Catalyst Utilized Patents (Class 570/227)
  • Patent number: 6909024
    Abstract: This invention is a process for producing vinyl chloride from an ethylene-containing feed, oxygen, and a chlorine source in the presence of a catalyst. The process permits direct production of vinyl chloride in a single reactor system, and further permits ethane to be used as the C2 hydrocarbon feed with recycle of ethylene from the product stream to constitute the ethylene specified for the feed. This invention in another aspect concerns also a composition of matter, and a method for making the composition, wherein the composition is useful as a catalyst for the vinyl chloride process. The composition comprises a rare earth-containing material, with the proviso that the catalyst prepared therefrom is substantially free of iron and copper and with the further proviso that when cerium is present the catalyst further comprises at least one more rare earth element other than cerium.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: June 21, 2005
    Assignee: The Dow Chemical Company
    Inventors: Mark E. Jones, Michael M. Olken, Daniel A. Hickman
  • Patent number: 6797845
    Abstract: A process for producing vinyl chloride monomer where significant quantities of both ethane and ethylene in input streams to the affiliated reactor where hydrogen chloride in the reactor effluent is essentially fully recovered from the reactor effluent in the first unit operation after the ethane/ethylene-to-vinyl reaction step or stage. Steps are presented of oxydehydro-chlorination catalytic reaction of ethane, ethylene, hydrogen chloride, oxygen, and chlorine; quenching the reactor effluent stream to provide a raw product stream having essentially no hydrogen chloride; and separation of the raw product stream into a vinyl chloride monomer product stream and into a lights stream; and recycling the lights steam to the reactor.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: September 28, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Daniel A. Hickman, John P. Henley, Mark E. Jones, Kenric A. Marshall, Daniel J. Reed, William D. Clarke, Michael M. Olken, Lee E. Walko
  • Patent number: 6388151
    Abstract: A method for synthesizing tetramethylcyclopentadiene from 2,3-dibromobutane is described. A 2-bromo-2-butene Grignard is reacted with an ethyl formate to produce a 3,5-dimethyl-2,5-heptadiene-4-ol magnesium bromide which is then quenched with acetic acid to produce 3,5-dimethyl-2,5-hepadiene-4-ol.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: May 14, 2002
    Assignee: Boulder Scientific Company
    Inventors: Jeffrey M. Sullivan, Richard D. Crawford
  • Patent number: 6143939
    Abstract: A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: November 7, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Malvina Farcasiu, Phillip B. Kaufman, Edward P. Ladner, Richard R. Anderson
  • Patent number: 5821394
    Abstract: Process for converting a chlorinated alkane into at least one less chlorinated alkene by reaction with hydrogen in the presence of a catalyst comprising palladium and a metal selected from the group consisting of silver, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth and mixtures thereof.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: October 13, 1998
    Assignee: Solvay
    Inventors: Jean-Paul Schoebrechts, Francine Janssens
  • Patent number: 5763698
    Abstract: The fluorine content of an acyclic saturated compound of the formula C.sub.n F.sub.a X.sub.b H.sub.c (wherein each X is independently selected from the group consisting of Cl and Br, and wherein n is 1 to 6, a is 1 to 13, b is 0 to 12, c is 1 to 9, and a+b+c equals 2n+2) is reduced by reacting the acyclic saturated compound with HCl in the vapor phase at an elevated temperature in the presence of a catalyst, the mole ratio of HCl to the acyclic saturated compound being at least about 1:1.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: June 9, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Leo Ernest Manzer, V. N. Mallikarjuna Rao, Steven Henry Swearingen
  • Patent number: 5648571
    Abstract: Methods for synthesis of chemical compounds by catalytic transfer hydrogenation comprise forming a mixture of a starting material, a hydrogen donor material and a catalyst. The catalyst is selected from a catalytic form of carbon, a polyethylene glycol phase transfer agent, and mixtures thereof. The mixture is heated at a temperature of from 30.degree. to 400.degree. C. in the presence of at least one alkali or alkaline earth metal compound to cause reduction of the starting material by catalytic transfer hydrogenation and form the desired chemical compound product.
