Molecular Weight Reduction Patents (Class 585/256)
  • Patent number: 10717688
    Abstract: The present invention relates to a process for producing benzene from a mixed hydrocarbon feedstream comprising subjecting C6 cut separated from said mixed hydrocarbon feedstream to aromatization to provide a benzene-rich aromatic stream and recovering the benzene from the benzene-rich aromatic stream.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: July 21, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Scott Stevenson, Dimitri Daniëls
  • Patent number: 9487457
    Abstract: The present method for producing monocyclic aromatic hydrocarbons is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms. This method includes a cracking and reforming reaction step of bringing oil feedstock into contact with a catalyst to cause a reaction and obtain a product containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms, a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms separated from the product formed by the cracking and reforming reaction step, and a first returning step of returning at least a portion of toluene obtained by the purification and recovery step to the cracking and reforming reaction step.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 8, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Akira Utatsu
  • Patent number: 9382173
    Abstract: Provided is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, the method including a cracking reforming reaction step of bringing feedstock oil into contact with a catalyst to effect a reaction; a step of purifying and recovering monocyclic aromatic hydrocarbons separated from the reaction step; and (1) a step of hydrogenating a heavy fraction separated from the reaction step; a dilution step of returning a portion of the hydrogenation product as a diluent oil to the hydrogenation step; and a step of returning the hydrogenation product to the reaction step; or (2) a step of adding a diluent to the heavy fraction separated from the reaction step; a step of hydrogenating the mixture; and a step of returning the hydrogenation product to the reaction step.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 5, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Yasuyuki Iwasa, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Patent number: 9382174
    Abstract: A method for producing monocyclic aromatic hydrocarbons includes a cracking reforming reaction step of bringing an oil feedstock into contact with a catalyst for monocyclic aromatic hydrocarbon production containing a crystalline aluminosilicate, and causing the oil feedstock to react, thereby obtaining a product containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, a hydrogenation reaction step of hydrogenating a product produced in the cracking reforming reaction step, a monocyclic aromatic hydrocarbon recovery step of recovering monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms separated from a hydrogenation product obtained in the hydrogenation reaction step and a recycling step of returning a heavy fraction having 9 or more carbon atoms separated from the hydrogenation product obtained in the hydrogenation reaction step to the cracking reforming reaction step.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 5, 2016
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Masahide Kobayashi, Yasuyuki Iwasa
  • Patent number: 9233892
    Abstract: A method for producing monocyclic aromatic hydrocarbons includes a step of introducing a feedstock oil into a cracking/reforming reactor, bringing the feedstock oil into contact with a catalyst, and causing the feedstock oil to react, a step of purifying and recovering the monocyclic aromatic hydrocarbons separated from the product produced in the reaction step, a step of hydrogenating a heavy fraction separated from the product, and a recycling step of returning a hydrogenation reactant of the heavy fraction to the cracking/reforming reaction step. In the recycling step, the hydrogenation reactant is introduced at a location different from an introduction location of the feedstock oil into the reactor so that a time during which the hydrogenation reactant is in contact with the catalyst in the reactor becomes shorter than a time during which the feedstock oil is in contact with the catalyst in the reactor.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: January 12, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Ryoji Ida, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Patent number: 9233889
    Abstract: The invention relates to hydroalkylation processes. In the processes, a hydrogen stream comprising hydrogen and an impurity is treated to reduce the amount of the impurity in the hydrogen stream. The hydrogen is then hydroalkylated with benzene to form at least some cyclohexylbenzene. The processes also relate to treating a benzene stream comprising benzene and an impurity with an adsorbent to reduce the amount of the impurity in the benzene stream. The hydroalkylation processes described herein may be used as part of a process to make phenol.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: January 12, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Teng Xu, Terry E. Helton, Francisco M. Benitez, Charles M. Smith
  • Patent number: 9103586
    Abstract: Processes to separate a light hydrocarbon stream comprising ethylene, ethane, and C3+ hydrocarbons into an ethylene stream, an ethane stream, and a C3+ hydrocarbon stream, including: feeding the light hydrocarbon stream to a deethanizer; separating the light hydrocarbons in the deethanizer to form a C3+ hydrocarbon bottoms stream and a C2-rich overhead stream comprising ethylene and ethane; separating the C2-rich stream in a C2-rectifier to form a first ethylene stream and an ethane-rich bottoms stream; and separating the ethane-rich bottoms stream in a C2-splitter to form a second ethylene stream and an ethane stream.
