Dehydrogenation Patents (Class 585/252)
  • Patent number: 11078134
    Abstract: The invention relates to a process for the production of an alkene by alkane oxidative dehydrogenation, comprising: (a) subjecting a stream comprising an alkane to oxidative dehydrogenation conditions, comprising contacting the alkane with oxygen in the presence of a catalyst comprising a mixed metal oxide, resulting in a stream comprising alkene, unconverted alkane, water, carbon dioxide, unconverted oxygen, carbon monoxide and optionally an alkyne; (b) removing water from at least part of the stream comprising alkene, unconverted alkane, water, carbon dioxide, unconverted oxygen, carbon monoxide and optionally an alkyne resulting from step (a), resulting in a stream comprising alkene, unconverted alkane, carbon dioxide, unconverted oxygen, carbon monoxide and optionally alkyne; (c) removing unconverted oxygen, carbon monoxide and optionally alkyne from at least part of the stream comprising alkene, unconverted alkane, carbon dioxide, unconverted oxygen, carbon monoxide and optionally alkyne resulting from s
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: August 3, 2021
    Assignee: Shell Oil Company
    Inventors: Georgios Mitkidis, Guus Van Rossum, Maria San Roman Macia, Ronald Jan Schoonebeek, Michael Johannes Franciscus Maria Verhaak
  • Patent number: 11040928
    Abstract: A process and apparatus for converting an alkane to an olefin. In one embodiment, the process involves oxidative coupling of an alkane, e.g., methane, with an oxidant, such as air, to produce an olefin having twice the number of carbon atoms as the alkane, e.g., ethylene. In another embodiment, the process involves oxidative dehydrogenation of an alkane, e.g., ethane, with an oxidant to form an olefin having the same number of carbon atoms as the alkane, e.g., ethylene. The process involves passing a flow of the oxidant from a first flow passage through a porous medium; diffusing a flow of the alkane from a second flow passage into the porous medium; and contacting the reactant alkane and the oxidant in the presence of a catalyst within the porous medium to produce the olefin.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: June 22, 2021
    Assignee: PRECISION COMBUSTION, INC.
    Inventor: Jeffrey Weissman
  • Patent number: 10821432
    Abstract: Disclosed is an olefin production method including: pretreating a catalyst by providing reduction gas to an alumina type catalyst to produce olefin from the hydrocarbon including not less than 90 wt % of LPG (Stage 1); producing the olefin by providing the catalyst pretreated at Stage 1 into Riser of Fast Fluidization Regime to dehydrogenate the hydrocarbon (Stage 2); separating the mixture of the produced propylene and the catalyst used at Stage 2, and regenerating the separated catalyst (Stage 3); and recycling the catalyst regenerated at Stage 3 to the process of Stage 1 (Stage 4).
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: November 3, 2020
    Assignees: SK GAS CO., LTD., KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Deuk Soo Park, Ung Gi Hong, Hyeongchan Ahn, Won Choon Choi, Yong Ki Park
  • Patent number: 10730811
    Abstract: A process for producing ethylene is proposed in which an ethane- and oxygen-containing reaction input is formed and a portion of the ethane and of the oxygen in the reaction input is converted into ethylene and into acetic acid by oxidative dehydrogenation to obtain a process gas, wherein the process gas contains the unconverted portion of the ethane and of the oxygen, the ethylene and the acetic acid and also water and wherein the process gas is subjected to a water quench. It is provided that the water quench comprises introducing the process gas into a scrubbing column (10, 20, 30, 40, 50) into which in at least two different column portions respective aqueous, liquid scrubbing medium streams are introduced and run in countercurrent to the process gas. A corresponding plant (100) likewise forms part of the subject matter of the invention.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: August 4, 2020
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Mathieu Zellhuber, Andreas Peschel, Helmut Fritz
  • Patent number: 10710945
    Abstract: Aromatic compositions useful in various applications, such as aromatic fluid solvents and high temperature heat transfer fluids, are provided herein. Also provided are advantageous methods for obtaining the aromatic compositions, utilizing hydroalkylation of precursor aromatic hydrocarbons such as benzene, toluene, xylene, and the like. Particularly preferred aromatic compositions include one or more of cycloalkylaromatic, dicycloalkylaromatic, biphenyl, terphenyl, and diphenyl oxide compounds. The aromatic compositions may be blended with an aromatic solvent or other aromatic fluid comprising one or more of alkylnaphthalenes, alkylbenzenes, and naphthalene, e.g., to form a useful aromatic fluid solvent, or the aromatic compositions may be utilized as high temperature heat transfer fluids (with or without additional blend components).
