Antimony Halide Containing Catalyst Patents (Class 570/167)
  • Patent number: 11572326
    Abstract: A method hydrofluorinates an olefin of the formula: RCX=CYZ to produce a hydrofluoroalkane of formula RCXFCHYZ or RCXHCFYZ, where X, Y, and Z are independently the same or different and are selected from the group consisting of H, F, Cl, Br, and C1-C6 alkyl which is partially or fully substituted with chloro or fluoro or bromo; and R is a C1-C6 alkyl which is unsubstituted or substituted with chloro or fluoro or bromo. The method includes reacting the olefin with HF in the vapor phase, in the presence of SbF5, at a temperature ranging from about ?30° C. to about 65° C. and compositions formed by the process.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: February 7, 2023
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Xuehui Sun, Mario Joseph Nappa, Karl Krause
  • Patent number: 10988422
    Abstract: The disclosure relates to a method for hydrofluorination of an olefin of the formula: RCX?CYZ to produce a hydrofluoroalkane of formula RCXFCHYZ or RCXHCFYZ, wherein X, Y, and Z are independently the same or different and are selected from the group consisting of H, F, Cl, Br, and C1-C6 alkyl which is partially or fully substituted with chloro or fluoro or bromo; and R is a C1-C6 alkyl which is unsubstituted or substituted with chloro or fluoro or bromo, comprising reacting the olefin with HF in the liquid-phase, in the presence of SbF5, at a temperature ranging from about ?30° C. to about 65° C. and compositions formed by the process.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: April 27, 2021
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Xuehui Sun, Mario Joseph Nappa, Karl Krause
  • Patent number: 10711343
    Abstract: A novel method, composition and storage and delivery container for using antimony-containing dopant materials are provided. The composition is selected with sufficient vapor pressure to flow at a steady, sufficient and sustained flow rate into an arc chamber as part of an ion implant process. The antimony-containing material is represented by a non-carbon containing chemical formula, thereby reducing or eliminating the introduction of carbon-based deposits into the ion chamber. The composition is stored in a storage and delivery vessel under stable conditions, which includes a moisture-free environment that does not contain trace amounts of moisture. The storage and delivery container is specifically designed to allow delivery of high purity, vapor phase antimony-containing dopant material at a steady, sufficient and sustained flow rate.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: July 14, 2020
    Assignee: Praxair Technology, Inc.
    Inventors: Aaron Reinicker, Ashwini K Sinha, Douglas C Heiderman
  • Patent number: 9938212
    Abstract: Disclosed is an integrated manufacturing process to co-produce (E) 1-chloro-3,3,3-trifluoropropene, (E) 1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoro-propane starting from a single starting feed material or a mixture of unsaturated hydrochlorocarbon feed materials comprising 1,1,1,3-tetrachloropropene and/or 1,1,3,3-tetrachloropropene. The process includes a combined liquid or vapor phase reaction/purification operation which directly produces (E) 1-chloro-3,3,3-trifluoro-propene (1233zd (E)) from these feed materials, which may also include 240fa. In the second liquid phase fluorination reactor 1233zd (E) is contacted with HF in the presence of catalyst to produce 1,1,1,3,3-pentafluoropropane (245fa) with high conversion and selectivity. A third reactor is used for dehydrofluorination of 245fa to produce (E) 1,3,3,3-tetrafluoropropene (1234ze (E)) by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrofluorination catalyst.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 10, 2018
    Assignee: Honeywell International Inc.