    Type: Grant
    Filed: March 27, 1996
    Date of Patent: July 15, 1997
    Inventors: Charles J. Rogers, Alfred Kornel
  • Patent number: 5608130
    Abstract: Methods for synthesis of chemical compounds by catalytic transfer hydrogenation comprise forming a mixture of a starting material, a hydrogen donor material and a catalyst. The catalyst is selected from a catalytic form of carbon, a polyethylene glycol phase transfer agent, and mixtures thereof. The mixture is heated at a temperature of from 30.degree. to 400.degree. C. in the presence of at least one alkali or alkaline earth metal compound to cause reduction of the starting material by catalytic transfer hydrogenation and form the desired chemical compound product.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: March 4, 1997
    Inventors: Charles J. Rogers, Alfred Kornel
  • Patent number: 5545388
    Abstract: Methods for synthesis of chemical compounds by catalytic transfer hydrogenation comprise forming a mixture of a starting material, a hydrogen donor material and a catalyst. The catalyst is selected from a catalytic form of carbon, a polyethylene glycol phase transfer agent, and mixtures thereof. The mixture is heated at a temperature of from 30.degree. to 400.degree. C. in the presence of at least one alkali or alkaline earth metal compound to cause reduction of the starting material by catalytic transfer hydrogenation and form the desired chemical compound product.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: August 13, 1996
    Inventors: Charles J. Rogers, Alfred Kornel
  • Patent number: 5478548
    Abstract: Methods for synthesis of chemical compounds by catalytic transfer hydrogenation comprise forming a mixture of a starting material, a hydrogen donor material and a catalyst. The catalyst is selected from a catalytic form of carbon, a polyethylene glycol phase transfer agent, and mixtures thereof. The mixture is heated at a temperature of from 30.degree. to 400.degree. C. in the presence of at least one alkali or alkaline earth metal compound to cause reduction of the starting material by catalytic transfer hydrogenation and form the desired chemical compound product.
    Type: Grant
    Filed: February 4, 1994
    Date of Patent: December 26, 1995
    Inventors: Charles J. Rogers, Alfred Kornel
  • Patent number: 5463153
    Abstract: Process for preparing 1-chloro-1,3-butadiene, which consists in gas-phase dehydrochlorinating a dichlorobutene selected from 3,4-dichloro-1-butene and 1,4-dichloro-2-butene, in the presence of a catalyst selected from lanthanum phosphate and lanthanum phosphate doped with an alkali or alkaline-earth metal.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: October 31, 1995
    Assignee: Enichem Elastomeres France S.A.
    Inventor: Isabelle Storet
  • Patent number: 5345017
    Abstract: The fluorine content of an acyclic saturated compound of the formula C.sub.n F.sub.a X.sub.b having at least one carbon with at least two fluorine substituents (wherein each X is independently selected from Cl and Br, and wherein n is 1 to 4, a is 2 to 10, b is 0 to 8, and a+b equals 2n+2) is reduced by reacting the acyclic saturated compound with HCl in the vapor phase at an elevated temperature in the presence of a catalyst, the mole ratio of HCl to the acyclic saturated compound being at least about 2:1.
    Type: Grant
    Filed: November 5, 1993
    Date of Patent: September 6, 1994
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: V. N. Mallikarjuna Rao, Steven H. Swearingen
  • Patent number: 5276240
    Abstract: A novel catalytic process involving complete hydrodehalogenation of halogenated aliphatic hydrocarbons in the presence of a hydrogen donor and a modified zeolite catalyst has been developed. The process is operated in a continuous flow mode and reaction products consist exclusively of hydrogen halide and hydrocarbons. The relative ratio of paraffins to olefins to aromatics obtained in the product distribution is a strong function of the ratio of hydrogen to reactant and the space velocity and temperature employed. The catalyst employed is a nickel metal modified shape selective zeolite that takes advantage of the hydrogenolysis ability of nickel and the acidic-shape selective properties of the zeolite.
    Type: Grant
    Filed: October 16, 1992
    Date of Patent: January 4, 1994
    Assignee: Board of Regents, The University of Texas System
    Inventors: Richard B. Timmons, Wen-Long Jang, Yigong He, David J. Houpt, Jr.