    Type: Grant
    Filed: December 16, 2006
    Date of Patent: August 11, 2015
    Assignee: KELLOGG BROWN & ROOT LLC
    Inventor: Vijender Kumar Verma
  • Publication number: 20150141717
    Abstract: A process for transalkylating a coal tar stream is described. A coal tar stream is provided, and is fractionated to provide at least one hydrocarbon stream having polycyclic aromatics. The hydrocarbon stream is hydrotreated in a hydrotreating zone, and then hydrocracked in a hydrocracking zone. A light aromatics stream is added to the hydrocracking zone. The light aromatics stream comprises one or more light aromatics having a ratio of methyl/aromatic available position that is lower than a ratio of methyl/aromatic available position for the hydrotreated stream. The hydrocracked stream is transalkylated in the hydrocracking zone.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 21, 2015
    Inventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
  • Publication number: 20150119614
    Abstract: A process is disclosed for hydrocracking a primary hydrocarbon feed and a diesel co-feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The diesel stream fed through the hydrocracking unit is pretreated to reduce sulfur and ammonia and can be upgraded with noble metal catalyst.
    Type: Application
    Filed: January 15, 2015
    Publication date: April 30, 2015
    Inventors: Peter Kokayeff, Paul R. Zimmerman
  • Publication number: 20150087872
    Abstract: This invention discloses a process for making high viscosity index lubricating base oils having a viscosity index of at least 110 by co-feeding a ketone or a beta-keto-ester feedstock with a lubricant oil feedstock directly to a hydrocracking unit to produce a hydrocracked stream. Then at least a portion of the hydrocracked stream is treated under hydroisomerization conditions to produce a high viscosity index lubricating base oil. The process may involve bypassing a hydrotreating or hydrofinishing step, which may result in improved efficiency and economics in producing high viscosity index lubricating base oils.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Stephen Joseph Miller, Sven Ivar Hommeltoft, Saleh Ali Elomari
  • Patent number: 8975460
    Abstract: A process is proposed for preparing acetylene by the Sachsse-Bartholomé process by combustion of a natural gas/oxygen mixture in one or more burners to obtain a cracking gas which is cooled in two or more stages in burner columns, each burner having one or more burner columns assigned thereto, and said cracking gas being quenched with pyrolysis oil in the first cooling stage, to obtain a low boiler fraction comprising benzene, toluene and xylene from the one or more burner columns, which is cooled with direct cooling water and separated in a phase separator into an aqueous phase and an organic phase which comprises benzene, toluene and xylene and is fully or partly introduced to the top of the one or more burner columns as a return stream, wherein the organic phase comprising benzene, toluene and xylene from the phase separator, prior to full or partial recycling to the top of the one or more burner columns, is supplied to a selective hydrogenation over a catalyst which comprises at least one platinum group m
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 10, 2015
    Assignee: BASF SE
    Inventors: Lucia Königsmann, Maximilian Vicari, Thomas Heidemann, Dirk Groβschmidt, Jürgen Michel
  • Publication number: 20150011807
    Abstract: A highly efficient method for the conversion of a natural product into the high density fuel RJ-4 with concomitant evolution of isobutylene for conversion to fuels and polymers, more specifically, embodiments of the invention relate to efficient methods for the conversion of the renewable, linear terpene alcohol, linalool into a drop-in, high density fuel suitable for ramjet or missile propulsion.