    Inventors: Konstantin A. Pokrovski, Daniel C. Merkel, Haiyou Wang, Hsueh Sung Tung
  • Patent number: 9452958
    Abstract: This invention provides a process for producing a fluoroolefin comprising reacting, in a vapor phase, a fluorinating agent and a chlorine-containing alkene or a chlorine-containing alkane in the presence of at least one catalyst selected from the group consisting of chromium oxide containing a Group 5 element and fluorinated chromium oxide containing a Group 5 element. According to the process of the present invention, the target fluoroolefin can be obtained with high starting material conversion and good selectivity.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 27, 2016
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Karube, Takehiro Chaki, Masami Nishiumi, Takashi Shibanuma, Masashi Arai
  • Patent number: 9334210
    Abstract: Provided are azeotropic or azeotrope-like mixtures of 1,1,3,3-tetrachloroprop-1-ene (HCO-1230za) and hydrogen fluoride. Such compositions are useful as feed stock in the production of HFC-245fa and HCFO-1233zd.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 10, 2016
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Konstantin A. Pokrovski, Haiyou Wang, Stephen A. Cottrell, Hang T. Pham
  • Patent number: 9222177
    Abstract: Provided are azeotropic or azeotrope-like mixtures of 1,3,3,3-tetrachloroprop-1-ene (HCO-1230zd) and hydrogen fluoride. Such compositions are useful as a feed stock in the production of HFC245fa and HCFO1233zd.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 29, 2015
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Konstantin A. Pokrovski, Haiyou Wang, Ryan Hulse, Hang T. Pham
  • Patent number: 9096489
    Abstract: The invention provides a process for preparing 3,3,3-trifluoropropene (1243zf), the process comprising contacting a compound of formula CX3CH2CH2X or CX3CH?CH2, with hydrogen fluoride (HF) in the presence of a zinc/chromia catalyst, wherein each X independently is F, Cl, Br or I, provided that in the compound of formula CX3CH?CH2, at least one X is not F.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 4, 2015
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventors: Andrew Paul Sharratt, Claire McGuinness
  • Patent number: 9051231
    Abstract: According to the first characteristic of the present invention, there is provided a production process for 1,3,3,3-tetrafluoropropene including: the first step of reacting 1,1,1,3,3-pentachloropropane with hydrogen fluoride thereby obtaining 1-chloro-3,3,3-trifluoropropene; and the second step of reacting 1-chloro-3,3,3-trifluoropropene obtained in the first step with hydrogen fluoride in a gaseous phase in the presence of a fluorination catalyst. According to the second characteristic of the present invention, there is provided a dehydration process including bringing 1,3,3,3-tetrafluoropropene containing at least water into contact with zeolite.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: June 9, 2015
    Assignee: Central Glass Company, Limited
    Inventors: Fuyuhiko Sakyu, Satoshi Yoshikawa, Satoru Okamoto, Yasuo Hibino, Yoshio Nishiguchi
  • Patent number: 9018428
    Abstract: Disclosed is a reactor and agitator useful in a high pressure process for making 1-chloro-3,3,3-trifluoropropene (1233zd) from the reaction of 1,1,1,3,3-pentachloropropane (240fa) and HF, wherein the agitator includes one or more of the following design improvements: (a) double mechanical seals with an inert barrier fluid or a single seal; (b) ceramics on the rotating faces of the seal; (c) ceramics on the static faces of seal; (d) wetted o-rings constructed of spring-energized Teflon and PTFE wedge or dynamic o-ring designs; and (e) wetted metal surfaces of the agitator constructed of a corrosion resistant alloy.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 28, 2015
    Assignee: Honeywell International Inc.
