Including Distillation Patents (Class 570/178)
  • Patent number: 7968745
    Abstract: A process for the manufacture of iodixanol by performing a purification process of the crude product in a solvent comprising n-propanol. The crude product may be obtained in aqueous solution from dimerization of 5-acetamido-N,N?-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-isophthalamide (“Compound A”).
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: June 28, 2011
    Assignee: GE Healthcare AS
    Inventor: Ole Magne Homestad
  • Publication number: 20110144395
    Abstract: Disclosed is process for the recovery of HFC-43-10mee from a mixture comprising hydrogen fluoride and HFC-43-10mee, comprising feeding the composition comprising hydrogen fluoride and HFC-43-10mee to a distillation column, subjecting said mixture to a distillation step from which is formed a column distillate composition comprising an azeotrope or azeotrope-like composition of hydrogen fluoride and HFC-43-10mee, and a column-bottoms composition comprising HFC-43-10mee, condensing said column distillate composition to form two liquid phases, being i) an HFC-43-10mee-rich phase and ii) an HF-rich phase; and separating said two liquid phases.
    Type: Application
    Filed: August 11, 2009
    Publication date: June 16, 2011
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Joan Ellen Bartelt, Jeffrey P. Knapp
  • Publication number: 20110112341
    Abstract: The present invention provides a process for producing 1,2,3,4-tetrachlorohexafluorobutane having a high purity at a low cost industrially and efficiently. The process for producing 1,2,3,4-tetrachlorohexafluorobutane according to the present invention comprises a step of allowing 1,2,3,4-tetrachlorobutane to react with a fluorine gas to prepare a reaction product containing 1,2,3,4-tetrachlorohexafluorobutane and hydrogen-containing compounds as an impurity, and a step of introducing the reaction product into single or plural distillation columns and distilling to separate the hydrogen-containing compounds from the reaction product and thereby preparing purified 1,2,3,4-tetrachlorohexafluorobutane wherein the at least one of distillation columns has a theoretical plate number of 15 or more.
    Type: Application
    Filed: June 24, 2009
    Publication date: May 12, 2011
    Applicant: SHOWADENKO K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi, Takami Ohe
  • Publication number: 20110101264
    Abstract: Described is a process for separating 1,1,1,2-tetrafluoropropane and hydrogen fluoride from a mixture comprising 1,1,1,2-tetrafluoropropane, 1,1,1,2,3-pentafluoropropane and hydrogen fluoride comprising: subjecting said 1,1,1,2-tetrafluoropropane, 1,1,1,2,3-pentafluoropropane and hydrogen fluoride mixture to a distillation step, forming a column distillate composition comprising an azeotropic or near-azeotropic composition of said 1,1,1,2-tetrafluoropropane and hydrogen fluoride, and a bottoms composition of 1,1,1,2,3-pentafluoropropane. The column distillate may optionally be made essentially free of 1,1,1,2,3-pentafluoropropane and the column bottoms composition may optionally be made essentially free of HF. Also described is a process for separating 1,1,1,2-tetrafluoropropane and hydrogen fluoride from a mixture of 1,1,1,2-tetrafluoropropane and hydrogen fluoride. Also described are azeotropic and azeotrope-like compositions comprising 1,1,1,2-tetrafluoropropane and hydrogen fluoride.
    Type: Application
    Filed: October 6, 2010
    Publication date: May 5, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: JEFFREY P. KNAPP
  • Publication number: 20110071325
    Abstract: It is an object of the present invention to provide a process for producing 1,2,3,4-tetrachlorohexafluorobutane industrially inexpensively and efficiently by utilizing expensive fluorine gas efficiently and to provide a process which is capable of stably producing 1,2,3,4-tetrachlorohexafluorobutane and in which, by carrying out fluorination reaction at a low temperature, side reactions such as formation of a low-boiling substance due to cleavage of C—C bonds and formation of an excess fluoride are difficult to occur. The process for producing 1,2,3,4-tetrachlorohexafluorobutane of the present invention is characterized in that it includes feeding fluorine gas to 1,2,3,4-tetrachlorobutane using plural reactors in the presence of a solvent and in the absence of a catalyst to allow the 1,2,3,4-tetrachlorobutane and the fluorine gas to react with each other, wherein a part or all of unreacted fluorine gas discharged from one reactor is introduced into a reactor different from said one reactor.
