Catalyst Or Reaction Directing Agent Utilized Patents (Class 570/247)
-
Patent number: 11168043Abstract: Provided are a method and an apparatus for producing 1,2,3,4-tetrachlorobutane that are unlikely to lose 3,4-dichloro-1-butene as the material or 1,2,3,4-tetrachlorobutane as the product and can be stably and economically produce 1,2,3,4-tetrachlorobutane. A reaction liquid (1) containing 3,4-dichloro-1-butene is placed in a reaction container (11), then chlorine gas is supplied to a gas phase (2) in the reaction container (11), and the 3,4-dichloro-1-butene is reacted with the chlorine gas to give 1,2,3,4-tetrachlorobutane.Type: GrantFiled: March 1, 2019Date of Patent: November 9, 2021Assignee: SHOWA DENKO K.K.Inventors: Katsumi Mikami, Yohsuke Fukuchi, Shinya Oguro, Hiroshi Kobayashi
-
Patent number: 10011543Abstract: In the halogenation reaction of organic olefin compounds, an excess amount of halogen gas (fluorine, chlorine, vaporized bromine and iodine, or their combination) is normally used in order to achieve as complete as possible conversion of the organic starting material. In a conventional process, the excess halogen gas in the off-gas stream is scrubbed by caustic solution which increases the consumption of halogen and generates waste for disposal. The present invention provides a novel process to recover and reuse the excess halogen gas and thus reduce the operating cost of the process.Type: GrantFiled: July 20, 2016Date of Patent: July 3, 2018Assignee: Honeywell International Inc.Inventors: Terris Yang, Hsueh Sung Tung
-
Patent number: 9981890Abstract: The invention relates to a method for synthesizing 1.2-dichloroethane from ethylene and chlorine via low temperature direct chlorination of ethylene in the presence of a catalyst under conditions in which the synthesized 1.2-dichloroethane is condensed out, however, the ethylene and the chlorine are gaseous, in a reactor (3), wherein the stoichiometric ratio of ethylene to chlorine is adjusted in the reactor (3) such that there is an excess of ethylene. The invention further relates to a device for synthesizing 1.2-dichloroethane from ethylene and chlorine via low temperature direct chlorination of ethylene in the presence of a catalyst under conditions in which the synthesized 1.2-dichloroethane is condensed out, however, the ethylene and the chlorine are gaseous, in a reactor (3), wherein the stoichiometric ratio of ethylene to chlorine is adjustable in the reactor (3) such that there is an excess of ethylene.Type: GrantFiled: July 27, 2015Date of Patent: May 29, 2018Assignees: Thyssenkrupp Industrial Solutions AG, Thyssenkrupp AG, Vinnolit GmbH & Co. KGInventor: Michael Benje
-
Patent number: 9790148Abstract: Disclosed is a process for producing highly pure chlorinated alkane in which a chlorinated alkene is contacted with chlorine in a reaction zone to produce a reaction mixture containing the chlorinated alkane and the chlorinated alkene, and extracting a portion of the reaction mixture from the reaction zone, wherein the molar ratio of chlorinated alkane:chlorinated alkene in the reaction mixture extracted from the reaction zone does not exceed 95:5.Type: GrantFiled: October 15, 2015Date of Patent: October 17, 2017Assignee: SPOLEK PRO CHEMICKOU A HUTNI VYROBU A.S.Inventors: Zdenek Ondrus, Pavel Kubicek, Karel Filas, Petr Sladek
-
Patent number: 9248434Abstract: This invention relates to a catalyst containing from about 2 up to about 8% by wt. of copper, zero up to about 0.6 moles/kg of one or more alkali metal(s), from about 0.08 up about 0.85 moles/kg of one or more alkaline earth metals and from about 0.09 up to about 0.9 moles/kg of one or more transition metals selected from the group consisting of Mn, Re and mixtures thereof, where all the metals are impregnated in form of their chlorides or other water soluble salts on a fluidizable support with a BET surface area of from about 80 up to about 220 m2/g. A process for the oxychlorination of ethylene to form 1,2-dichloroethane using such a catalyst having good activity, good selectivity and low tendency to stickiness in fluidized bed oxychlorination reactions.Type: GrantFiled: November 5, 2013Date of Patent: February 2, 2016Assignee: BASF CorporationInventors: Rolf Tompers, Keith Kramer
-