    Type: Application
    Filed: September 5, 2012
    Publication date: January 8, 2015
    Inventors: Benjamin G. Harvey, Heather A. Meylemans, Roxanne L. Quintana
  • Patent number: 8927796
    Abstract: This invention discloses a process for making high viscosity index lubricating base oils having a viscosity index of at least 110 by co-feeding a ketone or a beta-keto-ester feedstock with a lubricant oil feedstock directly to a hydrocracking unit to produce a hydrocracked stream. Then at least a portion of the hydrocracked stream is treated under hydroisomerization conditions to produce a high viscosity index lubricating base oil. The process may involve bypassing a hydrotreating or hydrofinishing step, which may result in improved efficiency and economics in producing high viscosity index lubricating base oils.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 6, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephan Joseph Miller, Sven Ivar Hommeltoft, Saleh Ali Elomari
  • Publication number: 20140371499
    Abstract: In a process for dealkylating a poly-alkylated aromatic compound, a feed comprising at least one poly-alkylated aromatic compound selected from polypropylbenzene, polybutylbenzene, and polycyclohexylbenzene is introduced into a reaction zone. The feed is then contacted in the reaction zone with an acid catalyst under conditions effective to dealkylate at least a portion of the poly-alkylated aromatic compound and produce a first reaction product comprising at least one mono-alkylated aromatic compound.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Kun Wang, James R. Lattner
  • Patent number: 8912377
    Abstract: The present invention relates to a method of producing aromatic products (benzene/toluene/xylene) and olefin products from petroleum fractions obtained by fluid catalytic cracking, and, more particularly, to a method of producing products comprising high-concentration aromatic products and high value-added light olefin products from light cycle oil obtained by fluid catalytic cracking.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 16, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Cheol Joong Kim, Tae Jin Kim, Do Woan Kim, Sung Won Kim, Sang Hun Oh, Sam Ryong Pakr, Seung Hoon Oh, Yoon Kyung Lee, Gyung Rok Kim, Hong Seok Jung, Eun Kyoung Kim, Byoung In Lee, Dae Hyun Choo
  • Publication number: 20140303339
    Abstract: An apparatus and method are provided for processing hydrocarbon feeds. The method enhances the conversion of hydrocarbon feeds into conversion products, such as ethylene and propylene. In particular, the present techniques utilize a high-severity reactor integrated with another reactor type to convert hydrocarbons to other petrochemical products.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 9, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Jason D. Davis
  • Publication number: 20140303416
    Abstract: An apparatus and method are provided for processing hydrocarbon feeds. The method may pass a pyrolysis feed to a thermal pyrolysis reactor and expose at least a portion of the pyrolysis feed to high-severity operating conditions in a thermal pyrolysis reactor, wherein the thermal pyrolysis reactor is operated at operating conditions that include pressure?36 psig and provide a reactor product that has a C3+ to C2 unsaturate weight ratio?0.5.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 9, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz
  • Publication number: 20140296589
    Abstract: A process is presented for the purification of 1,3 butadiene. The process is for treating a butadiene stream from an oxidative dehydrogenation unit, where a butane stream is dehydrogenated, generating a butadiene rich stream. The butadiene rich stream is fractionated and passed through a butadiene recovery unit. Additional C4 compounds recovered from the fractionation bottoms stream are further processed for increasing yields of butadiene.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicant: UOP LLC
    Inventor: Steven L. Krupa
  • Publication number: 20140288339
    Abstract: A process and apparatus are disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Inventors: Paul R. Zimmerman, Andrew P. Wieber
  • Publication number: 20140275672