    Type: Application
    Filed: May 11, 2009
    Publication date: March 24, 2011
    Applicant: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi
  • Patent number: 7897823
    Abstract: Disclosed herein is a process to produce an azeotrope composition comprising a hydrofluoroolefin and hydrogen fluoride, said process comprising, dehydrofluorinating a hydrofluorocarbon containing at least one hydrogen and at least one fluorine on adjacent carbons, thereby forming a mixture comprising said hydrofluoroolefin, unreacted hydrofluorocarbon and hydrogen fluoride, and distilling the mixture to produce a distillate composition comprising an azeotrope composition containing said hydrofluoroolefin and hydrogen fluoride and a column bottoms composition comprising said hydrofluorocarbon essentially free of hydrogen fluoride. Also disclosed herein are processes for separation of hydrofluoroolefins from hydrofluorocarbons and from hydrogen fluoride.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: March 1, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralpha Newton Miller, Mario Joseph Nappa, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 7888539
    Abstract: The present disclosure related to azeotrope and near-azeotrope compositions comprising PFC-C318 and HFC-236cb. The present disclosure further relates to processes for removing PFC-C318 from HFC-236cb. And the present disclosure further relates to azeotrope and near azeotrope compositions comprising hydrogen fluoride and PFC-C318.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: February 15, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Velliyur Nott Mallikarjuna Rao, Jeffrey P. Knapp
  • Patent number: 7872162
    Abstract: Process for the obtention of HFC-227ea having a reduced content of organic impurities, comprising at least subjecting a crude HFC-227ea to two distillation steps at different pressures.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: January 18, 2011
    Assignee: Solvay S.A.
    Inventors: Thomas Müller, Dominique Balthasart, Bernd Kutzner
  • Publication number: 20100286456
    Abstract: The process for recovering pentafluoroethane of the invention includes bringing a mixed gas containing pentafluoroethane and a non-condensable gas into contact with a chlorinated solvent, and allowing the chlorinated solvent to absorb pentafluoroethane contained in the mixed gas. The process for the production of pentafluoroethane of the invention uses the recovering process.
    Type: Application
    Filed: July 27, 2006
    Publication date: November 11, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Kazunari KAGA
  • Patent number: 7807859
    Abstract: The present invention provides a polymerization inhibitor preventing the self-polymerization of TFE and the generation of a modified polymer of a polymerization inhibitor in a distillation step, particularly in a rectification step, of TFE. The present invention provides a method of distilling tetrafluoroethylene in the presence of a polymerization inhibitor comprising a cyclohexadiene compound of the formula: R1-A-R2 wherein R1 is a hydrocarbon group having 1 to 5 carbon atoms, R2 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and A is a cyclohexadiene ring. The cyclohexadiene compound is preferably ?-terpinene or ?-terpinene.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 5, 2010
    Assignee: Daikin Industries, Ltd.