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: July 14, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen M. Davis
  • Patent number: 10472304
    Abstract: The present invention relates to a hydrocarbon conversion catalyst comprising i) a catalyst, in oxidic form, metals M1, M2, M3 and M4, wherein: M1 is selected from Si, Al, Zr, and mixtures thereof; M2 is selected from Pt, Cr, and mixtures thereof; M3 is selected from W, Mo, Re and mixtures thereof; M4 is selected from Sn, K, Y, Yb and mixtures thereof; and ii) a hydrogen scavenger selected from at least one alkali and/or alkaline earth metal derivative, preferably in metallic, hydride, salt, complex or alloy form; as well as a hydrocarbon conversion process utilizing this catalyst.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 12, 2019
    Assignee: SMH Co., Ltd
    Inventors: Kongkiat Suriye, Amnart Jantharasuk, Wuttithep Jareewatchara
  • Patent number: 9896393
    Abstract: In a process for producing dialkylbiphenyl compounds, a feed comprising substituted cyclohexylbenzene isomers having the formula (I): wherein each of R1 and R2 is an alkyl group and wherein the feed comprises m % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the feed; is transalkylated with a compound of formula (II): to produce a transalkylation product comprising substituted cyclohexylbenzene isomers having the formula (I) and including n % by weight of isomers in which R1 is in the 2-position, based on the total weight of substituted cyclohexylbenzene isomers in the transalkylation product, wherein n<m. At least part of the transalkylation product is then dehydrogenated under conditions effective to convert at least part of the substituted cyclohexylbenzene isomers in the transalkylation product to dialkylbiphenyl compounds.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: February 20, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Tan-Jen Chen, Neeraj Sangar, Ali A. Kheir, Aaron B. Pavlish
  • Patent number: 9725377
    Abstract: This invention relates to process for producing biphenyl esters, the process comprising: (a) contacting a feed comprising toluene, xylene or mixtures thereof with hydrogen in the presence of a hydroalkylation catalyst to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene, wherein the hydroalkylation catalyst comprises: 1) binder present at 40 wt % or less (based upon weight of final catalyst composition), 2) a hydrogenation component present at 0.2 wt % or less (based upon weight of final catalyst composition), and 3) an acidic component comprising a molecular sieve having a twelve membered (or larger) ring pore opening, channel or pocket and a largest pore dimension of 6.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: August 8, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Emiel de Smit, Neeraj Sangar, Michael Salciccioli, Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Scott J. Weigel
  • Patent number: 9708230
    Abstract: In a process for producing biphenyl compounds, a Cn aromatic hydrocarbon may be hydroalkylated to give C2n cycloalkylaromatic compounds and byproduct Cn saturated cyclic hydrocarbons. The C2n cycloalkylaromatic compounds are dehydrogenated to provide the biphenyl compounds. The Cn saturated cyclic hydrocarbons may also be dehydrogenated back to the corresponding Cn aromatic hydrocarbon, which may be recycled to provide additional feed. Although both the intermediate C2n cycloalkylaromatic compounds and the byproduct Cn saturated cyclic hydrocarbons should be dehydrogenated, at least part of the dehydrogenation of the Cn saturated cyclic hydrocarbons should take place in the absence of C2n or greater hydrocarbons. Thus, dehydrogenation of the byproduct Cn saturated cyclic hydrocarbons should take place at least in part separately from dehydrogenation of the C2n cycloalkylaromatic compounds.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 18, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Jihad M. Dakka, Neeraj Sangar, Lorenzo C. DeCaul, Ali A. Kheir
  • Patent number: 9688602
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently an integer from 1 to 3, is contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound. The dehydrogenation catalyst comprises an element or compound thereof from Group 10 of the Periodic Table of Elements deposited on a refractory support, such as alumina.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 27, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Chuansheng Bai, James J. Tanke, Gregory J. De Martin, Mary T. Van Nostrand, Michael Salciccioli, Ali A. Kheir, Neeraj Sangar