Publication number: 20150112104Abstract: The preparation of chlorinated hydrocarbons by reacting a chlorinated alkane substrate, such as 1,1,1,3-tetrachloropropane, with a source of chlorine, such as chlorine (Cl2), in the presence of a polyvalent bismuth compound, such as triphenyl bismuth and/or triphenyl bismuth dichloride, is described. With the method of the present invention, the chlorinated alkane product has covalently bonded thereto at least one more chlorine group than the chlorinated alkane substrate, and the chlorinated alkane substrate and the chlorinated alkane product each have a carbon backbone structure that is in each case the same.Type: ApplicationFiled: September 26, 2014Publication date: April 23, 2015Inventor: Scott A. Sherwood
-
Patent number: 9000239Abstract: The present invention provides processes for the production of HCFO-1233zd, 1-chloro-3,3,3-trifluoropropene, from the starting material, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf). In a first process, HCFO-1233zd is produced by the isomerization of HCFO-1233xf. In a second process, HCFO-1233zd is produced in a two-step procedure which includes (i) dehydrochlorination of HCFO-1233xf into trifluoropropyne; and (ii) hydrochlorination of the trifluoropropyne into HCFO-1233zd.Type: GrantFiled: March 14, 2013Date of Patent: April 7, 2015Assignee: Honeywell International Inc.Inventors: Haiyou Wang, Hsueh Sung Tung
-
Patent number: 8952209Abstract: A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.Type: GrantFiled: March 13, 2013Date of Patent: February 10, 2015Assignee: Foosung Co., Ltd.Inventors: ook jae Cho, Jae Kug Ryu, Bong Seok Kim, Donghyun Kim, Byounghun Park, su jin Park, Jin-A Jung, Daewoo Kim
-
Patent number: 8921625Abstract: A method comprising: providing a halogen stream; providing an alkane stream; providing a decoking agent; and reacting at least a portion of the halogen stream with at least a portion of the alkane stream in the presence of a halogenation catalyst and the decoking agent to form a halogenated stream.Type: GrantFiled: July 17, 2009Date of Patent: December 30, 2014Assignee: Reaction35, LLCInventors: Sagar Gadewar, Saydul Amin Sardar, Philip Grosso, Aihua Zhang, Vivek Julka, Peter Stolmanov
-
Publication number: 20140206911Abstract: The preparation of chlorinated hydrocarbons, such as pentachloropropanes, such as 1,1,1,2,3-pentachloropropane, from tetrachloropropanes, such as 1,1,1,3-tetrachloropropane, in the presence of a polyvalent antimony compound that includes a pentavalent antimony compound, such as antimony pentachloride, is described. Also described are methods for preparing optionally chlorinated alkenes, such as, tetrachloropropenes, from chlorinated alkanes, such as pentachloropropanes, in the presence of ferric chloride and a polyvalent antimony compound that includes a pentavalent antimony compound.Type: ApplicationFiled: October 23, 2013Publication date: July 24, 2014Applicant: Axiall Ohio, Inc.Inventors: Scott A. Sherwood, Stephen Robert Lester
-
Patent number: 8304589Abstract: A process of making a chlorinated hydrocarbon through a thermal dehydrochlorination step in which an unsaturated compound represented by the following general formula (2) is obtained by thermally decomposing a saturated compound represented by the following general formula (1). CCl3—CCl2-mHm—CCl3-nHn??(1) CCl2?CCl2-mHm-1—CCl3-nHn??(2) (in the above formulas, m is 1 or 2, and n is an integer of 0 to 3.).Type: GrantFiled: February 27, 2012Date of Patent: November 6, 2012Assignee: Tokuyama CorporationInventors: Tadahiro Fukuju, Kikuo Yamamoto, Masayuki Moriwaki, Yasutaka Komatsu, Akihiro Saito, Shunsuke Hosaka, Dai Tsunoda, Jun Kawakami
-
Patent number: 7671244Abstract: The invention relates to a method for producing high-purity 1,2-dichloroethane from dissolved chlorine and dissolved ethylene which are brought into contact with each other using a circulating liquid reaction medium which essentially consists of 1,2-dichloroethane and a catalyst and passes through at least one reaction loop. The two limbs of the loop are connected to a gas-phase stripping container which is arranged at the top and from which the reaction product is outwardly transferred either in a gaseous or liquid form or both in a gaseous form and in a liquid form. The addition points for the addition of chlorine and dissolved ethylene are arranged in the limb of the loop in which the liquid rises. The addition point for dissolved chlorine is always arranged downstream of the ethylene addition point.Type: GrantFiled: December 15, 2005Date of Patent: March 2, 2010Assignee: UHDE GmbHInventors: Harald Hafenscher, Reinhold Weis, Michael Benje