    Inventors: Mai Taguchi, Kenji Otoi, Yoshiyuki Takase, Hideya Saitou, Yoshiyuki Hiraga
  • Patent number: 7781626
    Abstract: The invention relates to azeotropic and azeotrope-like mixtures of 1,1,1,3,3-pentafluorobutane (HFC-365) and hydrogen fluoride and a process for separating the azeotrope-like mixtures. The compositions of the invention are useful as an intermediate in the production of HFC-365. The latter is useful as a nontoxic, zero ozone depleting fluorocarbon useful as a solvent, blowing agent, refrigerant, cleaning agent and aerosol to propellant.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: August 24, 2010
    Assignee: Honeywell International Inc
    Inventors: Hang T. Pham, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20100130798
    Abstract: The production process for 1,2,3,4-tetrachlorohexafluorobutane of the present invention is characterized in that 1,2,3,4-tetrachlorobutane is reacted with fluorine in the presence of a solvent containing hydrogen fluoride. The 1,2,3,4-tetrachlorobutane may be obtained by chlorination of 3,4-dichlorobutene-1. Further, the present invention provides as well a process of refining 1,2,3,4-tetrachlorohexafluorobutane obtained in the manner described above. According to the present invention, 1,2,3,4-tetrachlorohexafluorobutane which is useful, for example, as a synthetic raw material for hexafluoro-1,3-butadiene used as an etching gas for semiconductors can industrially efficiently be produced by using 1,2,3,4-tetrachlorobutane which is a by-product of chloroprene and which has so far been disposed.
    Type: Application
    Filed: March 26, 2008
    Publication date: May 27, 2010
    Applicant: SHOWA DENK K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi, Nobutoshi Sasaki, Kiyoshi Nomura
  • Publication number: 20100105932
    Abstract: A process for recovering hexafluoropropylene and hexafluoropropylene oxide from a liquid mixture of these components is provided. The process includes, in a stripping stage, contacting the mixture with a gaseous stripping agent, thereby to strip hexafluoropropylene from the mixture. A gaseous product comprising hexafluoropropylene and gaseous stripping agent is withdrawn from the stripping stage, as is a liquid product comprising hexafluoropropylene oxide.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 29, 2010
    Applicant: UNIVERSITY OF KWAZULU-NATAL
    Inventors: Deresh Ramjugernath, Paramespri Naidoo, Clinton Shalendra Subramoney, Michael Wayne Nelson
  • Patent number: 7695595
    Abstract: Process for the production of a hydrofluoroalkane, according to which hydrofluoroalkane comprising organic impurities is subjected to at least two distillations.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: April 13, 2010
    Assignee: Solvay S.A.
    Inventors: Dominique Balthasart, Charles-Marie Anciaux, Yves Mahaut, Roland Klug
  • Patent number: 7608574
    Abstract: Azeotropic or azeotropic-like compositions of 1,1,1-trifluoroethane (HFC-143a) and 1-chloro-2,2,2-trifluoroethane (R-133a).
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: October 27, 2009
    Assignee: Honeywell International Inc.
    Inventors: Stephen A. Cottrell, Hang T. Pham, Rajiv R. Singh, Hseuhsung Tung
  • Publication number: 20090227822
    Abstract: Provided are azeotropic and azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and hydrogen fluoride (HF). Such azeotropic and azeotrope-like compositions are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
    Type: Application
    Filed: March 3, 2009
    Publication date: September 10, 2009
    Inventors: Hang T. Pham, Daniel C. Merkel, Konstantin A. Pokrovski, HsuehSung Tung, Rajiv R. Singh
  • Publication number: 20090090885
    Abstract: Process for the obtention of HFC-227ea having a reduced content of organic impurities, comprising at least subjecting a crude HFC-227ea to two distillation steps at different pressures.
    Type: Application
    Filed: December 1, 2008
    Publication date: April 9, 2009
    Applicant: SOLVAY S.A.
    Inventors: Thomas Mueller, Dominique Balthasart, Bernd Kutzner
  • Patent number: 7476771
    Abstract: Disclosed herein are azeotrope or near-azeotrope compositions comprising 2,3,3,3-tetrafluoropropene (HFC-1234yf) and hydrogen fluoride (HF). These compositions are useful in processes to produce and purify HFC-1234yf. Additionally, disclosed herein are processes for the manufacture of HFC-1234yf.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: January 13, 2009
    Assignee: E.I. Du Pont De Nemours + Company
    Inventors: Ralph Newton Miller, Mario Joseph Nappa, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Publication number: 20090005618
    Abstract: The present disclosure related to azeotrope and near-azeotrope compositions comprising PFC-C318 and HFC-236cb. The present disclosure further relates to processes for removing PFC-C318 from HFC-236cb. And the present disclosure further relates to azeotrope and near azeotrope compositions comprising hydrogen fluoride and PFC-C318.