    Inventor: Stephen A. Cottrell
  • Patent number: 8916733
    Abstract: A process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of contacting 2-chloro-3,3,3-trifluoropropene with hydrogen fluoride in the presence of a catalyst having about 25 to about 99.9 mole percent antimony pentachloride and about 0.1 to about 75 mole percent of a metal of a Lewis acid under conditions sufficient to form the 2-chloro-1,1,1,2-tetrafluoropropane. There is a second process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of hydrofluorinating about 75 to about 99.9 mole percent 2-chloro-3,3,3-trifluoropropene and about 0.1 to about 25 mole percent of one or more other hydrocarbons having at least one chlorine atom in the presence of a catalyst of fluorinated antimony pentachloride under conditions sufficient to form the 2-chloro-1,1,1,2-tetrafluoropropane. There is yet another process for hydrofluorinating 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: December 23, 2014
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Robert C. Johnson, Hsueh Sung Tung
  • Patent number: 8889924
    Abstract: The present invention provides a simple three step process for the production of 1,3,3,3-tetrafluoropropene (HFO-1234ze). In the first step, carbon tetrachloride is added to vinyl fluoride to afford the compound CCl3CH2CHClF (HCFC-241fb). HCFC-241fb is then fluorinated with anhydrous HF to afford CF3CH2CHClF (HCFC-244fa) in the second step. Dehydrochlorination of HCFC-244fa, in the third step, affords the desired product, CF3CH?CHF (HFO-1234ze). Following similar chemistry, vinyl chloride may be used in place of vinyl fluoride.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: November 18, 2014
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Rajiv Ratna Singh, Andrew Joseph Poss, David Nalewajek
  • Patent number: 8889925
    Abstract: The present invention provides a process of fluorination in liquid phase in a solvent medium of a compound of formula (II) CX1X2?CZCX3X4X5, in which Z represents H, Cl or F, and each X1 represents independently hydrogen or chlorine, given that at least one of the X1 represents a chlorine.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 18, 2014
    Assignee: Arkema France
    Inventor: Anne Pigamo
  • Publication number: 20140303410
    Abstract: Disclosed is a process involving contacting a hydrohalobutane selected from the group consisting of CF2HCHClCH2CCl2H, CF3CHClCH2CCl2H, CF3CHClCH2CCl3, CF3CClHCHFCCl2H and CF3CClHCHFCCl3, with HF in a reaction zone in the presence of an antimony halide catalyst selected from SbCl5 and SbF5 to form a first product mixture containing a hydromonochlorofluorobutane. Also disclosed is a process involving contacting a hydrohalopentane selected from the group consisting of CF2HCHClCH2CX2CX3 and CF3CHClCH2CX2CX3, wherein each X is independently selected from the group consisting of F and Cl, and not all X are fluorines, with HF in a reaction zone in the presence of an antimony halide catalyst selected from SbCl5 and SbF5to form a first product mixture containing a hydromonochlorofluoropentane. A compound of the formula CF3CHClCH2CHF2 is also disclosed.
    Type: Application
    Filed: October 5, 2012
    Publication date: October 9, 2014
    Inventor: Ekaterina N. Swearingen
  • Publication number: 20140275646
    Abstract: The present process relates to a method for minimizing the formation of 1,1,1,2,2-pentafluoropropane in a liquid phase reaction of 2-chloro-3,3,3-trifluoropropene and HF in the presence of a hydrofluorination catalyst comprising: (a) reacting HF with sufficient amount of 2-chloro-3,3,3-trifluoropropene in the presence of a hydrofluorination catalyst under conditions effective to form 2-chloro-1,1,1,2-tetrafluoropropane, the hydrofluorination catalyst being present in sufficient amounts to catalyze said reaction and the 2-chloro-1,1,1,2-tetrafluoropropane being formed with both a conversion of greater than 80% and a 1,1,1,2,2-pentafluoropropane selectivity lower than 20%; and (b) maintaining the 2-chloro-1,1,1,2-tetrafluoropropane being formed with both a conversion of about 80% or more and a 1,1,1,2,2-pentafluoropropane selectivity of about 20% or less by adding said hydrofluorination catalyst to the reactor in small increments.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou WANG, Daniel C. MERKEL, Hsueh Sung TUNG, Haluk KOPKALLI
  • Publication number: 20140100393
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in the presence of a fluorination catalyst, where by using 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) of high purity, the need to add an oxidizing agent (typically chlorine) to keep the catalyst active can be avoided. The HCFC-244bb is then used as an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Application
    Filed: June 28, 2010
    Publication date: April 10, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert C. Johnson, Daniel C. Merkel
  • Publication number: 20140012047
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in a liquid phase reaction in the presence of hydrogen chloride and a liquid phase fluorination catalyst. The hydrogen chloride is added into the reaction from an external source at a pressure of about 100 psig or more. The HCFC-244bb is an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Application
    Filed: September 9, 2013
    Publication date: January 9, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: DANIEL C. MERKEL, STEPHEN A. COTTRELL, ROBERT C. JOHNSON
  • Patent number: 8541634
    Abstract: Disclosed are azeotropic and azeotrope-like mixtures of (Z)-1-chloro-3,3,3-trifluoropropene (1233zd(Z)) and hydrogen fluoride. Such compositions are useful as an intermediate in the production of 1233zd(Z). The latter compound is useful as a nontoxic, zero ozone depleting fluorocarbon useful as a solvent, blowing agent, refrigerant, cleaning agent, aerosol propellant, heat transfer medium, dielectric, fire extinguishing composition and power cycle working fluid.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: September 24, 2013
    Assignee: Honeywell International Inc.