-
Patent number: 7579509Abstract: The invention refers to a process for the production of high-purity 1,2-dichloroethane from dissolved chlorine and dissolved ethylene, which are brought into contact with each other in a circulating liquid reaction fluid, which mainly consists of 1,2-dichlorethane and a catalyst and flows through at least one vertically arranged loop-type reaction section, both legs of the loop being connected to an overhead degassing vessel from where the reaction product is withdrawn either in gaseous or in liquid state or in both gaseous and liquid state, and numerous admixing sections being arranged in the leg of the loop in which the liquid rises, and each of these admixing sections having one upstream feed point for dissolved or gaseous ethylene and one downstream feed point for dissolved chlorine and, if required, the admixing sections featuring static mixers.Type: GrantFiled: June 15, 2005Date of Patent: August 25, 2009Assignees: Uhde GmbH, Vinnolit GmbH & Co. KGInventors: Michael Benje, Harald Hafenscher
-
Patent number: 7504077Abstract: With a method or a device for producing 1,2-dichloroethane or ethylene (di)chloride (EDC) with the use of a circulating reaction medium and a catalyst, whereby ethylene and chlorine are supplied to the reaction medium, the catalytic chlorination of ethylene is achieved in a manner that is particularly gentle to the product by introducing the ethylene or chlorine gas into the reaction medium via microporous gas diffuser elements for producing gas bubbles with a diameter of 0.3 to 3 mm.Type: GrantFiled: October 8, 2004Date of Patent: March 17, 2009Assignees: Uhde GmbH, Vinnolit Technologie GmbH & Co. KGInventor: Michael Benje
-
Publication number: 20080146854Abstract: The invention relates to a method for producing high-purity 1,2-dichloroethane from dissolved chlorine and dissolved ethylene which are brought into contact with each other using a circulating liquid reaction medium which essentially consists of 1,2-dichloroethane and a catalyst and passes through at least one reaction loop. The two limbs of the loop are connected to a gas-phase stripping container which is arranged at the top and from which the reaction product is outwardly transferred either in a gaseous or liquid form or both in a gaseous form and in a liquid form. The addition points for the addition of chlorine and dissolved ethylene are arranged in the limb of the loop in which the liquid rises. The addition point for dissolved chlorine is always arranged downstream of the ethylene addition point.Type: ApplicationFiled: December 15, 2005Publication date: June 19, 2008Inventors: Harald Hafenscher, Reinhold Weis, Michael Benje
-
Publication number: 20080125613Abstract: The invention refers to a process for the production of high-purity 1,2-dichloroethane from dissolved chlorine and dissolved ethylene, which are brought into contact with each other in a circulating liquid reaction fluid, which mainly consists of 1,2-dichlorethane and a catalyst and flows through at least one vertically arranged loop-type reaction section, both legs of the loop being connected to an overhead degassing vessel from where the reaction product is withdrawn either in gaseous or in liquid state or in both gaseous and liquid state, and numerous admixing sections being arranged in the leg of the loop in which the liquid rises, and each of these admixing sections having one upstream feed point for dissolved or gaseous ethylene and one downstream feed point for dissolved chlorine and, if required, the admixing sections featuring static mixers.Type: ApplicationFiled: June 15, 2005Publication date: May 29, 2008Inventors: Michael Benje, Harald Hafenscher
-
Patent number: 7348461Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.Type: GrantFiled: October 31, 2003Date of Patent: March 25, 2008Assignee: Great Lakes Chemical CorporationInventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Qian, Julie Sacarias