    Type: Application
    Filed: February 19, 2008
    Publication date: January 1, 2009
    Applicant: E. I. du Pont de Nemours and Company
    Inventors: Velliyur Nott Rao, Jeffrey P. Knapp
  • Publication number: 20090005616
    Abstract: A process for separating 1,2,3,3,3-pentafluoropropene from a first mixture comprising 1,2,3,3,3-pentafluoropropene and 1,1,3,3,3-pentafluoropropene is disclosed. The process involves (a) contacting the first mixture with at least one extractive agent to form a second mixture; (b) distilling the second mixture; and (c) recovering 1,2,3,3,3-pentafluoropropene substantially free of 1,1,3,3,3-pentafluoropropene. The extractive agent used with the present invention increases or decreases the volatility of 1,2,3,3,3-pentafluoropropene or 1,1,3,3,3-pentafluoropropene relative to each other. Also disclosed is a substantially pure 1,2,3,3,3-pentafluoropropene composition.
    Type: Application
    Filed: March 29, 2007
    Publication date: January 1, 2009
    Inventors: Ralph Newton Miller, Shoibal Banerjee, Velliyur Nott Mallikarjuna Rao
  • Patent number: 7468467
    Abstract: Process for obtaining a hydrofluoroalkane which is purified of organic impurities, according to which the hydrofluoroalkane containing organic impurities is subjected to at least one purification treatment chosen from (a) a treatment with chlorine in the presence of a initiator (b) a reaction with hydrogen fluoride (c) a distillation in which the purified hydrofluoroalkane is removed from the top of the distillation column or from the side (d) an extractive distillation (e) an adsorption onto a solid adsorbent (f) a reaction with a compound containing oxygen, and (g) a reaction with a compound containing oxygen and a gas-phase reaction with a reagent capable of reacting with at least some of the organic impurities, with the exception of a reaction with elemental chlorine.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: December 23, 2008
    Assignee: Solvay S.A.
    Inventors: Vincent Wilmet, Francine Janssens, Lionel Casaubon Seignour, Philippe Krafft, Alain Lambert, Olivier Buyle
  • Patent number: 7468466
    Abstract: A process for producing hexafluoroethane, comprising a step of distilling a crude hexafluoroethane containing chlorine compounds each having two carbon atoms to distill out hexafluoroethane as a top flow from the top of a distillation column and separate a hexafluoroethane mixture containing the chlorine compounds as a bottom flow from the bottom, and a step of contacting the bottom flow with hydrogen fluoride in the gas phase at a temperature of 300 to 500° C. in the presence of a fluorination catalyst to fluorinate the chlorine compounds. This process provides hexafluoroethane which can be used mainly as a cleaning gas in the production process of a semiconductor device.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: December 23, 2008
    Assignee: Show A Denko K.K.
    Inventors: Hiromoto Ohno, Tatsuharu Arai
  • Patent number: 7459591
    Abstract: Process for the obtention of HFC-227ea having a reduced content of organic impurities, comprising at least subjecting a crude HFC-227ea to two distillation steps at different pressures.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: December 2, 2008
    Assignee: Solvay S.A.