    Inventors: Ryan Hulse, Hang T Pham
  • Patent number: 8426656
    Abstract: The disclosed integrated manufacturing process includes a combined liquid phase reaction and purification operation which directly produces trans-1-chloro-3,3,3-trifluoropropene and 3-chloro-1,1,1,3-tetrafluoropropane which is a precursor to the manufacture of trans-1,3,3,3-tetrafluoropropene. The mixture of co-products is easily separated by conventional distillation and 3-chloro-1,1,1,3-tetrafluoropropane is then dehydrochlorinated to produce trans-1,3,3,3-tetrafluoropropene by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrochlorination catalyst.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: April 23, 2013
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Robert Johnson, Hsueh Sung Tung, Haiyou Wang, Konstantin A. Pokrovski
  • Patent number: 8378158
    Abstract: Disclosed are azeotropic and azeotrope-like mixtures of (Z)-1-chloro-3,3,3-trifluoropropene (1233zd(Z)) and hydrogen fluoride. Such compositions are useful as an intermediate in the production of 1233zd(Z). The latter compound is useful as a nontoxic, zero ozone depleting fluorocarbon useful as a solvent, blowing agent, refrigerant, cleaning agent, aerosol propellant, heat transfer medium, dielectric, fire extinguishing composition and power cycle working fluid.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: February 19, 2013
    Assignee: Honeywell International Inc.
    Inventors: Ryan Hulse, Hang T. Pham
  • Patent number: 8324436
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: December 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 8247624
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 21, 2012
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20120203036
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Application
    Filed: November 5, 2008
    Publication date: August 9, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 8207383
    Abstract: The present invention provides a process for preparing 1234yf, comprising: (i) contacting 1233xf with hydrogen fluoride HF in gas phase in the presence of a fluorination catalyst under conditions sufficient to produce a reaction mixture; (ii) separating the reaction mixture into a first stream comprising HCl, 1234yf and a second stream comprising HF, unreacted 1233xf and 245cb; (iii) recycling at least a part of the second stream at least in part back to step (i).
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 26, 2012
    Assignee: Arkema France
    Inventors: Dominique Deur-Bert, Laurent Wendlinger, Anne Pigamo
  • Publication number: 20120059200
    Abstract: Disclosed is an integrated manufacturing process to co-produce (E)1-chloro-3,3,3-trifluoropropene, (E)1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoro-propane starting from a single chlorinated hydrocarbon feed stock, 240fa. The process includes a combined liquid or vapor phase reaction/purification operation which directly produces (E)1-chloro-3,3,3-trifluoropropene (1233zd(E)) from 240fa. In the second liquid phase fluorination reactor 1233zd(E) is contacted with HF in the presence of catalyst to produce 1,1,1,3,3-pentafluoropropane (245fa) with high conversion and selectivity. A third reactor is used for dehydrofluorination of 245fa to produce (E)1,3,3,3-tetrafluoropropene (1234ze(E)) by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrofluorination catalyst. This operation may be followed by one or more purification processes to recover the 1234ze(E) product.