    Abstract: Methods and systems for idling a hydrocracker are provided. The method can include hydrocracking a hydrocarbon in the presence of a catalyst and hydrogen in a reactor to produce a hydrocracked product. A kill agent can be introduced to the reactor in an amount sufficient to reduce hydrocracking by at least 10% therein. In some examples, the kill agent can include one or more nitrogen-containing compounds, such as ammonia, amines, anilines, ammonia-containing compounds, amine-containing compounds, or, aniline-containing compounds. In some examples, the catalyst can include one or more Group VIII metals (e.g., cobalt, nickel, palladium, iron, alloys thereof), one or more Group VIB metals (e.g., molybdenum, tungsten, alloys thereof, or oxides thereof), and a catalyst support, such as a zeolite.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventors: Sujatha Krishnamurthy, Cassandra Schoessow, Douglas Piotter, Anand Subramanian
  • Publication number: 20140275673
    Abstract: A process for producing light olefins and aromatics, which comprises reacting a feedstock by contacting with a catalytic cracking catalyst in at least two reaction zones, wherein the reaction temperature of at least one reaction zone among the reaction zones downstream of the first reaction zone is higher than that of the first reaction zone and its weight hourly space velocity is lower than that of the first reaction zone, separating the spent catalyst from the reaction product vapor, regenerating the separated spent catalyst and returning the regenerated catalyst to the reactor, and separating the reaction product vapor to obtain the desired products, light olefins and aromatics. This process produces maximum light olefins such as propylene, ethylene, etc from heavy feedstocks, wherein the yield of propylene exceeds 20% by weight, and produces aromatics such as toluene, xylene, etc at the same time.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicants: CHINA PETROLEUM CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun LONG, Zhijian DA, Dadong LI, Xieqing WANG, Xingtian SHU, Jiushun ZHANG, Hong NIE, Chaogang XIE, Zhigang ZHANG, Wei WANG
  • Patent number: 8828217
    Abstract: Diesel fuel is produced from a feedstock that is at least partially biocomponent in origin. A feedstock is treated in a reactor including one or more hydrotreating zones having a continuous gas phase. The liquid effluent from the hydrotreating zones is then hydroprocessed in a hydroprocessing zone having a continuous liquid phase, such as a hydroprocessing zone in the same reactor. The hydroprocessing zone can be operated under effective catalytic dewaxing conditions.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 9, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, William E. Lewis
  • Publication number: 20140228607
    Abstract: An olefin production system having a pyrolysis furnace that is configured to thermally crack hydrocarbon feedstock into olefins and a fuel gas system having a hydrotreater system that is configured to hydrogenate process gas. The pyrolysis furnace has a burner and the fuel gas system is configured to supply the hydrogenated process gas as fuel gas to the burner.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 14, 2014
    Applicant: Equistar Chemicals, LP
    Inventor: Richard B. Halsey
  • Publication number: 20140221709
    Abstract: A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140213836
    Abstract: A heated petroleum-derived hydrocarbon is contacted with a triglyceride feed in a thermal cracking zone to decompose and remove impurities prior to hydrotreating the mixture to fuel range hydrocarbon. This process allows the use of a variety of low cost triglyceride feeds while reducing fouling of process equipment and catalyst. The process also reduces the use of chemicals required for conventional degumming of triglyceride feeds.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Jianhua YAO, Edward L. SUGHRUE, II, Dhananjay B. GHONASGI, Xiaochun XU
  • Publication number: 20140200377
    Abstract: The present method for producing monocyclic aromatic hydrocarbons is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms. This method includes a cracking and reforming reaction step of bringing oil feedstock into contact with a catalyst to cause a reaction and obtain a product containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms, a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms separated from the product formed by the cracking and reforming reaction step, and a first returning step of returning at least a portion of toluene obtained by the purification and recovery step to the cracking and reforming reaction step.