-
Patent number: 7132578Abstract: A process for the preparation of trifluoromethyl iodide is provided. The process includes the step of contacting in a reactor a compound represented by the formula: CF3—W and a compound represented by the formula: IFn wherein W can be H, Br, Cl, COOH, COCl, COOCH3, COOC2H5, COCH3, COPh, CF3, Si(CH3)3, SPh, SCH3, SSCF3, SSPh, SSCH3, or SO2Cl, wherein n is 1, 3, 5, or 7, and wherein the step of contacting is carried out, at a temperature, pressure and for a length of time sufficient to produce trifluoromethyl iodide. The contacting step can be carried out in the presence or absence of a catalyst and the contacting step can be carried out in the presence or absence of air.Type: GrantFiled: July 14, 2005Date of Patent: November 7, 2006Assignee: Honeywell International Inc.Inventors: Sudip Mukhopadhyay, Hsueh Sung Tung
-
Patent number: 7102042Abstract: A method for preparing a composition of the formula in a yield greater than 50% where R1 is C 1-20 comprising the steps of combining fluorene or dibromo flourene, an excess of alkali metal hydroxide and a halogenated alkyl in the presence of a phase transfer catalyst but in the absence of a polar aprotic solvent; heating the combination; and separating the dialkylated fluorene or dialylated dibromo fluorene. If the flourene is not brominated prior to alkylation, the dialkylated fluorene is then brominated.Type: GrantFiled: December 19, 2002Date of Patent: September 5, 2006Assignee: Dow Global Technologies Inc.Inventors: Timothy J. Adaway, Michael A. Gonzalez, Weishi Wu
-
Patent number: 7094936Abstract: Methods and materials are provided for the production and purification of halogenated compounds and intermediates in the production of 1,1,1,3,3-pentafluoropropane. In a preferred embodiment, the process steps include: (1) reacting carbon tetrachloride with vinyl chloride to produce 1,1,1,3,3-pentachloropropane; (2) dehydrochlorinating the 1,1,1,3,3-pentachloropropane with a Lewis acid catalyst to produce 1,1,3,3-tetrachloropropene; (3) fluorinating the 1,1,3,3-tetrachloropropene to produce 1-chloro-3,3,3-trifluoropropene; (4) fluorinating the 1-chloro-3,3,3-trifluoropropene to produce a product mixture containing 1,1,1,3,3-pentafluoropropane; and (5) separating 1,1,1,3,3-pentafluoropropane from by-products.Type: GrantFiled: October 16, 2003Date of Patent: August 22, 2006Assignee: Great Lakes Chemical CorporationInventors: Stephen Owens, Andrew Jackson, Vimal Sharma, Mitchel Cohn, John Cheng-Ping Qian, Julia Ann Sacarias, Yuichi Iikubo
-
Patent number: 6984763Abstract: An oxidative halogenation and optional dehydrogenation process involving contacting a reactant hydrocarbon having three or more carbon atoms, such as propane or propene, or a halogenated derivative thereof, with a source of halogen, and optionally, a source of oxygen in the presence of a rare earth halide or rare earth oxyhalide catalyst, so as to form a halogenated hydrocarbon product, such as allyl chloride, having three or more carbon atoms and having a greater number of halogen substituents as compared with the reactant hydrocarbon, and optionally, an olefinic co-product, such as propene. The less desired of the two products, that is, the halogenated hydrocarbon or the olefin as the case may be, can be recycled to the process to maximize the production of the desired product.Type: GrantFiled: April 23, 2002Date of Patent: January 10, 2006Assignee: Dow Global Technologies Inc.Inventors: Albert E. Schweizer, Mark E. Jones, Daniel A. Hickman
-
Patent number: 6977316Abstract: A catalytic one-step process for the production of CF3I by reacting, preferably in the presence of a source of oxygen, a source of iodine with a reactant of the formula: CF3R where R is —SH, —S—S—CF3, —S-phenyl, or —S—Si—(CH3)3. The catalyst may be a metal salt such as salts of Cu, Hg, Pt, Pd, Co, Mn, Rh, Ni, V, TI, Ba, Cs, Ca, K and Ge and mixtures thereof, preferably on a support such as MgO, BaO and CaO, BaCO3, CsNO3, Ba (NO3)2, activated carbon, basic alumina, and ZrO2.Type: GrantFiled: December 8, 2004Date of Patent: December 20, 2005Assignee: Honeywell International Inc.Inventors: Sudip Mukhopadhyay, HsuehSung Tung
-