  • Patent number: 5210345
    Abstract: An addition of benzotrichloride produces a significantly higher yield of vinyl chloride in the thermal cleavage of 1,2-dichloroethane.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: May 11, 1993
    Assignee: Hoechst Aktiengesellschaft
    Inventor: Ingolf Mielke
  • Patent number: 5202102
    Abstract: A process is disclosed which comprises: contacting a catalyst such as alumina silica, aluminosilicates, titanium oxide, magnesium oxide, and the metals of Groups III and IIB of the Periodic Table under reducing conditions with a gaseous mixture comprising elemental chlorine gas and a diluent under conditions effective to improve the ability of the catalyst to dehydrohalogenate halogenated hydrocarbons: contacting the catalyst with a halogenated hydrocarbon feedstock, the halogenated hydrocarbon feedstock with or without a carrier gas, in the gas phase under dehydrohalogenation conditions; and recovering a dehydrohalogenated product.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: April 13, 1993
    Assignee: The Dow Chemical Company
    Inventor: Hong A. Nguyen
  • Patent number: 5196617
    Abstract: A process for hydrodehalogenating halogenated organic compounds present in a contaminated aqueous environmental source in which the halogenated organic compounds are reacted with hydrogen gas or a source of hydrogen gas in the presence of a catalyst of palladium on carbon.
    Type: Grant
    Filed: January 14, 1992
    Date of Patent: March 23, 1993
    Assignee: Engelhard Corporation
    Inventors: Suphan Kovenklioglu, Edward N. Balko, Jeffrey B. Hoke, Robert J. Farrauto, Gary A. Gramiccioni
  • Patent number: 5151263
    Abstract: A process for the catalytic decomposition of chlorofluoro-alkanes commonly named as "flons" into harmless substances against destructing ozone layer of the stratosphere by using the catalyst comprising alumina or alumina -silica complexed oxide, wherein the range of Al/(Al+Si)atomic ratio is 1.0 to 0.5, in the presence of steam at the temperature of 350.degree. to 1.000.degree. C.
    Type: Grant
    Filed: July 25, 1990
    Date of Patent: September 29, 1992
    Assignee: Dupont-Mitsui Fluorochemicals Co., Ltd.
    Inventors: Susumu Okazaki, Akito Kurosaki
  • Patent number: 5118492
    Abstract: A process for the catalytic decomposition of chlorofluoro-alkanes commonly named as "flons" into harmless substances against destructing ozone layer of the stratosphere by using the catalyst comprising iron oxide supported on active carbon at the temperature more than 300.degree. C. in the presence of steam.
    Type: Grant
    Filed: July 16, 1990
    Date of Patent: June 2, 1992
    Assignee: Dupont-Mitsui Fluorochemicals Co., Ltd.
    Inventors: Susumu Okazaki, Akito Kurosaki
  • Patent number: 5099085
    Abstract: The use of hitherto known supported catalysts in chlorination processes and oxychlorination processes leads to high pressure drops and to the formation of hot spot temperatures in the reactor. When honeycomb monolithic catalyst supports provided with a multiplicity of channels open at both ends and parallel to the longitudinal axis are used, both the heat dissipation is improved and the pressure drops across the reactor are lowered drastically. This leads ultimately to an increase in the selectivity of the reaction and to a minimization of the combustion rate.
    Type: Grant
    Filed: March 1, 1991
    Date of Patent: March 24, 1992
    Assignees: Wacker Chemie GmbH, Degussa AG
    Inventors: Rudolf Strasser, Ludwig Schmidhammer, Klaus Deller, Helmfried Krause
  • Patent number: 4943671
    Abstract: Organic halogen compounds in which one or more halogen atoms are covalently bonded to the carbon are subjected to reductive dehalogenation by reaction with a hydrocarbon in the presence of carbon at elevated temperatures with formation of a hydrogen halide, by a process in which the dehalogenation is carried out in the presence of iron powder or an iron compound as a cocatalyst, at from 100.degree. to 450.degree. C.
    Type: Grant
    Filed: May 2, 1988
    Date of Patent: July 24, 1990
    Assignee: BASF Aktiengesellschaft
    Inventors: Toni Dockner, Manfred Sauerwald, Herbert Krug, Matthias Irgang
  • Patent number: 4886891
    Abstract: The present invention provides a process for preparing a 1,1-disubstituted ethylene derivative of the formula ##STR1## which comprises reacting lead with a carbinol derivative of the formula ##STR2## wherein R.sup.1, R.sup.2, R.sup.3, X, Y, m and n are defined in the specification. The reaction is conducted more advantageously in the presence of a metal having higher ionization tendency than lead.