    Inventors: Thomas Müller, Dominique Balthasart, Bernd Kutzner
  • Publication number: 20080293978
    Abstract: This invention relates to a process for separating 1,1,2,2-tetrafluoroethane or 1,1,1,2-tetrafluoroethane from a mixture comprising both 1,1,1,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane wherein at least one ionic liquid is used to enhance the efficiency of the separation.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 27, 2008
    Inventors: Mark Brandon Shiflett, Akimichi Yokozeki, Jeffrey P. Knapp
  • Publication number: 20080287715
    Abstract: The present invention provides a polymerization inhibitor preventing the self-polymerization of TFE and the generation of a modified polymer of a polymerization inhibitor in a distillation step, particularly in a rectification step, of TFE. The present invention provides a method of distilling tetrafluoroethylene in the presence of a polymerization inhibitor comprising a cyclohexadiene compound of the formula: R1-A-R2 wherein R1 is a hydrocarbon group having 1 to 5 carbon atoms, R2 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and A is a cyclohexadiene ring. The cyclohexadiene compound is preferably ?-terpinene or ?-terpinene.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 20, 2008
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Mai Taguchi, Kenji Otoi, Yoshiyuki Takase, Hideya Saitou, Yoshiyuki Hiraga
  • Patent number: 7423188
    Abstract: Disclosed herein are azeotrope and near-azeotrope compositions comprising E-1,3,3,3-tetrafluoropropene and hydrogen fluoride. These azeotrope and near-azeotrope compositions are useful in processes to produce E-1,3,3,3-tetrafluoropropene and in processes to purify E-1,3,3,3-tetrafluoropropene from mixtures of E-1,3,3,3-tetrafluoropropene with 1,1,1,3,3-pentafluoropropane and/or with hydrogen fluoride.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: September 9, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, Mario Joseph Nappa, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 7388117
    Abstract: Disclosed herein are azeotrope compositions comprising 1,2,3,3,3-pentafluoropropene and hydrogen fluoride. The azeotrope compositions are useful in processes to produce and in processes to purify 1,2,3,3,3-pentafluoropropene.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 17, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, Barbara Haviland Minor, Mario Joseph Nappa, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 7384519
    Abstract: A method for the purification of pharmaceutical grade 1,1,1,2-tetrafluoroethane (HFC-134a) and polymer grade chlorodifluoromethane (HCFC-22) by contacting a mixture containing 1,1,1,2-tetrafluoroethane or chlorodifluoromethane and methyl chloride with a zeolite such as a molecular sieve, and recovering from said contacted mixture substantially purified 1,1,1,2-tetrafluoroethane or chlorodifluoromethane.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: June 10, 2008
    Assignee: Honeywell International Inc.
    Inventors: Stephen A. Cottrell, Robert E. Wilson
  • Patent number: 7385094
    Abstract: Disclosed herein are azeotrope and near-azeotrope compositions comprising 1,1,1,2,2,4,5,5,6,6,7,7,7-tridecafluoro-3-heptene (HFC-162-13mczy, CF3CF2CH?CFCF2CF2CF3) and 1,1,1,2,2,3,5,5,6,6,7,7,7-tridecafluoro-3-heptene (HFC-162-13mcyz, CF3CF2CF?CHCF2CF2CF3) and hydrogen fluoride (HF) and to azeotrope and near-azeotrope compositions comprising 1,1,1,2,2,3,4,5,5,6,6,7,7,7-tetradecafluoroheptane and hydrogen fluoride (HF). These compositions are useful in processes to produce and purify HFC-162-13mcyz, HFC-162-13mczy and HFC-63-14mee.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: June 10, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, Mario Joseph Nappa, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Publication number: 20080124660
    Abstract: Provided are liquid perfluoro-n-alkanes that are highly transparent to UV wavelengths ranging from about 150 nm to 165 nm, and to the method by which high transparency may be obtained. The liquid, perfluoro-n-alkanes are useful in optical couplants, optical cements, optical elements, optical inspection media for semiconductor wafers and devices, and immersion photolithography at 157 nm exposure wavelength.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 29, 2008
    Inventors: Robert Clayton Wheland, Roger Harquail French
  • Patent number: 7371309