Patent number: 6841708Abstract: With a method or a device for producing 1,2-dichloroethane or ethylene (di)chloride (EDC) with the use of a circulating reaction medium and a catalyst, whereby ethylene and chlorine are supplied to the reaction medium, the goal is to permit the catalytic chlorination of ethylene in a manner that is particularly gentle to the product. This is achieved in terms of the method and by other means in that the ethylene or chlorine gas are introduced into the reaction medium by means of microporous gas diffuser elements for producing gas bubbles with a diameter of 0.3 to 3 mm.Type: GrantFiled: October 12, 1999Date of Patent: January 11, 2005Assignees: Vinnolit Technologie GmbH & Co., Uhde GmbHInventor: Michael Benje
-
Patent number: 6756513Abstract: Monochlorinated hydrocarbons of high isomeric purity are prepared by a process, which comprises: reacting a monoalcohol having an alkyl radical having from 3 to 20 carbon atoms with cyanuric chloride; and purifying the resulting monochlorinated hydrocarbon by distillation after separation of salts and washing the monochlorinated hydrocarbon with alkali. The invention relates to a process for preparing monochlorinated hydrocarbons which contain an alkyl radical having from 3 to 20 carbon atoms and have a high isomeric purity by reacting a monoalcohol having a hydrocarbon radical containing an alkyl radical having from 3 to 20 carbon atoms to which additional cycloaliphatic radicals, aryl radicals, aralkyl radicals and alkylaryl radicals may be bound with cyanuric chloride, separating off salts, washing the reaction mixture with alkali and purifying the resulting monochlorinated hydrocarbons by distillation.Type: GrantFiled: August 16, 2002Date of Patent: June 29, 2004Assignee: Degussa AGInventors: Manfred Neumann, Clemens Osterholt
-
Patent number: 6255544Abstract: A liquid phase process is disclosed for producing halogenated alkane adducts of the formula CAR1R2CBR3R4 (where A, B, R1, R2, R3, and R4 are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR1R2═CR3R4 in a solvent and in the presence of a catalyst system containing (i) at least one catalyst comprising monovalent copper, and (ii) at least one ionic promoter selected from the group consisting of substituted ammonium halides, pyridinium and substituted pyridinium halides, and quaternary salts of the type (MQ4)Y where M is an element of Group VA of the Periodic Table (i.e., N, P, As, Sb, or Bi), Q is a C1-C18 hydrocarbyl group, and Y is chloride, bromide or iodide. Production of hydrofluoroalkanes by reacting selected adducts of the type produced above with HF is also disclosed.Type: GrantFiled: July 13, 1999Date of Patent: July 3, 2001Assignee: E. I. du Pont de Nemours and CompanyInventor: Allen Capron Sievert
-
Patent number: 6229059Abstract: Using a process for the production of 1,2-dichloroethane by reacting ethylene and chlorine in the liquid phase in the presence of a catalyst, the 1,2-dichloroethane produced being drawn off in the gaseous phase, the high-boilers being separated from the 1,2-dichloroethane in a heavy-ends column and in a downstream vacuum column and the light-boilers and gases, such as ethylene and hydrogen, being separated in an EDC stripping column or in a light-ends column, a commercial-scale solution should be created to effectively remove the hydrogen chloride at the head of the stripping column or light-boiling column to avoid corrosion occurring there. This is achieved in that the cleaned 1,2-dichloroethane leaving the heavy-ends column is cleaned in the EDC stripping column or in the light-ends column by separating the light-boilers and the gases.Type: GrantFiled: February 4, 2000Date of Patent: May 8, 2001Assignee: Krupp Uhde GmbHInventor: Joachim Motz
-
Patent number: 6204419Abstract: Process and apparatus for preparing 1,2-Dichloroethane by direct chlorination If in the reaction of ethylene with chlorine to form 1,2-dichloroethane (EDC) the catalyst components sodium chloride and iron(III) chloride are used in a molar ratio of below 0.5, then the EDC is obtained in sufficiently high purity to allow direct conversion to vinyl chloride. With maintenance of the stated molar ratio the reaction can be carried out very advantageously in terms of equipment and energy consumption, for example by vaporizing some of the EDC in an expansion vessel.Type: GrantFiled: June 7, 1995Date of Patent: March 20, 2001Assignee: Vinnolit Technologie GmbH & Co. KGInventors: Jürgen Eichler, Reinhard Krumböck, Wenzel Kühn, Peter Schwarzmaier, Thomas Wild, Rudolf Spielmannleitner, Manfred Stöger, Ingolf Mielke