    Type: Grant
    Filed: December 18, 1987
    Date of Patent: December 12, 1989
    Assignee: Otsuka Kagaku Kabushiki Kaisha
    Inventors: Shigeru Torii, Masatoshi Taniguchi, Michio Sasaoka, Yoshihisa Tomotaki, Mitsuo Akada, Hideo Tanaka, Akira Suzuki, Shiro Yamashita
  • Patent number: 4851597
    Abstract: A process for the thermal cleavage of 1,2-dichloroethane to give vinyl chloride at 300.degree. to 600.degree. C. under atmospheric pressure or elevated pressure is described. Before cleavage of the 1,2-dichloroethane, 0.001 to 5% by weight of trichloroacetyl chloride or a compound which contains 3 carbon atoms, at least 6 chlorine atoms, 0 to 1 oxygen atom and, for each carbon atom bonded to the latter, 0 or 1 hydrogen atom, is added to it. Due to the addition of the compound(s) mentioned, the conversion is increased at the same cleavage temperature, or the cleavage temperature is reduced at the same conversion, at the same time a reduction in interfering byproducts being observed.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: July 25, 1989
    Assignee: Hochst Aktiengesellschaft
    Inventors: Bernd Felix, Walter Frohlich, Heiner Katzenberger
  • Patent number: 4816609
    Abstract: An unsaturated halohydrocarbon such as vinylidene chloride is produced by the dehydrohalogenation of haloalkanes such as 1,1,1-trichloroethane or 1,1,2-trichloroethane, in the presence of a novel mixed salt catalyst containing a Group IA metal cation such as Cs, a Group IIA metal cation such as Mg and a neutralizing number of counter anions such as chloride distributed on a support such as silica.
    Type: Grant
    Filed: May 26, 1987
    Date of Patent: March 28, 1989
    Assignee: The Dow Chemical Company
    Inventor: A. Dale Harley
  • Patent number: 4665243
    Abstract: The energy requirements for preparing vinyl chloride monomer can be reduced by a process which includes the steps of purifying by distillation ethylene dichloride, compressing the ethylene dichloride vapor from the distillation column to a temperature and pressure sufficient for direct feed to a pyrolysis furnace. Up to 80% of the heat presently used after distillation and before pyrolysis can be saved.
    Type: Grant
    Filed: December 8, 1982
    Date of Patent: May 12, 1987
    Assignee: Stauffer Chemical Company
    Inventor: William M. Burks, Jr.
  • Patent number: 4613709
    Abstract: The pyrolytic dehydrochlorination of haloalkanes is carried out with an initiator comprising chiefly decachlorobutane and octachloro-1-butene.The process can be applied particularly to the production of chloroethylenes from the corresponding polychloroethanes.
    Type: Grant
    Filed: August 15, 1985
    Date of Patent: September 23, 1986
    Assignee: Solvay & Cie.
    Inventor: James Franklin
  • Patent number: 4590317
    Abstract: A process is disclosed for the economical operation of a commercial ethylene dichloride (EDC) cracking furnace which typically is prone to coking of the tubes through which the EDC is flowed. The EDC cracking furnace is found to be critically sensitive to the presence of trace amounts, 30 ppm or more of FeCl.sub.3 and/or 20 ppm or more of free chlorine, which cause coking of the tubes of the furnace. The coking of the tubes is minimized by maintaining less than 30 ppm by weight of FeCl.sub.3 or less than 20 ppm of free chlorine in the EDC feed to the EDC furnace. In the particular instance where EDC is produced at least in part in a high temperature direct chlorination ("boiling") reactor constructed from mild steel, this goal requires that the chlorine content of the effluent from the boiling reactor be controlled so as not to exceed 20 ppm. But this is to be done without using more than a 2% by weight excess of ethylene over the stoichiometric amount required to produce the EDC in the boiling reactor.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: May 20, 1986
    Assignee: The B. F. Goodrich Company
    Inventor: John P. Lenczyk
  • Patent number: 4584420
    Abstract: Compound represented by the formula ##STR1## wherein each X is independently chloro or bromo is employed as a pyrolysis promoter in the pyrolysis of 1,2-dichloroethane to vinyl chloride.
    Type: Grant
    Filed: June 25, 1984
    Date of Patent: April 22, 1986
    Assignee: PPG Industries, Inc.
    Inventors: Charles R. Wiedrich, John C. Crano
  • Patent number: 4384159
    Abstract: Saturated C.sub.1-6 hydrochlorocarbons are dehydrochlorinated by contacting with ZSM-5 or silicalite zeolites at 200.degree. C.-400.degree. C.
    Type: Grant
    Filed: March 12, 1982
    Date of Patent: May 17, 1983
    Assignee: The Dow Chemical Company
    Inventor: Ronald W. Diesen