafluoropropene and a method using the catalyst for preparing 2,3,3,3-tetrafluoropropene. The catalyst has the following structural formula: Crx(Y,Z)0.005-0.5O0.1-10F1.0-3.0, where Y is one or a combination of two or more among Al, Zn, and Mg, and where Z is a rare earth element having an oxygen-storing/releasing function. The catalyst has in preparing 2,3,3,3-tetrafluoropropene the advantages of increased raw material conversion rate, great product selectivity, and extended catalyst service life.
    Type: Application
    Filed: September 11, 2012
    Publication date: November 27, 2014
    Applicant: SINOCHEM LANTIAN CO., LTD.
    Inventors: Gang Yang, Lei Xu, Huie Yang, En Jiang, Jianping Fan, Xintang Zhao, Changhua Zeng, Wenqing Zhang, Yunlong Lei, Zhong Li, Shukang Chen
  • Patent number: 8889925
    Abstract: The present invention provides a process of fluorination in liquid phase in a solvent medium of a compound of formula (II) CX1X2?CZCX3X4X5, in which Z represents H, Cl or F, and each X1 represents independently hydrogen or chlorine, given that at least one of the X1 represents a chlorine.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 18, 2014
    Assignee: Arkema France
    Inventor: Anne Pigamo
  • Publication number: 20140316170
    Abstract: The present invention relates, in part, to the discovery that the presence of impurities in 1,1,2,3-tetrachloropropene (1230xa) results in catalyst instability during the fluorination of 1230xa to 2-chloro-3,3,3-trifluoropropene. By substantially removing the impurities, it is shown that the catalyst life is extended and results in improved operation efficiency of the fluorination reaction. Such steps similarly result in an overall improvement in the production of certain hydrofluoroolefins, particularly 2,3,3,3-tetrafluoropropene (1234yf).
    Type: Application
    Filed: October 11, 2012
    Publication date: October 23, 2014
    Inventors: Selma BEKTESEVIC, Daniel C. MERKEL, Mario Joseph NAPPA, Xuehui SUN, Hsueh Sung TUNG, Haiyou WANG
  • Publication number: 20140316171
    Abstract: The invention relates to a process for manufacturing 1,1,1,2-tetrafluoropropene (1234yf, CF3-CF?CH2) from 1,1,3,3-tetrachlororopropene (1230za, CCl2CH—CHCl2) and/or 1,1,1,3,3-pentachloropropane (240fa, CCl3CH2CHCl2). The process comprises a step of isomerization of 1,1,3,3-tetrafluoropropene (1230za) to 1,1,2,3-tetrachloropropene (1230xa) followed by conversion of the 1,1,2,3-tetrachloropropene (1230xa) to 1,1,1,2-tetrafluoropropene (1234yf) via a hydrofluorination process.
    Type: Application
    Filed: January 21, 2014
    Publication date: October 23, 2014
    Applicant: Arkema Inc.
    Inventors: Maher Y. ELSHEIKH, Philippe Bonnet, John A. Wismer
  • Publication number: 20140309463
    Abstract: The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting re-agents, particularly, 1,1,2,3-tetrachloropropene (1230xa), oligomerization/polymerization of such starting reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that providing one or more organic co-feed to the fluooelefin starting stream reduces such oligomerization/polymerization and improves catalystic stability.
    Type: Application
    Filed: November 2, 2012
    Publication date: October 16, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Selma Bektesevic, Daniel C. Merkel, Mario Joseph Nappa, Xuehui Sun, Hsueh Sung Tung, Haiyou Wang
  • Patent number: 8859829
    Abstract: The present invention relates in part to a method of stabilizing chloropropenes, such as 1,1,2,3-tetrachloropropene, otherwise known to decompose and degrade, and to the resulting stabilized chloropropene, using a morpholine compound and/or a trialkyl phosphate compound as defined herein. Such stabilized chloropropenes are useful in the manufacture of hydrofluoroolefins such as 2,3,3,3-tetrafluoroprop-1-ene (1234yf).
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 14, 2014
    Assignee: Honeywell International Inc.