-
Supported catalyst, process for its production as well as its use in the oxychlorination of ethylene
Patent number: 5986152Abstract: A supported catalyst includes: a) 0.5-15 wt. % of one or more Cu-II compounds, the quantitative amounts referring to copper metal; b) 0.1-8 wt. % of one or more alkali metal compounds, the quantitative amounts referring to alkali metal; c) 0.1-10 wt. % of an oxide mixture including; c1) 80-95 mole % of oxides of cerite rare earths with atomic Nos. 57 to 62, except promethium, and c2) 5-20 mole % of zirconium dioxide, where c1) and c2) must together total 100 mole % and the quantitative amount of c) refers to the oxides of the mixture, and d) the remainder up to 100 wt. % being .gamma. and/or .alpha.-aluminum oxide as support material, wherein e) the support material d) has a total pore volume in the range from 0.65 to 1.2 cm.sup.3 /g, and wherein f) the supported catalyst is present in the form of cylindrical hollow bodies having at least one passage channel, the ratio of height h to external diameter d.sup.e being less than 1.5 for diameters d.sub.e of up to 6 mm, and the ratio h/d.sub.e being less than 0.Type: GrantFiled: November 24, 1998Date of Patent: November 16, 1999Assignee: Degussa-Huls AGInventors: Herbert Muller, Stefan Bosing, Ludwig Schmidhammer, Albin Frank, Klaus Haselwarter -
Patent number: 5696309Abstract: Disclosed is a method of chlorinating vinylidene chloride contained in a solution 1,1 -dichloro-1-fluoroethane to provide a chlorinated compound having a boiling point different from the 1,1-dichloro-1-fluoroethane to permit separation therefrom. The method comprises providing a solution containing 1,1-dichloro-1-fluoroethane and vinylidene chloride; introducing chlorine to the solution; and contacting the chlorine containing solution with a metal oxide to effect chlorination of the vinylidene chloride to produce one of 1,1,1,2-tetrachloroethane, trichloroethylene and pentachloroethane.Type: GrantFiled: April 17, 1995Date of Patent: December 9, 1997Assignee: LaRoche Industries, Inc.Inventors: Andrew Jackson, C. Bradford Boyce
-
Patent number: 5569798Abstract: A method of chlorinating vinylidene chloride contained in a solution 1,1-dichloro-1-fluoroethane to provide a chlorinated compound having a boiling point different from the 1,1-dichloro-1-fluoroethane to permit separation therefrom, the method comprising providing a solution containing 1,1-dichloro-1-fluoroethane and vinylidene chloride; and contacting said solution with chlorine and an alumina catalyst to effect chlorination of said vinylidene chloride to produce a chlorinated compound having a boiling point different than said 1,1 dichloro-1-fluoroethane.Type: GrantFiled: April 17, 1995Date of Patent: October 29, 1996Assignee: LaRoche Industries, Inc.Inventor: Andrew Jackson
-
Patent number: 5527975Abstract: Bromochloro-alkanes are made by reaction of a corresponding chloroalkene with hydrogen bromide by a continuous process carried at -20.degree. to +20.degree. C., preferably in a gas-lift reactor.Type: GrantFiled: February 13, 1995Date of Patent: June 18, 1996Assignee: Albemarle CorporationInventors: Dominique Cosserat, Francois Stutz
-
Patent number: 5315052Abstract: 1,1,1-Trichloroethane (viz., methylchloroform) and 1,1,2-trichloroethane are produced in the same reactor by feeding molecular chlorine and chloroethene (viz., vinyl chloride) as well as 1,1-dichloroethane to the reactor. The ratios at which the two trichloroethanes are produced can be easily controlled by controlling the relative ratios of 1,1-dichloroethane and chloroethene introduced to the reactor. The reactions are conducted in the liquid phase in the presence of free radical initiator.Type: GrantFiled: April 29, 1993Date of Patent: May 24, 1994Assignee: PPG Industries, Inc.Inventors: Tommy G. Taylor, J. Douglas Mansell, John P. Shamburger, Mark E. Woodyear
-