    Type: Application
    Filed: May 24, 2012
    Publication date: July 17, 2014
    Applicants: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Akira Utatsu
  • Publication number: 20140163273
    Abstract: An apparatus and method are provided for processing hydrocarbon feeds. The method enhances the conversion of hydrocarbon feeds into ethylene. In particular, the present techniques expose feed containing hydrocarbons to high-severity operating conditions in a pyrolysis reactor and separate the reactor product from the reactor into a first product having hydrogen and a second product including ?90 mole percent of the acetylene in the reactor product. Then, the second product is reacted with a catalyst in a converter to form ethylene.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 12, 2014
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Jason D. Davis
  • Publication number: 20140155663
    Abstract: Process for the hydroconversion of heavy oils, selected from crude oils, heavy crude oils, bitumens from tar sands, distillation residues, distillation heavy cuts, distillation deasphalted residues, vegetable oils, oils from coal and oil shale, oils from the thermodecomposition of waste material, polymers, biomasses, comprising sending the heavy oil to a hydroconversion area, effected in one or more ebullated bed reactors, wherein hydrogen is introduced, in the presence of a suitable heterogeneous, supported, hydroconversion catalyst, in addition to a suitable hydrogenation catalyst, nano-dispersed in said heavy oil, and sending the stream coming from the hydroconversion area to a separation area, in which the separated liquid fraction, containing the nano-dispersed catalyst, is recycled to the ebullated bed reactor(s).
    Type: Application
    Filed: November 25, 2013
    Publication date: June 5, 2014
    Applicant: ENI S.P.A.
    Inventors: Giacomo RISPOLI, Giuseppe BELLUSSI, Nicoletta PANARITI, Lorenzo TAGLIABUE
  • Publication number: 20140148627
    Abstract: Cellulose and hemicellulose from biomass can be broken down to C6 and C5 sugars and further converted to corresponding sugar alcohols. It is now found that a new catalyst, MoS2, is active for the hydrogenation of sugar alcohols to hydrocarbons. Combining the technologies listed above allows us to convert the cellulose/hemicellulose to liquid hydrocarbons.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Madhu ANAND, Jianhua YAO, Edward L. SUGHRUE, II
  • Publication number: 20140135542
    Abstract: A new method of producing fuel from biological oils and fats is provided, which comprises following steps: (a) proceeding with a catalytic cracking-deoxygenation reaction for the biological oils and fats under heating in the presence of a cracking-deoxygenation catalyst; (b) mixing the product of step (a) with hydrogen gas; and (c) proceeding with a catalytic hydrodeoxygenation reaction for the mixture from step (b) under heating in the presence of a hydrodeoxygenation catalyst. By means of the method of the present invention, clean fuel produced by using biological oils and fats as raw materials is compatible to the fuel composition produced from crude oil refining.
    Type: Application
    Filed: June 12, 2012
    Publication date: May 15, 2014
    Applicants: DALIAN UNIVERSITY OF TECHNOLOGY, ECO ENVIRONMENTAL ENERGY RESEARCH INSTITUTE LIMITED
    Inventors: Changhai Liang, Bin Xu, Philip Siu, Lei Wang, Xiao Chen, Zhengfeng Shao, Zihui Xiao
  • Publication number: 20140073826
    Abstract: This invention discloses a process for making high viscosity index lubricating base oils having a viscosity index of at least 110 by co-feeding a ketone or a beta-keto-ester feedstock with a lubricant oil feedstock directly to a hydrocracking unit to produce a hydrocracked stream. Then at least a portion of the hydrocracked stream is treated under hydroisomerization conditions to produce a high viscosity index lubricating base oil. The process may involve bypassing a hydrotreating or hydrofinishing step, which may result in improved efficiency and economics in producing high viscosity index lubricating base oils.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Stephen Joseph Miller, Sven Ivar Hommeltoft, Saleh Ali Elomari
  • Publication number: 20140066672
    Abstract: Provided is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, the method including a cracking reforming reaction step of bringing feedstock oil into contact with a catalyst to effect a reaction; a step of purifying and recovering monocyclic aromatic hydrocarbons separated from the reaction step; and (1) a step of hydrogenating a heavy fraction separated from the reaction step; a dilution step of returning a portion of the hydrogenation product as a diluent oil to the hydrogenation step; and a step of returning the hydrogenation product to the reaction step; or (2) a step of adding a diluent to the heavy fraction separated from the reaction step; a step of hydrogenating the mixture; and a step of returning the hydrogenation product to the reaction step.