    Type: Application
    Filed: August 29, 2011
    Publication date: March 8, 2012
    Inventors: Konstantin A. Pokrovski, Daniel C. Merkel, Haiyou Wang, Hsueh Sung Tung, Ian Shankland
  • Patent number: 8058486
    Abstract: A method for preparing 2,3,3,3-tetrafluoroprop-1-ene comprising (a) providing a starting composition comprising at least one compound having a structure selected from Formulae I, II and III: CX2?CCl—CH2X??(Formula I) CX3—CCl?CH2??(Formula II) CX3—CHCl—CH2X??(Formula III) wherein X is independently selected from F, Cl, Br, and I, provided that at least one X is not fluorine; (b) contacting said starting composition with a first fluorinating agent to produce a first intermediate composition comprising 2-chloro-3,3,3-trifluoropropene and a first chlorine-containing byproduct; (c) contacting said first intermediate composition with a second fluorinating agent to produce a second intermediate composition comprising 2-chloro-1,1,1,2-tetrafluoropropane and a second chlorine-containing byproduct; and (d) catalytically dehydrochlorinating at least a portion of said 2-chloro-1,1,1,2-tetrafluoropropane to produce a reaction product comprising 2,3,3,3-tetrafluoroprop-1-ene.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: November 15, 2011
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Konstantin A. Pokrovski, Selma Bektesevic, Robert C. Johnson, Haiyou Wang
  • Patent number: 8053613
    Abstract: A process is disclosed for making CH2ClCF2CClF2. The process involves reacting CH2ClF with CClF?CF2 in an addition reaction zone in the presence of an aluminum halide composition having a bulk formula of AlClxBryF3-x-y wherein the average value of x is 0 to 3, the average value of y is 0 to 3?x, provided that the average values of x and y are not both 0. Also disclosed is a process for making CH2FCF2CF3 that involves reacting the CH2ClCF2CClF2 with HF in a fluorination reaction zone in the presence of a fluorination catalyst. Also disclosed is a process for making CHF?CFCF3 that involves dehydrofluorinating the CH2FCF2CF3.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 8, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Allen Capron Sievert
  • Patent number: 8034984
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: October 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20100331583
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in the presence of a fluorination catalyst, where by using 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) of high purity, the need to add an oxidizing agent (typically chlorine) to keep the catalyst active can be avoided. The HCFC-244bb is then used as an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert C. Johnson, Daniel C. Merkel
  • Patent number: 7803973
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: September 28, 2010
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh Sung Tung
  • Patent number: 7786335
    Abstract: A process for the production of C2-C4 hydrofluorocarbon, such as 1,1,1,3,3-pentafluoropropane, by contacting a non-fluorinated hydrochlorocarbon with a fluorinating agent, such as hydrogen fluoride, in a liquid catalyst system preferably comprising fluorinated superacid catalyst prepared from SbF5, NbF5, TaF5 or TaF5/SnF4 and HF.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: August 31, 2010
    Assignee: Honeywell International Inc.
    Inventors: David E. Bradley, David Nalewajek, Robert L. Bell
  • Patent number: 7714177
    Abstract: Disclosed is a process for the synthesis of 1,3,3,3-tetrafluoropropene comprising: a) reacting a compound of the formula (I) CHFX2 with a compound of formula (II) CH2?CF2 to produce a reaction product comprising a compound of formula (III) CHXFCH2CXF2, wherein each X is independently selected from the group consisting of chlorine, bromine and iodine; and (b) exposing said compound of formula (III) to reaction conditions effective to convert said compound to 1,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: May 11, 2010
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Hsueh S. Tung, Michael Van Der Puy
  • Publication number: 20090312585
    Abstract: A process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of contacting 2-chloro-3,3,3-trifluoropropene with hydrogen fluoride in the presence of a catalyst having about 25 to about 99.9 mole percent antimony pentachloride and about 0.1 to about 75 mole percent of a metal of a Lewis acid under conditions sufficient to form the 2-chloro-1,1,1,2-tetrafluoropropane. There is a second process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of hydrofluorinating about 75 to about 99.9 mole percent 2-chloro-3,3,3-trifluoropropene and about 0.1 to about 25 mole percent of one or more other hydrocarbons having at least one chlorine atom in the presence of a catalyst of fluorinated antimony pentachloride under conditions sufficient to form the 2-chloro-1,1,1,2-tetrafluoropropane. There is yet another process for hydrofluorinating 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane.