Patent number: 4922042Abstract: Process for the production of 1,2-dichloroethane by the reaction between ethylene and chlorine in the vapor phase in the presence of a catalyst comprising alumina, wherein the reaction is carried out using a fluidized bed comprising fluidizable, substantially spherical particles of alumina of surface area not exceeding 10 m.sup.2 g.sup.-1 and especially in the range 0.2 to 6 m.sup.2 g.sup.-1.Type: GrantFiled: January 30, 1986Date of Patent: May 1, 1990Assignee: Imperial Chemical Industries PLCInventors: Keith M. Hoos, Jack Wolstenholme
-
Patent number: 4873384Abstract: A method for producing dichloroethane (EDC) by reacting ethylene and chlorine in a liquid reaction medium composed mainly of EDC at a temperature of not less than the boiling point of EDC measured at ordinary pressure, characterized by leading the vapor of the reaction medium generated in a reactor from the top of the reactor to a heat exchanger so as to recover and utilize the latent heat resulting from condensation of the vapor in the heat exchanger. According to the present invention, high heat utilization efficiency can be attained with advantages as compared with conventional EDC production methods.Type: GrantFiled: April 14, 1989Date of Patent: October 10, 1989Assignee: Kanegafuchi Kagaku Kogyo Kabushiki KaishaInventors: Shun Wachi, Yuusaku Ariki, Hiroshi Oshima
-
Patent number: 4832873Abstract: Polybrominated higher alkylbenzenes may be produced by reacting the corresponding hydrocarbon material with bromine chloride in an excess bromine reaction medium in the presence of an antimony halide catalyst.Type: GrantFiled: October 9, 1987Date of Patent: May 23, 1989Assignee: Great Lakes Chemical CorporationInventors: Nicolai A. Favstritsky, Dennis M. Borden
-
Patent number: 4774372Abstract: A method for producing dichloroethane (EDC) from ethylene and chlorine in high selectivity, yield and efficiency and in high safety wherein the unreacted ethylene and oxygen included in an exhaust gas discharged from a reactor are prevented from forming an explosive gas mixture by diluting the exhaust gas with a dichloroethane vapor.Type: GrantFiled: August 12, 1987Date of Patent: September 27, 1988Assignee: Kanegafuchi Kagaku Kogyo Kabushiki KaishaInventors: Shun Wachi, Yuusaku Ariki
-
Patent number: 4774373Abstract: The disclosure relates to a process for making 1,2-dichloroethane by reacting ethylene with chlorine in a solvent in the presence of a catalyst, at a temperature of about 20.degree. to 200.degree. C. at atmospheric or elevated pressure, and distillatively separating the 1,2-dichloroethane from the chlorination mixture. The disclosure provides more particularly for the catalyst used to be an anhydrous tetrachloroferrate(1-) or a substance capable of forming a tetrachloroferrate(1-) in the reaction mixture.Type: GrantFiled: November 23, 1983Date of Patent: September 27, 1988Assignee: Hoechst AktiengesellschaftInventors: Joachim Hundeck, Harald Scholz, Hans Hennen
-
Patent number: 4754088Abstract: In a process for preparation of 1,2-dichloroethane by chlorination of ethylene-containing reaction vent gases from the oxychlorination of ethylene in the presence of a catalyst carrier impregnated with metal compounds wherein the waste from the oxychlorination stage are chlorinated, the improvement comprising preheating the ethylene-containing waste gases to at least 50.degree. C. and then chlorinating the ethylene at 100.degree. to 300.degree. C. at a pressure of 1 to 7 bar with a space velocity of 100 to 5000 h.sup.-1 related to standard conditions in the presence of at least one metal compound selected from the group consisting of chlorides and oxides of manganese, nickel and cobalt supported on a catalyst carrier with reduced formation of oxychlorinated by-products.Type: GrantFiled: February 11, 1987Date of Patent: June 28, 1988Assignee: Wacker-Chemie GmbHInventors: Ludwig Schmidhammer, Peter Hirschmann, Herbert Patsch, Rudolf Strasser
-
Patent number: 4672142Abstract: The disclosure relates to a process for making 1,2-dichloroethane by reacting ethylene and chlorine in a reaction zone having a liquid medium containing chlorinated C.sub.2 -hydrocarbons circulated therein. To this end, the disclosure provides:(a) for approximately equimolar proportions of ethylene and chlorine to be introduced into the circulated liquid medium; for the whole to be reacted in a reaction zone at a temperature of about 75.degree. up to 200.degree. C.Type: GrantFiled: September 16, 1982Date of Patent: June 9, 1987Assignee: Hoechst AktiengesellschaftInventors: Joachim Hundeck, Harald Scholz, Hans Hennen, Bernhard Kuxdorf, Herbert Pusche