  • Patent number: 9663417
    Abstract: In a process for producing methyl-substituted biphenyl compounds, a feed comprising at least one aromatic hydrocarbon selected from the group consisting of toluene, xylene and mixtures thereof is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes and/or (dimethylcyclohexyl)xylenes. At least part of the hydroalkylation reaction product is then dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of methyl-substituted biphenyl compounds.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: May 30, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul
  • Patent number: 9464166
    Abstract: In a process for producing 3,4? and/or 4,4? dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4? and 4,4? dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x? (where x? is 2?, 3?, or 4?) and 3,3? dimethylbiphenyl isomers.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: October 11, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Keith H. Kuechler, Neeraj Sangar, Michael Salciccioli, Alan A. Galuska, Gary D. Mohr
  • Patent number: 9365467
    Abstract: In a process for producing cyclohexylbenzene, benzene is contacted with hydrogen under hydroalkylation conditions effective to form a first effluent stream comprising cyclohexylbenzene, cyclohexane, methylcyclopentane, and unreacted benzene. At least a portion of the first effluent stream is contacted with a dehydrogenation catalyst under dehydrogenation conditions to convert at least a portion of the cyclohexane to benzene thereby forming a second effluent stream. The amount of methylcyclopentane in the second effluent stream is different by no more than 65% of the total amount of the portion of the first effluent stream, said amounts being on a weight basis. A methylcyclopentane-containing stream is removed from either the first or the second effluent stream and at least a portion of the second effluent stream containing benzene is recycled to the hydroalkylation step.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 14, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, James R. Lattner, Christopher L. Becker, Jihad M. Dakka, Tan-Jen Chen
  • Patent number: 9328053
    Abstract: In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: is contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound, wherein each of m and n is independently an integer from 1 to 3 and wherein the dehydrogenation catalyst comprises (i) an element or compound thereof from Group 10 of the Periodic Table of Elements and (ii) tin or a compound thereof.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: May 3, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Jihad M. Dakka, Lorenzo C. DeCaul
  • Patent number: 9321704
    Abstract: A cyclohexane dehydrogenation process comprising a step of providing, as a benzene-containing stream, a vapor phase in equilibrium with a liquid phase at a condensation separation system; supplying benzene, hydrogen, and cyclohexane into a dehydrogenation reactor where at least part of the benzene supplied is from the benzene-containing stream. The use of a condensation separation system enables the control of the partial pressure of benzene in the material fed into the dehydrogenation reactor by controlling the temperature of the vapor phase, and hence the control of hydrogen to benzene molar ratio in the dehydrogenation reactor. The process results in a long life of the dehydrogenation catalyst due to reduced coking.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Christopher L. Becker, Tan-Jen Chen
  • Publication number: 20150126782
    Abstract: In a process for producing cyclohexylbenzene, hydrogen, and benzene are contacted in a first reaction zone under conditions effective to produce a product effluent containing residual benzene in the vapor phase and cyclohexylbenzene in the liquid phase. The product effluent is separated into a first stream that is rich in residual benzene in the vapor phase as compared to the product effluent and a second stream that is rich in cyclohexylbenzene in the liquid phase as compared to the product effluent. At least a portion of the first stream is cooled to condense at least a portion of the residual benzene in the vapor phase to the liquid phase and produce a condensate stream. At least a portion of the condensate stream is recycled to the first reaction zone.