    Abstract: The present invention provides extractive distillation processes for removing difluoromethane (HFC-32) from a mixture comprising HFC-32 and at least one of chlorodifluoromethane (CFC-12), 1,1,1-trifluoroethane (HFC-143a), chloropentafluoroethane (CFC-115), and pentafluoroethane (HFC-125) using hydrocarbon, chlorocarbon, and oxygen-containing extractive agents.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: May 13, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Sara W. Boehmer, Barry Asher Mahler, Ralph Newton Miller
  • Publication number: 20080108852
    Abstract: A liquid phase process is disclosed for producing halogenated alkane adducts of the formula CAR1R2CBR3R4 (where A, B, R1, R2, R3, and R4 are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR1R2?CR3R4 in a dinitrile or cyclic carbonate ester solvent which divides the reaction mixture into two liquid phases and in the presence of a catalyst system containing (i) at least one catalyst selected from monovalent and divalent copper; and optionally (ii) a promoter selected from aromatic or aliphatic heterocyclic compounds which contain at least one carbon-nitrogen double bond in the heterocyclic ring. When hydrochlorofluorocarbons are formed, the chlorine content may be reduced by reacting the hydrochlorofluorocarbons with HF. New compounds disclosed include CF3CF2CCl2CH2CCl3, CF3CCl2CH2CH2Cl and CF3CCl2CH2CHClF. These compounds are useful as intermediates for producing hydrofluorocarbons.
    Type: Application
    Filed: May 31, 2007
    Publication date: May 8, 2008
    Inventors: Ralph Thomas Baker, Ralph Newton Miller, Viacheslav Alexandrovich Petrov, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 7361795
    Abstract: The invention relates to azeotropic and azeotrope-like mixtures of 1,1,1,3,3-pentafluorobutane (HFC-365) and hydrogen fluoride and a process for separating the azeotrope-like mixtures. The compositions of the invention are useful as an intermediate in the production of HFC-365. The latter is useful as a nontoxic, zero ozone depleting fluorocarbon useful as a solvent, blowing agent, refrigerant, cleaning agent and aerosol to propellant.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: April 22, 2008
    Assignee: Honeywell International, Inc.
    Inventors: Hang T. Pham, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20080051612
    Abstract: The present disclosure relates to a process for separating a fluoroolefin from a mixture comprising hydrogen fluoride and fluoroolefin, comprising azeotropic distillation both with and without an entrainer. In particular are disclosed processes for separating any of HFC-1225ye, HFC-1234ze, HFC-1234yf or HFC-1243zf from HF.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 28, 2008
    Applicant: E. I. DUPONT DE NEMOURS AND COMPANY
    Inventors: JEFFREY P. KNAPP, BARRY ASHER MAHLER, DONALD J. TOTON
  • Patent number: 7335805
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: February 26, 2008
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Qian, Julie Sacarias
  • Patent number: 7332635
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: February 19, 2008
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Qian, Julie Sacarias
  • Patent number: 7311807
    Abstract: A process for the separation of dichlorobenzene mixtures containing m- and p-dichlorobenzene in which: (i) the mixture is as an extracting agent contacted with a phosphoric ester of the general formula (I) as an extracting agent in which R1, R2 and R3 are identical or different and represent an aliphatic or cycloaliphatic alkyl or alkenyl radical and R1, R2, and R3 together contain at least 3C-atom and not more than 12 C-atoms, or a mixture of different phosphoric esters (I) of formula or is contacted with a phosphine oxide of the general formula (II) as an extracting agent in which R1, R2 and R3 are identical or different and represent an aliphatic or cycloaliphatic alkyl or alkenyl radical or hydrogen, and R1, R2 and R3 together contain at least 3 C-atoms and not more than 12 C-atoms, or a mixture of different phosphine oxides of formula (II) or a mixture of said phosphoric esters of formula (I) and phosphine oxides of formula (II), and subsequently (ii) the components of the mixture are
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: December 25, 2007
    Assignee: Lanxess Deutschland GmbH
    Inventors: Gültekin Erdem, Morris Leckebusch, Günter Olf, Kay-Jochen Rinck, Günter Zühlke
  • Patent number: 7241928