    Type: Application
    Filed: June 15, 2009
    Publication date: December 17, 2009
    Inventors: Daniel C. Merkel, Robert C. Johnson, Hsueh Sung Tung
  • Publication number: 20090149681
    Abstract: A process for the production of C2-C4 hydrofluorocarbon, such as 1,1,1,3,3-pentafluoropropane, by contacting a non-fluorinated hydrochlorocarbon with a fluorinating agent, such as hydrogen fluoride, in a liquid catalyst system preferably comprising fluorinated superacid catalyst prepared from SbF5, NbF5, TaF5 or TaF5/SnF4 and HF.
    Type: Application
    Filed: November 3, 2008
    Publication date: June 11, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David E. Bradley, David Nalewajek, Robert L. Bell
  • Publication number: 20090124837
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 14, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 7348461
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: March 25, 2008
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Qian, Julie Sacarias
  • Patent number: 7345209
    Abstract: Disclosed is a process for the synthesis of 1,3,3,3-tetrafluoropropene that comprises, in one preferred embodiment, providing a compound of the formula CF3CH2CHFX, wherein X is a selected from the group consisting of chlorine, bromine and iodine, and exposing said compound to reaction conditions effective to convert said compound to 1,3,3,3-tetrafluoropropene. Other processes for forming 1,3,3,3-tetrafluoropropene are also disclosed.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 18, 2008
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Hsueh S. Tung, Michael Van Der Puy
  • Patent number: 7329786
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: February 12, 2008
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Chengping Chien, Julie Sacarias, Vimal Sharma
  • Patent number: 7319175
    Abstract: Catalysts such as antimony halides, which are useful in fluorination reactions involving hydrogen fluoride, may be reduced during the reaction and require regeneration. Regenerative oxidation is usually carried out by introducing elemental halogen, preferably fluorine or chlorine, into the reaction mixture. In accordance with the invention elemental halogen is prevented from coming into contact with starting materials or intermediate products which are reactive therewith. This is preferably achieved by withdrawing part of the reaction mixture from the reactor, mixing the withdrawn part with chlorine or fluorine in order to regenerate the catalyst, and thereafter returning the withdrawn part to the reactor.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: January 15, 2008
    Assignee: Solvay Fluor und Derivate GmbH
    Inventors: Max Braun, Carsten Brosch
  • Patent number: 7317071
    Abstract: Processes for producing a fluoromonomer from a fluoropolymer, among which one that can be carried out more simply is a process wherein thermal decomposition of a fluoropolymer is preformed by means of a rotary kiln (5) so as to produce a fluoromonomer, the process comprising feeding a fluoropolymer and steam (3) into a rotary kiln and heating the fluoropolymer.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: January 8, 2008
    Assignee: Daikin Industries, Ltd.
    Inventors: Takuya Ichida, Yukio Homoto
  • Patent number: 7312367
    Abstract: The invention provides an economic process for the manufacture of the hydrofluorocarbon 1,1,3,3,3-pentafluoropropene (HFC-1225zc). HFC-1225zc can be made from the dehydrochlorination of 1-chloro-1,1,3,3,3-pentafluoropropane (HCFC-235fa). Alternatively, HFC-1225zc can also be made from the dehydrofluorination of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). HFC-1225zc) is a compound that has the potential to be used as a low Global Warming Potential refrigerant, blowing agent, aerosol propellant, or solvent.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: December 25, 2007
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Daniel C. Merkel, Rajiv R. Singh
  • Patent number: 7241928
    Abstract: A liquid phase process is disclosed for producing halogenated alkane adducts of the formula CAR1R2CBR3R4 (where A, B, R1, R2, R3, and R4 are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR1R2?CR3R4 in a dinitrile or cyclic carbonate ester solvent which divides the reaction mixture into two liquid phases and in the presence of a catalyst system containing (i) at least one catalyst selected from monovalent and divalent copper; and optionally (ii) a promoter selected from aromatic or aliphatic heterocyclic compounds which contain at least one carbon-nitrogen double bond in the heterocyclic ring. When hydrochlorofluorocarbons are formed, the chlorine content may be reduced by reacting the hydrochlorofluorocarbons with HF. New compounds disclosed include CF3CF2CCl2CH2CCl3, CF3CCl2CH2CH2Cl and CF3CCl2CH2CHClF. These compounds are useful as intermediates for producing hydrofluorocarbons.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: July 10, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Velliyur N.Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 7230146