    Type: Application
    Filed: September 5, 2012
    Publication date: May 7, 2015
    Applicant: ExxonMobil Chemical Company - Law Technology
    Inventors: Hari Nair, Christopher L. Becker, James R. Lattner, Jihad M. Dakka
  • Patent number: 8969639
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 3, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stuart L. Soled, Edward A. Lemon, Jr., Christine E. Kliewer, Tan-Jen Chen, Joseph E. Baumgartner, Sabato Miseo
  • Publication number: 20150057477
    Abstract: Methods and systems are provided for producing a fuel from a renewable feedstock. The method includes deoxygenating the renewable feedstock with a hydrogenation catalyst in a deoxygenation reaction zone to produce normal paraffins. The normal paraffins are isomerized to form isomerized paraffins using an isomerization catalyst in an isomerization reaction zone. Aromatic compounds are formed from non-aromatic compounds with an aromatic catalyst in an aromatic production zone downstream from the deoxygenation reaction zone.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: UOP LLC
    Inventors: Daniel Ellig, Stanley Joseph Frey, Timothy A. Brandvold
  • Publication number: 20150045596
    Abstract: In a process for producing cyclohexylbenzene, benzene is contacted with hydrogen in the presence of a hydroalkylation catalyst under hydroalkylation conditions effective to form a first effluent stream comprising cyclohexylbenzene, cyclohexane, and benzene. At least a portion of the cyclohexane from the first effluent stream is then contacted with hydrogen in the presence of a dehydrogenation catalyst under dehydrogenation conditions effective to convert at least some of the cyclohexane into benzene contained in a second effluent stream. At least some of the hydrogen is supplied to the process so as to contact the dehydrogenation zone (e.g., the dehydrogenation catalyst) before contacting the hydroalkylation catalyst.
    Type: Application
    Filed: December 5, 2012
    Publication date: February 12, 2015
    Inventors: Christopher L. Becker, James R. Lattner, Keith H. Kuechler, Hari Nair
  • Publication number: 20150011812
    Abstract: In a process for producing cyclohexylbenzene, hydrogen and benzene are introduced to a first hydroalkylation reaction zone which contains a hydroalkylation catalyst and which is operated under at least partly liquid phase conditions sufficient to effect hydroalkylation of benzene to produce a mixed liquid/vapor phase effluent comprising cyclohexylbenzene and unreacted benzene, wherein at least a portion of the unreacted benzene is in the vapor phase. At least a portion of the effluent is cooled to condense a liquid phase stream containing at least some of the cyclohexylbenzene in the effluent portion and leave a residual stream containing at least some of the unreacted benzene and cyclohexylbenzene. At least a portion of the liquid stream is recycled to the first hydroalkylation reaction zone or to contact the mixed phase effluent exiting the first hydroalkylation reaction zone. Other methods of cooling the reaction effluent are disclosed.
    Type: Application
    Filed: January 28, 2013
    Publication date: January 8, 2015
    Inventors: Christopher L. Becker, Hari Nair, James R. Lattner, Keith H. Kuechler
  • Publication number: 20150005531
    Abstract: In a process for producing phenol, benzene is hydroalkylated with hydrogen in the presence of a catalyst under conditions effective to produce a hydroalkylation reaction product comprising cyclohexylbenzene and cyclohexane. At least a portion of the cyclohexane from said hydroalkylation reaction product is then dehydrogenated to produce a dehydrogenation effluent comprising benzene, toluene and hydrogen. At least a portion of the dehydrogenation effluent is washed with a benzene-containing stream to transfer at least a portion of the toluene from the dehydrogenation effluent to the benzene-containing stream.
    Type: Application
    Filed: November 30, 2012
    Publication date: January 1, 2015
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Christopher L. Becker, James R. Lattner, Keith H. Kuechler, Hari Nair
  • Publication number: 20140378697
    Abstract: This invention relates to process for producing biphenyl esters, the process comprising: (a) contacting a feed comprising toluene, xylene or mixtures thereof with hydrogen in the presence of a hydroalkylation catalyst to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene, wherein the hydroalkylation catalyst comprises: 1) binder present at 40 wt % or less (based upon weight of final catalyst composition), 2) a hydrogenation component present at 0.2 wt % or less (based upon weight of final catalyst composition), and 3) an acidic component comprising a molecular sieve having a twelve membered (or larger) ring pore opening, channel or pocket and a largest pore dimension of 6.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 25, 2014
    Inventors: Emiel de Smit, Neeraj Sangar, Michael Salciccioli, Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Scott J. Weigel
  • Publication number: 20140371498
    Abstract: In a process for producing cyclohexylbenzene, benzene is contacted with hydrogen under hydroalkylation conditions effective to form a first effluent stream comprising cyclohexylbenzene, cyclohexane, methylcyclopentane, and unreacted benzene. At least a portion of the first effluent stream is contacted with a dehydrogenation catalyst under dehydrogenation conditions to convert at least a portion of the cyclohexane to benzene thereby forming a second effluent stream. The amount of methylcyclopentane in the second effluent stream is different by no more than 65% of the total amount of the portion of the first effluent stream, said amounts being on a weight basis. A methylcyclopentane-containing stream is removed from either the first or the second effluent stream and at least a portion of the second effluent stream containing benzene is recycled to the hydroalkylation step.