    Abstract: A liquid phase process is disclosed for producing halogenated alkane adducts of the formula CAR1R2CBR3R4 (where A, B, R1, R2, R3, and R4 are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR1R2?CR3R4 in a dinitrile or cyclic carbonate ester solvent which divides the reaction mixture into two liquid phases and in the presence of a catalyst system containing (i) at least one catalyst selected from monovalent and divalent copper; and optionally (ii) a promoter selected from aromatic or aliphatic heterocyclic compounds which contain at least one carbon-nitrogen double bond in the heterocyclic ring. When hydrochlorofluorocarbons are formed, the chlorine content may be reduced by reacting the hydrochlorofluorocarbons with HF. New compounds disclosed include CF3CF2CCl2CH2CCl3, CF3CCl2CH2CH2Cl and CF3CCl2CH2CHClF. These compounds are useful as intermediates for producing hydrofluorocarbons.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: July 10, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Velliyur N.Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 7208644
    Abstract: A process for production of high-purity hexafluoroethane, wherein a mixed gas containing hexafluoroethane and chlorotrifluoromethane is reacted with hydrogen fluoride in a gas phase in the presence of a fluorination catalyst at 200–450° C., for fluorination of the chlorotrifluoromethane, or wherein pentafluoroethane containing chlorine compounds with 1–3 carbon atoms is reacted with hydrogen in a gas phase in the presence of a hydrogenation catalyst at 150–400° C., and the product is then reacted with fluorine in a gas phase in the presence of a diluent gas.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: April 24, 2007
    Assignee: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi
  • Patent number: 7205444
    Abstract: A continuous, vapor phase method for purifying a crude mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated fluorocarbon compounds, the process comprising: a) providing a photochlorinator vessel comprising 1) a UV lamp unit comprising a UV lamp located in a transparent inner well, the transparent inner well being located within a transparent outer well, the outer well being provided with material for cooling walls of the inner and outer wells; the inner well and the outer well defining separate chambers isolated from each other; and 2) a reaction vessel into which the UV lamp unit has been inserted; b) introducing into the reaction vessel a gaseous mixture of Cl2 and a distillation inseparable mixture of 1,1,1,3,3,3-hexafluoropropane and one or more unsaturated fluorocarbon compounds; c) reacting, in the gaseous state and in the presence of UV light from the photochlorinator, the mixture with Cl2 with the distillation inseparable mixture of 1,1,1,3,3,3-hexafluoropropane and one or more u
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 17, 2007
    Assignee: Honeywell International Inc.
    Inventors: Yuon Chiu, David C. Merkel, Hsuehsung Tung
  • Patent number: 7189311
    Abstract: A method for separating difluoromethane from a mixture of difluoromethane and at least one impurity, the method involving extractively distilling the mixture using dichloromethane as an extractive agent to recover a product stream of purified difluoromethane having a concentration of impurity lower than that of the mixture.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: March 13, 2007
    Assignee: Honeywell International Inc.
    Inventor: Paul G. Clemmer
  • Patent number: 7151197
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: December 19, 2006
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Qian, Julie Sacarias
  • Patent number: 7138553
    Abstract: Tetrachloroethylene containing a stabilizer is contacted with a zeolite having an average pore size of 3.4 to 11 ? and/or a carbonaceous adsorbent having an average pore size of 3.4 to 11 ? in a liquid phase to obtain a high purity tetrachloroethylene. A halogenated alkene and/or a halogenated alkane are reacted with hydrogen fluoride in the presence of a fluorination catalyst to produce a first hydrofluorocarbon, a halogenated alkene and/or a halogenated alkane are reacted with hydrogen fluoride in the presence of a fluorination catalyst to produce a second hydrofluorocarbon, and the products are joined and then distilled to obtain the first and second hydrofluorocarbons.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: November 21, 2006
    Assignee: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi, Makoto Miyamura
  • Patent number: 7074974
    Abstract: A process comprising fluorinating tetrachloroethylene to obtain a crude pentafluoroethane containing impurities and bringing the crude pentafluoroethane containing impurities into contact with oxygen and/or an oxygen-containing compound in the presence of a catalyst. There can be obtained high-purity pentafluoroethane which can be used as a low-temperature refrigerant or an etching gas or as a starting material for the production of high-purity hexafluoroethane.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: July 11, 2006
    Assignee: Showa Denko K.K.