    Type: Application
    Filed: March 23, 2012
    Publication date: March 6, 2014
    Applicants: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Yasuyuki Iwasa, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Publication number: 20140066673
    Abstract: A method for producing monocyclic aromatic hydrocarbons includes a cracking reforming reaction step of bringing an oil feedstock into contact with a catalyst for monocyclic aromatic hydrocarbon production containing a crystalline aluminosilicate, and causing the oil feedstock to react, thereby obtaining a product containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, a hydrogenation reaction step of hydrogenating a product produced in the cracking reforming reaction step, a monocyclic aromatic hydrocarbon recovery step of recovering monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms separated from a hydrogenation product obtained in the hydrogenation reaction step and a recycling step of returning a heavy fraction having 9 or more carbon atoms separated from the hydrogenation product obtained in the hydrogenation reaction step to the cracking reforming reaction step.
    Type: Application
    Filed: March 23, 2012
    Publication date: March 6, 2014
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Masahide Kobayashi, Yasuyuki Iwasa
  • Publication number: 20140039232
    Abstract: This invention concerns methods of identifying genetic alterations with which a microbe can be used to produce fatty acids at a large amount for making biofuels. Also disclosed are microbes with such genetic alterations and uses thereof.
    Type: Application
    Filed: March 1, 2012
    Publication date: February 6, 2014
    Applicants: UNIVERSITY OF SOUTH AUSTRALIA, Rutgers, The State University of New Jersey
    Inventor: Desmond Siu Men Lun
  • Publication number: 20140024867
    Abstract: A method for producing a hydrocarbon material from a C5 raffinate which is obtained as an extracted residual oil after separating at least part of the isoprene by extraction distillation from a C5 fraction which is produced as a byproduct when thermally cracking naphtha to produce ethylene and has C5 organic compounds as main ingredients comprising, a gas-phase thermal cracking step of gasifying the C5 raffinate to thermally crack at least part of the C10 diolefins which are contained in the gasified C5 raffinate, a desulfurization step, after the gas-phase thermal cracking step, of removing at least part of the sulfur-containing ingredients which are contained in the gasified C5 raffinate after the gas-phase thermal cracking step in the gas-phase state, and a hydrogen addition step, after the desulfurization step, of hydrogenating at least part of the carbon-carbon double bonds of at least one selected from diolefins and olefins which are contained in the gasified C5 raffinate after the desulfurization step
    Type: Application
    Filed: March 30, 2012
    Publication date: January 23, 2014
    Applicant: ZEON CORPORATION
    Inventors: Yoshihide Yachi, Hideaki Miki
  • Publication number: 20130291430
    Abstract: In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.
    Type: Application
    Filed: March 28, 2013
    Publication date: November 7, 2013
    Applicant: Pioneer Energy
    Inventors: John T. Henri, Jan Zygmunt, Mark Bergren, Robert Zubrin
  • Publication number: 20130253239
    Abstract: A process for producing heavy alkyl aromatics is presented. The process utilizes low molecular weight hydrocarbons for generating larger alkyl groups. The hydrocarbons can be generated from a variety of sources including Fischer-Tropsch liquids. The process includes oligomerization of low molecular weight olefins to larger olefins. The larger olefins are passed to an alkylation reactor to alkylate aromatic compounds.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: UOP LLC
    Inventors: Andrea G. Bozzano, Jeffery C. Bricker, Bryan K. Glover
  • Publication number: 20130184506
    Abstract: Disclosed is a method for producing aromatic hydrocarbons including a cracking reforming reaction step of bringing a feedstock having a 10 vol % distillation temperature of 140° C. or higher and a 90 vol % distillation temperature of 380° C. or lower, into contact with a catalyst for monocyclic aromatic hydrocarbon production containing a crystalline aluminosilicate to cause the feedstock to react with the catalyst, and thereby obtaining a product including monocyclic aromatic hydrocarbons having 6 to 8 carbon numbers and a heavy oil fraction having 9 or more carbon numbers; a step of separating the monocyclic aromatic hydrocarbons and the heavy oil fraction from the product obtained from the cracking reforming reaction step; a step of purifying the monocyclic aromatic hydrocarbons separated in the separating step, and collecting the hydrocarbons; and a step of separating naphthalene compounds from the heavy oil fraction separated in the separating step, and collecting the naphthalene compounds.