    Type: Application
    Filed: December 2, 2011
    Publication date: December 18, 2014
    Applicant: ExxonMobil Chemical Company - Law Technology
    Inventors: Keith H. Kuechler, James R. Lattner, Christopher L. Becker, Jihad M. Dakka, Tan-Jen Chen
  • Publication number: 20140316155
    Abstract: In a process for producing methyl-substituted biphenyl compounds, a feed comprising at least one aromatic hydrocarbon selected from the group consisting of toluene, xylene and mixtures thereof is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes and/or (dimethylcyclohexyl)xylenes together with dialkylated C21+ compounds. At least part of the dialkylated C21+ compounds is then removed from the hydroalkylation reaction product to produce a dehydrogenation feed; and at least part of the dehydrogenation feed is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of methyl-substituted biphenyl compounds.
    Type: Application
    Filed: March 7, 2014
    Publication date: October 23, 2014
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Victor DeFlorio
  • Publication number: 20140296587
    Abstract: A process is present for increasing the yields of 1,3 butadiene. The process includes recovering 1,3 butadiene from a cracking unit that generates a crude C4 stream. The 1,3 butadiene is separated and the remaining C4 process stream components are further reacted and dehydrogenated to generate 1,3 butadiene in a subsequent process stream. The subsequent process stream is recycled to recover the additional 1,3 butadiene.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicant: UOP LLC
    Inventors: Andrea G. Bozzano, Bipin V. Vora, Daniel H. Wei, Steven L. Krupa
  • Publication number: 20140275605
    Abstract: A composition is described comprising a mixture of (methylcyclohexyl)toluene isomers having the following formula: wherein the mixture comprises at least 50 wt % in total of the 3,3, 3,4 4,3 and 4,4-isomers of (methylcyclohexyl)toluene.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventors: Jihad M. Dakka, Lorenzo C. DeCaul, Wei Tang
  • Publication number: 20140249339
    Abstract: Oxidative dehydrogenation of paraffins to olefins provides a lower energy route to produce olefins. Oxidative dehydrogenation processes may be integrated with a number of processes in a chemical plant such as polymerization processes, manufacture of glycols, and carboxylic acids and esters. Additionally, oxidative dehydrogenation processes can be integrated with the back end separation process of a conventional steam cracker to increase capacity at reduced cost.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Xiaoliang Gao, Edward Christopher Foy, Claire Jeannine Ennis
  • Patent number: 8758722
    Abstract: Provided is a method for producing hydrogen aimed at storage and transportation, by which hydrogen for storage and transportation that is necessary for smoothly performing an organic chemical hydride method can be industrially produced efficiently at low cost. The method is a method for producing hydrogen aimed at storage and transportation in an organic chemical hydride method, in which: the hydrogenation process of an aromatic compound uses, as a hydrogen source for the reaction of the aromatic compound, a reaction gas is produced by a reforming reaction and adjusted a hydrogen concentration from 30 to 70 vol % by a shift reaction; and a hydrogenated aromatic compound is separated from a reaction mixture obtained in the hydrogenation process, which is followed by purification.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: June 24, 2014
    Assignee: Chiyoda Corporation
    Inventors: Yoshimi Okada, Masashi Saito, Shuhei Wakamatsu, Mitsunori Shimura
  • Publication number: 20140171702
    Abstract: Methods and apparatuses for increasing an alkyl-cyclopentane concentration in an aromatic-rich stream and methods for processing hydrocarbons are provided. In an embodiment, a method for increasing an alkyl-cyclopentane concentration in an aromatic-rich stream includes saturating aromatics in the aromatic-rich stream to form methylcyclohexane. Further, the method includes isomerizing the methylcyclohexane to form alkyl-cyclopentanes. The method dehydrogenates residual methylcyclohexane to form aromatics in a product stream. The product stream includes aromatics and alkyl-cyclopentanes.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: UOP LLC
    Inventor: Bryan K. Glover
  • Publication number: 20140058146
    Abstract: Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes processing the acetylene to form a stream having butadiene. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream is be treated to convert acetylene to butadiene. The method according to certain aspects includes controlling the level of carbon monoxide to prevent undesired reactions in downstream processing units.