-
Patent number: 4410747Abstract: In the technology for producing 1,2-dichloroethane by reacting ethylene with chlorine by a liquid phase reaction at 65.degree. to 160.degree. C. in 1,2-dichloroethane containing a metal chloride catalyst, there is a disadvantage of a side reaction for producing 1,1,2-trichloroethane etc. at a large ratio to cause lower yield of 1,2-dichloroethane. The present invention is to overcome the disadvantage and to produce 1,2-dichloroethane in high yield by reducing the side reaction by incorporating at least one of aromatic compounds selected from the group consisting of benzene type hydrocarbons having the formula ##STR1## wherein R.sub.1, R.sub.2 and R.sub.3 respectively represent hydrogen atom, C.sub.1 -C.sub.5 alkyl group and chlorinated derivatives thereof as a side reaction inhibitor at a ratio of at least 0.001 wt. % in the reaction medium.Type: GrantFiled: June 11, 1981Date of Patent: October 18, 1983Assignee: Ryo-nichi Company Ltd.Inventors: Tsunekazu Akiyama, Tetsuaki Kihara, Kazunaga Komizo, Hiroshi Kameo
-
Patent number: 4329323Abstract: A process for removing ethylene and vinyl chloride from a gas stream containing them by passing a mixed gas containing ethylene, vinyl chloride and a necessary amount of chlorine through a fixed-bed reactor charged with as a catalyst an activated alumina supporting at least 4% by weight of ferric chloride in terms of iron, said catalyst having an outer surface area per unit packed catalyst volume of not less than 7.8 cm..sup.2 /ml. Ethylene and vinyl chloride are converted into and removed as 1,2-dichloroethane and 1,1,2-trichloroethane. The concentrations of ethylene and vinyl chloride can be decreased to not more than 10 p.p.m. and not more than 20 p.p.m., respectively.Type: GrantFiled: October 21, 1980Date of Patent: May 11, 1982Assignee: Kanegafuchi Kagaku Kogyo Kabushiki KaishaInventors: Ken Shiozaki, Hironobu Ibaraki
-
Patent number: 4259264Abstract: In the chlorination of ethylene in the liquid phase, an excess stoichiometric amount of chlorine is normally used in order to achieve as complete as possible a conversion of the ethylene. Part of the excess chlorine reacts by substitution and thereby reduces the yield of desired 1,2-dichloroethane. The unreacted excess chlorine therefore has laboriously to be removed in subsequent reaction steps. As a result of the method according to the invention to limit the chlorine excess to less than 600 ppm by weight in the reaction cycle, these disadvantages can be obviated. The constant compliance with such a low chlorine excess without fluctuations is rendered possible in industrial operation by the arrangement according to the invention for the continuous recording of the chlorine concentration, even in the presence of catalysts.Type: GrantFiled: January 15, 1979Date of Patent: March 31, 1981Assignee: Wacker-Chemie GmbHInventors: Ludwig Schmidhammer, Ernst Selbertinger
-
Patent number: 4226812Abstract: An improved process is described for producing chlorotrifluoroethylene, a useful monomer for making high strength chlorofluoropolymers, comprising passing a mixture of 1,1,2-trichloro-1,2,2-trifluoroethane, ethylene, hydrogen chloride and elemental oxygen in the vapor phase, at a temperature from about 350.degree. to 525.degree. C., over a catalyst consisting essentially of a mixture of copper chloride and an alkali metal chloride, preferably a eutectic mixture, occluded in a molecular sieve, having an average pore size diameter in the range of about 5 to 11 angstroms.A new catalyst composition is also described, useful in oxyhydrochlorination processes conducted at temperatures above 350.degree. C., consisting essentially of a mixture of copper chloride and an alkali metal chloride, preferably a eutectic mixture, occluded in a molecular sieve, having an average pore size diameter in the range of about 5 to 11 angstroms.Type: GrantFiled: November 25, 1977Date of Patent: October 7, 1980Assignee: Allied Chemical CorporationInventors: Wim J. M. Pieters, William E. Gates, Franz Wenger