    Type: Application
    Filed: September 14, 2011
    Publication date: July 18, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Masahide Kobayashi, Yasuyuki Iwasa
  • Publication number: 20130165712
    Abstract: A process for the preparation of an olefin product comprising ethylene, comprising a) cracking a cracker feedstock to obtain a cracker effluent comprising olefins; b) converting an oxygenate feedstock in an oxygenate-to-olefins conversion system, comprising a reaction zone in which an oxygenate feedstock is contacted a catalyst to obtain a conversion effluent comprising ethylene and/or propylene; c) combining at least part of the cracker effluent and at least part of the conversion effluent to obtain a combined effluent wherein the combined effluent comprises a C4 portion and a C3 portion; d) separating at least a part of the propylene from the combined effluent to form a combined propylene stream; e) separating at least a part of the C4 portion from the combined effluent to form a C4 stream; and f) recycling at least a part of the combined propylene stream as recycled propylene to step b).
    Type: Application
    Filed: December 27, 2012
    Publication date: June 27, 2013
    Applicant: SHELL OIL COMPANY
    Inventor: Shell Oil Company
  • Publication number: 20130144093
    Abstract: The present invention generally relates to a method for sequestering carbon dioxide. Biomass is converted into paraffinic hydrocarbons. The paraffinic hydrocarbons are steam cracked into olefins. The olefins are polymerized into non-biodegradable polyolefins.
    Type: Application
    Filed: January 24, 2013
    Publication date: June 6, 2013
    Inventor: Ramin Abhari
  • Publication number: 20130137907
    Abstract: The present invention describes a process for the conversion of a heavy feedstock for improving the production and selectivity for middle distillate, said process using a catalytic cracking unit followed by a unit for selective hydrogenation of the heavy distillate cut (HCO) or any other cut rich in triaromatic compounds before recycling it to the FCC reaction zone in order to maximize the middle distillate cut.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 30, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: IFP ENERGIES NOUVELLES
  • Publication number: 20130066122
    Abstract: Conditions selected for lubricant base oil production can be used to also produce a high quality diesel product. The diesel product can have a cetane index or cetane number of at least 55, corresponding to a high value diesel fuel. The diesel product can also have good cold flow properties, such as a pour point of ?40° C. or less and/or a cloud point of 25° C. or less. Additionally, the sulfur content of the diesel product can be low, such as less than 1 wppm. This can allow the diesel product to be blended with other potential diesel boiling range products that have a higher sulfur content while still meeting an overall diesel fuel specification. The aromatics content can also be low, allowing the premium diesel to comply with various regulatory requirements.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 14, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Eric D. Joseck, Michael Brian Carroll, David Mentzer
  • Publication number: 20130018213
    Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Inventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
  • Publication number: 20130006027
    Abstract: A method for producing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and a 90 volume % distillation temperature of not more than 380° C., the method including: a cracking and reforming reaction step of obtaining a product containing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from the feedstock oil, a refining and collection step of refining and collecting monocyclic aromatic hydrocarbons of 6 to 8 carbon number that have been separated from the product, a hydrogenation reaction step of hydrogenating a heavy fraction of 9 or more carbon number separated from the product, and a recycling step of returning the heavy fraction hydrogenation reaction product obtained in the hydrogenation reaction step to the cracking and reforming reaction step.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 3, 2013
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi
  • Publication number: 20120022308
    Abstract: A process is proposed for preparing acetylene by the Sachsse-Bartholomé process by combustion of a natural gas/oxygen mixture in one or more burners to obtain a cracking gas which is cooled in two or more stages in burner columns, each burner having one or more burner columns assigned thereto, and said cracking gas being quenched with pyrolysis oil in the first cooling stage, to obtain a low boiler fraction comprising benzene, toluene and xylene from the one or more burner columns, which is cooled with direct cooling water and separated in a phase separator into an aqueous phase and an organic phase which comprises benzene, toluene and xylene and is fully or partly introduced to the top of the one or more burner columns as a return stream, wherein the organic phase comprising benzene, toluene and xylene from the phase separator, prior to full or partial recycling to the top of the one or more burner columns, is supplied to a selective hydrogenation over a catalyst which comprises at least one platinum group m
    Type: Application
    Filed: July 15, 2011
    Publication date: January 26, 2012
    Applicant: BASF SE
    Inventors: Lucia Königsmann, Maximilian Vicari, Thomas Heidemann, Dirk Großschmidt, Jürgen Michel
  • Publication number: 20120004479
    Abstract: Diesel fuel is produced from a feedstock that is at least partially biocomponent in origin. A feedstock is treated in a reactor including one or more hydrotreating zones having a continuous gas phase. The liquid effluent from the hydrotreating zones is then hydroprocessed in a hydroprocessing zone having a continuous liquid phase, such as a hydroprocessing zone in the same reactor. The hydroprocessing zone can be operated under effective catalytic dewaxing conditions.