    Type: Application
    Filed: June 11, 2013
    Publication date: February 27, 2014
    Inventors: Jeffery C. Bricker, John Q. Chen, Peter K. Coughlin, Debarshi Majumder
  • Publication number: 20130261342
    Abstract: A process for the telomerization of butadiene comprises reacting 1,3-butadiene and an alkanol, in the presence of a catalyst promoter and an alkoxydimerization catalyst comprising a Group VIII transition metal and a triarylphosphine ligand, which includes one phenyl that is mono-ortho-alkoxy substituted and at least one other phenyl including at least one substituent that withdraws electrons from the phosphorus atom. The product includes an alkoxy-substituted octadiene, which may then be used to produce 1-octene. The catalyst shows improved stability, activity and selectivity toward the alkoxy-substituted octadiene.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 3, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: John R. Briggs, Jasson T. Patton, Daryoosh Beigzadeh, Peter M. Margl, Henk Hagen, Sonet Vermaire-Louw
  • Patent number: 8450543
    Abstract: Isobutene, isoprene, and butadiene are obtained from mixtures of C4 and/or C5 olefins by dehydrogenation. The C4 and/or C5 olefins can be obtained by dehydration of C4 and C5 alcohols, for example, renewable C4 and C5 alcohols prepared from biomass by thermochemical or fermentation processes. Isoprene or butadiene can be polymerized to form polymers such as polyisoprene, polybutadiene, synthetic rubbers such as butyl rubber, etc. in addition, butadiene can be converted to monomers such as methyl methacrylate, adipic acid, adiponitrile, 1,4-butadiene, etc. which can then be polymerized to form nylons, polyesters, polymethylmethacrylate etc.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: May 28, 2013
    Assignee: Gevo, Inc.
    Inventors: Matthew W. Peters, Joshua D. Taylor, David E. Henton, Leo E. Manzer, Patrick R. Gruber, Josefa M. Griffith, Yassin Al Obaidi
  • Publication number: 20130060070
    Abstract: The invention relates to methods for producing fluid hydrocarbon products, and more specifically, to methods for producing fluid hydrocarbon product via catalytic pyrolysis. The reactants comprise solid hydrocarbonaceous materials, and hydrogen or a source of hydrogen (e.g., an alcohol). The products may include specific aromatic compounds (e.g., benzene, toluene, naphthalene, xylene, etc.).
    Type: Application
    Filed: August 13, 2012
    Publication date: March 7, 2013
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: George W. Huber, Huiyan Zhang, Torren Carlson
  • Publication number: 20120283494
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a first catalyst comprising at least one metal component and at least one support and a second catalyst. The first catalyst is utilized to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to at least one aromatic compound and the second catalyst is utilized to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to at least one paraffin.
    Type: Application
    Filed: December 17, 2010
    Publication date: November 8, 2012
    Inventors: Charles M. Smith, Tan-Jen Chen, Terry E. Helton, Teng Xu
  • Publication number: 20120271076
    Abstract: A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica-containing support is treated with an iridium compound and an organic compound comprising an amino group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jane C. Cheng
  • Publication number: 20120271077
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Applicant: Exxonmobile Chemical Patents Inc.
    Inventors: Teng Xu, Stuart L. Soled, Edward A. Lemon, JR., Christine E. Kliewer, Tan-Jen Chen, Joseph E. Baumgartner, Sabato Miseo
  • Publication number: 20120271078
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst comprising: (i) a support; (ii) a first component comprising at least one metal component selected from Group 1 and Group 2 of the Periodic Table of Elements; and (iii) a second component comprising at least one metal component selected from Groups 6 to 10 of the Periodic Table of Elements, wherein the catalyst composition exhibits an oxygen chemisorption of greater than 50%. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Terry E. Helton, Teng Xu
  • Publication number: 20120271079
    Abstract: A processes for producing a dehydrogenation reaction product stream comprising the step of contacting a hydrocarbon stream comprising cyclohexane and methyl cyclopentane with a dehydrogenation catalyst comprising at least one metal or compound thereof and at least one molecular sieve and under conditions effective to convert at least a portion of the cyclohexane to benzene and to convert at least a portion of the methyl cyclopentane to at least one paraffin. The hydrocarbon stream is produced by hydroalkylating benzene and hydrogen to form a hydroalkylation reaction product stream which is separated to yield the hydrocarbon stream.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Inventors: Teng Xu, Edward A. Lemon, JR., Tan-Jen Chen, Terry E. Helton
  • Patent number: 8236999
    Abstract: Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: August 7, 2012
    Assignee: Energia Technologies, Inc.