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: June 12, 2007
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh Sung Tung
  • Patent number: 7214839
    Abstract: A manufacturing process for making hydrofluorocarbons (HFCs), by reacting a hydrochlorocarbon and HF in a liquid phase catalytic reactor using a large mole ratio of HF to hydrochlorocarbon to minimize formation of high boiling by-products and improve HF consumption and hydrofluorocarbon yields.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: May 8, 2007
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Chad L. Marks, Stephen A. Cottrell
  • Patent number: 7183448
    Abstract: A mixture comprising at least 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is subjected to a distillation operation, and thereby, a distillate comprising an azeotropic composition consisting substantially of 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is obtained and a bottom product comprising 1,1,1,3,3-pentafluoropropane or 1,1,1-trifluoro-3-chloro-2-propene which each is separated and purified.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: February 27, 2007
    Assignee: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Masayoshi Imoto, Takashi Shibanuma
  • Patent number: 7112708
    Abstract: A process for the production of difluoromethane (HFC-32), 1,1,1-trifluoroethane (HFC-143a) and 1,1-difluoroethane (HFC-152a).
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: September 26, 2006
    Assignee: Honeywell International Inc.
    Inventors: Daniel C Merkel, Hsuehsung Tung, Ian Shankland
  • Patent number: 7094934
    Abstract: In a process for producing a hydrogen-containing fluorinated hydrocarbon in which a halogenated hydrocarbon reaction raw material, which includes a chlorinated alkene and/or a hydrogen-containing chlorinated alkane, is subjected to a fluorination reaction with hydrogen fluoride in a liquid phase in a reactor in the presence of a fluorination catalyst to obtain a reaction mixture which includes the hydrogen-containing fluorinated hydrocarbon, the reactor to be used has a portion which is able to contact with the reaction mixture, at least a part of this portion being made of an alloy material of 18 to 20% by weight of chromium, 18 to 20% by weight of molybdenum, 1.5 to 2.2% by weight of at least one element selected from niobium and tantalum and the balance of nickel.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 22, 2006
    Assignee: Daikin Industries, Ltd.
    Inventors: Noriaki Shibata, Tatsuo Nakada, Takashi Shibanuma
  • Patent number: 7091388
    Abstract: The invention provides an economic process for the manufacture of the hydrofluorocarbon 1,1,3,3,3-pentafluoropropene (HFC-1225zc). HFC-1225zc can be made from the dehydrochlorination of 1-chloro-1,1,3,3,3-pentafluoropropane (HCFC-235fa). Alternatively, HFC-1225zc can also be made from the dehydrofluorination of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). HFC-1225zc) is a compound that has the potential to be used as a low Global Warming Potential refrigerant, blowing agent, aerosol propellant, or solvent.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: August 15, 2006
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Daniel C. Merkel, Rajiv R. Singh
  • Patent number: 7074434
    Abstract: Process for the separation of a mixture comprising at least one hydrofluoroalkane and hydrogen fluoride, according to which a hydrofluoroalkane/hydrogen fluoride mixture is reacted with at least one chlorinated or chlorofluorinated precursor of the hydrofluoroalkane. Process for the preparation of a hydrofluoroalkane comprising such a separation, in combination with a catalytic reaction stage. Azeotropic compositions.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: July 11, 2006
    Assignee: Solvay (Societe Anonyme)
    Inventors: Alain Lambert, Vincent Wilmet
  • Patent number: 7071368
    Abstract: A process for producing 1,1,1-trifluoroethane (HFC-143a) which process comprises reacting hydrogen fluoride with vinylidene chloride along with one or more of 1,1,-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b) and 1,1,1-trichloroethane (HCC-140a) in the presence of pentavalent antimony as a fluorination catalyst under conditions to produce 1,1,1-trifluoroethane (HFC-143a), generally in yields of 90% or more.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: July 4, 2006
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Robert C. Johnson