    Type: Application
    Filed: June 24, 2011
    Publication date: January 5, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Patrick L. Hanks, William E. Lewis
  • Publication number: 20110207979
    Abstract: The present invention relates to a method of producing aromatic products (benzene/toluene/xylene) and olefin products from petroleum fractions obtained by fluid catalytic cracking, and, more particularly, to a method of producing products comprising high-concentration aromatic products and high value-added light olefin products from light cycle oil obtained by fluid catalytic cracking.
    Type: Application
    Filed: October 7, 2009
    Publication date: August 25, 2011
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Cheol Joong Kim, Tae Jin Kim, Do Woan Kim, Sung Won Kim, Sang Hun Oh, Sam Ryong Pakr, Seung Hoon Oh, Yoon Kyung Lee, Gyung Rok Kim, Hong Seok Jung, Eun Kyoung Kim, Byoung In Lee, Dae Hyun Choo
  • Publication number: 20110144397
    Abstract: The present invention provides a method and reactor system for hydrogenating acetylenes present in the olefin stream derived from the following streams, alone or in combination: petroleum catalytic cracking process and/or oxygenate-to-olefin reactor, such as methanol-to-olefin (MTO) reactor, in an olefin production plant before the distillation steps, wherein the acetylene hydrogenation occurs before or just after the acid gas removal step.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 16, 2011
    Inventors: Cornelis F. van Egmond, David J. Wilson
  • Publication number: 20110118517
    Abstract: A process is presented for the preparation of surfactants that are useable in enhanced oil recovery. The surfactants are long chained sulfonated alkylaryl compounds. The process includes recovering linear and lightly branched paraffins from a hydrocarbon stream, dehydrogenating the paraffins, and then alkylating benzene with the olefins generated. The process uses pentasil zeolites to selectively separate the normal and lightly branched paraffins from the hydrocarbon stream.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 19, 2011
    Applicant: UOP LLC
    Inventors: Stephen W. Sohn, Mark G. Riley, Bryan K. Glover
  • Patent number: 7393993
    Abstract: The process of the invention comprises contacting a hydrocarbon stream, comprising light olefins plus impurities such as acetylenes, in the absence of hydrogen with a supported copper catalyst, preferably CuO/alumina. The acetylene component undergoes a coupling reaction producing a diacetylene which can be more readily removed. Thus, the methylacetylene (MA) contaminant in liquid propylene yields at about 80° C. and 3792 kPa (550 psig) a significant amount dimethyl diacetylene (2,4-hexadiyne). Surprisingly, very little cyclization products are present. The process is useful for purification of olefin feeds. It can be used alone or in combination with known purification methods such as catalytic distillation or selective hydrogenation.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: July 1, 2008
    Assignee: UOP LLC
    Inventors: Vladislav I. Kanazirev, David E. Mackowiak