    Inventors: Krishniah Parimi, Thien Duyen Thi Nguyen
  • Publication number: 20100292518
    Abstract: The invention describes a two-step process for hydrotreatment of a feed derived from a renewable source, comprising: a) a first step, termed a mild pre-hydrogenation step, operating in the presence of a first, metallic, catalyst comprising an active hydrodehydrogenating phase constituted by at least one metal from group VIII and/or at least one metal from group VIB and an amorphous mineral support; and b) a second step, termed the second treatment step, operating in the presence of a second, sulphurized, catalyst comprising an active hydrodehydrogenating phase constituted by at least one non-noble metal from group VIII and/or at least one metal from group VIB and an amorphous mineral support.
    Type: Application
    Filed: June 3, 2008
    Publication date: November 18, 2010
    Applicant: IFP
    Inventors: Quentin Debuisschert, Jean Cosyns, Thierry Chapus, Damien Hudebine
  • Publication number: 20100137663
    Abstract: A process for the conversion of lignin to chemical precursors is presented. The process comprises treating the lignin to form less acidic compounds. The process includes reacting lignin with a hydrogenation catalyst under a hydrogen atmosphere to convert acidic oxygenate compounds to less acidic oxygenates or hydrocarbons. The oxygenate compounds are reacted in a dehydrogenation and deoxygenation process to remove the oxygen and to convert the cyclic hydrocarbons back to aromatic compounds.
    Type: Application
    Filed: February 27, 2009
    Publication date: June 3, 2010
    Inventors: John Q. Chen, Mark B. Koch
  • Publication number: 20100087692
    Abstract: The present invention provides a hydrogenation method capable of converting cracked kerosene into the raw materials for petrochemical cracking having a high thermal decomposition yield by a hydrogenation reaction. The present invention is a petrochemical process for producing at least any of ethylene, propylene, butane, benzene or toluene by carrying out a thermal decomposition reaction at least using naphtha for the main raw material, wherein cracked kerosene produced from a thermal cracking furnace is hydrogenated using a Pd or Pt catalyst in a two-stage method consisting of a first stage (I), in which a hydrogenation reaction is carried out within the range of 50 to 180° C., and a second stage (II), in which a hydrogenation reaction is carried out within the range of 230 to 350° C., followed by re-supplying all or a portion of these hydrogenated hydrocarbons to a thermal cracking furnace.