    Inventors: Kazunari Kaga, Hiromoto Ohno, Toshio Ohi
  • Patent number: 7060165
    Abstract: The present invention involves processes that utilize an olefinic compound, in particular, hexafluoropropene (HFP) or chlorotrifluoroethene (CFC-1113) as extracting agents in the purification of pentafluoroethane (HFC-125). These processes can utilize recovered HFP as a precursor for the production of heptafluoropropane (HFC-227) or other derivatives.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: June 13, 2006
    Assignee: PCBU Services, Inc.
    Inventors: Stephan M. Brandstater, Mitchel Cohn, Victoria E. Hedrick, Yuichi Iikubo
  • Patent number: 7053253
    Abstract: Perfluoro-4-methyl-2-pentene containing the undesirable perfluoro-2-methyl-2-pentene may be purified by contacting the mixture with at least a stoichiometric equivalent of an aqueous inorganic base (relative to the perfluoro-2-methyl-2-pentene), in the presence of a polar solvent.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: May 30, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Zhongxing Zhang, Zai-Ming Qiu
  • Patent number: 7045668
    Abstract: A process for production of high-purity hexafluoroethane, wherein a mixed gas containing hexafluoroethane and chlorotrifluoromethane is reacted with hydrogen fluoride in a gas phase in the presence of a fluorination catalyst at 200-450° C., for fluorination of the chlorotrifluoromethane, or wherein pentafluoroethane containing chlorine compounds with 1-3 carbon atoms is reacted with hydrogen in a gas phase in the presence of a hydrogenation catalyst at 150-400° C., and the product is then reacted with fluorine in a gas phase in the presence of a diluent gas.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: May 16, 2006
    Assignee: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi
  • Patent number: 7015368
    Abstract: A purification process of thermoprocessable tetrafluoroethylene (TFE) copolymers comprising the following steps: A) the polymer latex is transformed into gel form, under mechanical stirring, by addition of an acid electrolyte having pH values ?2; B) washing of the polymer gel with aqueous solutions having pH from 1 to 7.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: March 21, 2006
    Assignee: Ausimont S.p.A.
    Inventors: Hua Wu, Vincenzo Arcella
  • Patent number: 6992229
    Abstract: The present invention has an object to provide a method for purifying a fluorinated hydroxyl compound of the formula 1 safely in a high yield under industrially practical conditions. Namely, a mixture containing a fluorinated hydroxyl compound of Rf—CR1R2—OH (Formula 1, wherein Rf is a C1-20 polyfluoroalkyl group, and each of R1 and R2 is a hydrogen atom or a C1-3 alkyl group) such as 2,2,3,3-tetrafluoropropanol, and a compound having an unshared electron pair, is distilled by heating in the presence of a solid acid catalyst such as a cation exchange resin catalyst, or by adding a proton source such as water.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: January 31, 2006
    Assignee: Asahi Glass Company, Limited
    Inventors: Hidekazu Okamoto, Akihiro Wada, Toshihiko Toma, Nobuyuki Yamagishi
  • Patent number: 6900362
    Abstract: A process for the production of HFC-227ea from HF and HFP is provided. This process takes advantage of an azeotropic composition of HF and HFC-227ea in order to produce HFC-227ea essentially free of HF and recycle unreacted HF back to the reactor. The recycle of said azeotropic composition, also allows the use of HFC-227ea as a diluent to aid in control of reactor temperature for a highly exothermic reaction.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 31, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, Mario J. Nappa, Donald J. Toton