    Inventors: Haluk Kopkalli, Haiyou Wang, Hsueh Sung Tung, Daniel C. Merkel
  • Publication number: 20140303412
    Abstract: This invention provides a process for producing a fluoroolefin comprising reacting, in a vapor phase, a fluorinating agent and a chlorine-containing alkene or a chlorine-containing alkane in the presence of at least one catalyst selected from the group consisting of chromium oxide containing a Group 5 element and fluorinated chromium oxide containing a Group 5 element. According to the process of the present invention, the target fluoroolefin can be obtained with high starting material conversion and good selectivity.
    Type: Application
    Filed: January 24, 2013
    Publication date: October 9, 2014
    Inventors: Daisuke Karube, Takehiro Chaki, Masami Nishiumi, Takashi Shibanuma, Masashi Arai
  • Publication number: 20140296585
    Abstract: The present invention relates to a method for separating a composition containing 2,3,3,3-tetrafluoropropene and hydrofluoric acid, and for recovering the thus-separated 2,3,3,3-tetrafluoropropene and hydrofluoric acid. The invention also relates to a method for manufacturing and purifying 2,3,3,3-tetrafluoropropene using a hydrofluorination reaction of the saturated or unsaturated compound having three carbon atoms and including at least one chlorine atom in the presence of a fluorination catalyst.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 2, 2014
    Inventors: Dominique Deur-Bert, Bertrand Collier
  • Publication number: 20140275647
    Abstract: The invention relates to a process to prepare tetrahalopropenes, such as 2-chloro-3,3,3-trifluoropropene (1233xf). The process comprises atomizing a feed material, such as 1,1,2,3-tetrachloropropene (1230xa) and the like, and mixing it with superheated HF to form a vaporized composition of feed material and HF with substantially instantaneous contact with a vapor phase fluorination catalyst. The invention extends catalyst life and forestalls catalyst deactivation.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Haiyou Wang, Haluk Kopkalli, Yuon Chiu
  • Publication number: 20140275652
    Abstract: The invention relates to a separation process whereby 2-chloro-3,3,3-trifluoropropene (1233xf) is separated from a mixture containing other fluorinated organics and high boiling materials such as dimers using azeotropes of HF formed by adding appropriate amounts to the mixture which facilitate separation by, e.g. distillation.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Selma Bektesevic, Daniel C. Merkel, Hsueh Sung Tung, Konstantin A. Pokrovski
  • Publication number: 20140275653
    Abstract: The present invention relates to a method for manufacturing 2,3,3,3-tetrafluoropropene from halopropanes having the formula CX3CHCICH2X and halopropenes having the formulas CX3CCI?CH2CCIX2CCI?CH2 and CX2?CCICH2X, where X is independently a fluorine or chlorine atom. The invention specifically relates to a method including at least one step during which 2-chloro-3,3,3-trifluoro-1-propene, optionally mixed with at least one halopropane having the formula CX3CHCICH2X and/or at least one halopropene having the formulas CCIX2CCI?CH2 and CX2?CCICH2X, where X is independently a fluorine or chlorine atom, reacts with HF in the gaseous phase in the presence of a fluoridation catalyst at a temperature of between 320 and 420° C. with a molar ratio of oxygen to 2-chloro-3,3,3-trifluoro-1-propene of more than 1 but no more than 2.5, and a molar ratio of HF to the total amount of organic compounds to be reacted of between 5 and 40.
    Type: Application
    Filed: September 20, 2012
    Publication date: September 18, 2014
    Inventors: Anne Pigamo, Nicolas Doucet, Laurent Wendlinger
  • Publication number: 20140275650
    Abstract: The present invention relates in part to a method of stabilizing chloropropenes, such as 1,1,2,3-tetrachloropropene, otherwise known to decompose and degrade, and to the resulting stabilized chloropropene, using a morpholine compound and/or a trialkyl phosphate compound as defined herein. Such stabilized chloropropenes are useful in the manufacture of hydrofluoroolefins such as 2,3,3,3-tetrafluoroprop-1-ene (1234yf).
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haluk KOPKALLI, Haiyou WANG, Hsueh SUNG TUNG, Daniel C. MERKEL