    Type: Application
    Filed: April 14, 2008
    Publication date: April 8, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Yuuji Yoshimura, Makoto Toba, Yasuo Miki, Masako Miki, Shigeru Hatanaka, Tetsuo Kudo, Tetsuo Nakajo
  • Patent number: 7671246
    Abstract: A catalytic process for converting biomass-derived carbohydrates to liquid alkanes, alkenes, and/or ethers is described. The process uses combinations of self- and crossed-aldol condensation reactions, dehydration reactions, and hydrogenation reactions, over specified metal-containing catalysts, to yield alkane, alkene, and ether products from carbohydrate reactants.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: March 2, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, George W. Huber, Juben N. Chheda, Christopher J. Barrett
  • Patent number: 7651606
    Abstract: The invention concerns a process for the hydrodesulphurization of gasoline cuts for the production of gasolines with a low sulphur and mercaptans content. Said process comprises at least two hydrodesulphurization steps, HDS1 and HDS2, operated in parallel on two distinct cuts of the gasoline constituting the feed. The flow rate of hydrogen in the hydrodesulphurization step HDS2 is such that the ratio between the flow rate of hydrogen and the flow rate of feed to be treated is less than 80% of the ratio of the flow rates used to desulphurize in the hydrodesulphurization step HDS1.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Florent Picard, Quentin Debuisschert, Annick Pucci
  • Patent number: 7514387
    Abstract: A reformer comprises a housing; a substrate disposed in the housing, wherein the substrate comprises a stabilized aluminate and a stabilized zirconate; and a catalyst disposed on the substrate.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 7, 2009
    Assignee: Umicore AG & Co. KG
    Inventor: William J. LaBarge
  • Patent number: 7442290
    Abstract: Mesoporous aluminum oxides with high surface areas have been synthesized using inexpensive, small organic templating agents instead of surfactants. Optionally, some of the aluminum can be framework-substituted by one or more other elements. The material has high thermal stability and possesses a three-dimensionally randomly connected mesopore network with continuously tunable pore sizes. This material can be used as catalysts for dehydration, hydrotreating, hydrogenation, catalytic reforming, steam reforming, amination, Fischer-Tropsch synthesis and Diels-Alder synthesis, etc.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: October 28, 2008
    Assignee: Lummus Technology Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Patent number: 7431828
    Abstract: A two-stage hydrotreating process is disclosed wherein a hydrocarbon stream is first desulphurized followed by a dehydrogenation step, which process comprises in combination contacting the feed and hydrogen over a hydrotreating catalyst at hydrotreating conditions, heating the hydrotreated effluent and hydrogen-rich gas from the hydrotreating reactor and contacting said effluent and hydrogen gas over a hydrotreating catalyst in a post-treatment reactor at a temperature sufficient to increase the polyaromatic hydrocarbon content and lower the hydrogen content of said effluent.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 7, 2008
    Assignee: Haldor Topsoe A/S
    Inventors: Michael G. Hunter, Rasmus G. Egeberg, Kim G. Knudsen
  • Publication number: 20080221374
    Abstract: A process for preparing propene from propane, comprising the steps: A) a feed gas stream a comprising propane is provided; B) the fed gas stream a comprising propane, if appropriate steam and, if appropriate, an oxygenous gas stream are fed into a dehydrogenation zone and propane is subjected to a dehydrogenation to propene to obtain a product gas stream b comprising propane, propene, methane, ethane, ethene, carbon monoxide, carbon dioxide, steam, if appropriate hydrogen and, if appropriate, oxygen; C) product gas stream b is cooled, if appropriate condensed and steam is removed by condensation to obtain a steam-depleted product gas stream c; D) product gas stream c is contacted in a first absorption zone with a selective, inert absorbent which selectively absorbs propene to obtain an absorbent stream d1 laden substantially with propene and a gas stream d2 comprising propane, methane, ethane, ethene, carbon monoxide, carbon dioxide and hydrogen; E) if appropriate, the absorbent stream d1 is decompressed t
    Type: Application
    Filed: January 4, 2006
    Publication date: September 11, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Sven Crone, Otto Machhammer, Gotz-Peter Schindler, Frieder Borgmeier
  • Publication number: 20080194891
    Abstract: A process for the dehydrogenation of a paraffinic hydrocarbon compound, such as an alkane or alkylaromatic hydrocarbon compound to produce an unsaturated hydrocarbon compound, such as an olefin or vinyl aromatic compound or mixture thereof, in which a dehydrogenation catalyst contacts gaseous reactant hydrocarbons in a reactor at dehydrogenation conditions.
    Type: Application
    Filed: February 4, 2005
    Publication date: August 14, 2008
    Inventors: Matthew T. Pretz, Susan B. Domke, William M. Castor, Simon J. Hamper
  • Patent number: 7375049
    Abstract: A catalyst suitable for the dehydrogenation and hydrogenation of hydrocarbons comprises at least one first metal and at least one second metal bound to a support material. The at least one first metal comprises at least one transition metal, suitably a platinum group metal. The support material is provided with an overlayer such that acidic sites on the support material are substantially blocked. In a preferred embodiment the catalyst is also substantially chloride free. Method of preparing catalyst are also disclosed.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: May 20, 2008
    Assignee: Johnson Matthey PLC
    Inventors: Martin John Hayes, Chandresh Malde, Michael Ian Petch, Stephen David Pollington, Brian Ronald Charles Theobald