Diverse Parallel Syntheses Patents (Class 585/304)
-
Patent number: 11555154Abstract: The process removes hydrogen sulfide from hydrotreated gas by TSA. Hydrogen sulfide adsorbs on the adsorbent while allowing hydrogen in the hydrotreated gas to pass the adsorbent to provide a desulfided hydrogen gas stream and a sulfided adsorbent. A regenerant gas stream can be contacted with the sulfided adsorbent at a swing temperature to desorb hydrogen sulfide from the adsorbent into the regenerant gas stream. The regenerant gas stream can then be recycled to a hydrotreating reactor for processing biorenewable feed to provide hydrogen sulfide to the reactor. The desulfided gas stream can be purified to remove impurities such as carbon oxides and recycled to the hydrotreating reactor and/or used as the regenerant gas stream.Type: GrantFiled: September 8, 2021Date of Patent: January 17, 2023Assignee: UOP LLCInventors: David A. Wegerer, Bradley P. Russell, Ashish Mathur, Hari S. Bajpai
-
Patent number: 10960343Abstract: The present disclosure provides a method for generating higher hydrocarbon(s) from a stream comprising compounds with two or more carbon atoms (C2+), comprising introducing methane and an oxidant (e.g., O2) into an oxidative coupling of methane (OCM) reactor. The OCM reactor reacts the methane with the oxidant to generate a first product stream comprising the C2+ compounds. The first product stream can then be directed to a separations unit that recovers at least a portion of the C2+ compounds from the first product stream to yield a second product stream comprising the at least the portion of the C2+ compounds.Type: GrantFiled: June 18, 2019Date of Patent: March 30, 2021Assignee: Lummus Technology LLCInventors: Divya Jonnavittula, Gaurav Chachra, Guido Radaelli
-
Patent number: 10508066Abstract: Provided here are systems and methods that integrate a hydrodearylation process and a transalkylation process into an aromatic recovery complex. Various other embodiments may be disclosed and claimed.Type: GrantFiled: April 18, 2019Date of Patent: December 17, 2019Assignee: Saudi Arabian Oil CompanyInventors: Omer Refa Koseoglu, Robert Hodgkins
-
Publication number: 20150141717Abstract: A process for transalkylating a coal tar stream is described. A coal tar stream is provided, and is fractionated to provide at least one hydrocarbon stream having polycyclic aromatics. The hydrocarbon stream is hydrotreated in a hydrotreating zone, and then hydrocracked in a hydrocracking zone. A light aromatics stream is added to the hydrocracking zone. The light aromatics stream comprises one or more light aromatics having a ratio of methyl/aromatic available position that is lower than a ratio of methyl/aromatic available position for the hydrotreated stream. The hydrocracked stream is transalkylated in the hydrocracking zone.Type: ApplicationFiled: August 28, 2014Publication date: May 21, 2015Inventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Publication number: 20150141719Abstract: A process to efficiently convert organic feedstock material into liquid non-oxygenated hydrocarbons in the C5 to C12 carbon skeleton range is disclosed. The process can utilize gaseous, liquid or solid organic feedstocks containing carbon, hydrogen and, optionally, oxygen. The feedstock may require preparation of the organic feedstock for the process and is converted first into a synthesis gas containing carbon monoxide and hydrogen. The synthesis gas is then cleaned and conditioned and extraneous components removed, leaving substantially only the carbon monoxide and hydrogen. It is then converted via a series of chemical reactions into the desired liquid hydrocarbons. The hydrocarbons are suitable for combustion in a vehicle engine and may be regarded a replacement for petrol made from fossil fuels in the C5 to C12 carbon backbone range.Type: ApplicationFiled: November 28, 2014Publication date: May 21, 2015Inventors: Karen Sue Kelly, Larry Jack Melnichuk
-
Patent number: 9035118Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.Type: GrantFiled: December 15, 2011Date of Patent: May 19, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
-
Patent number: 9029618Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.Type: GrantFiled: December 15, 2011Date of Patent: May 12, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
-
Patent number: 9024098Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.Type: GrantFiled: December 15, 2011Date of Patent: May 5, 2015Assignee: UOP LLCInventors: Mark D. Moser, David A. Wegerer, Manuela Serban, Kurt M. VandenBussche
-
Patent number: 9024097Abstract: A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.Type: GrantFiled: December 15, 2011Date of Patent: May 5, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
-
Patent number: 9024099Abstract: A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.Type: GrantFiled: December 15, 2011Date of Patent: May 5, 2015Assignee: UOP LLCInventors: Mark D. Moser, Kurt M. VandenBussche, David A. Wegerer, Gregory J. Gajda
-
Publication number: 20150099911Abstract: A process is disclosed that includes brominating a C2, C3 , C4, C5 or C6 alkane with elemental bromine to form a bromo-alkane. The bromo-alkane is reacted to form a C2, C3, C4, C5 or C6 alkene and HBr. The HBr is oxidized to form elemental bromine.Type: ApplicationFiled: December 12, 2014Publication date: April 9, 2015Inventors: Vivek JULKA, Sagar GADEWAR, Peter K. STOIMENOV, Philip GROSSO, Jeffrey H. SHERMAN, Aihua ZHANG, Eric W. MCFARLAND
-
Publication number: 20150065768Abstract: Methods and systems are provided for producing a xylene product. The method includes fractionating a feed stream in a feed fractionator to produce a feed bottoms stream and a feed overhead stream. The feed stream includes aromatic compounds and non-aromatic compounds, and more than 5 weight percent of the non-aromatic compounds have a boiling point above 105° C. at one atmosphere of pressure. The feed bottoms stream is de-ethylated in a heavy aromatics conversion zone to produce a de-ethylated aromatics stream and a light gases stream, where non-aromatic compounds are converted to light gases in the light gases stream. The de-ethylated aromatics stream is fractionated to produce a heavy aromatics stream and an intermediate aromatics stream, and a desired isomer stream is recovered from the intermediate aromatics stream and an isomerized stream in an isomer recovery process.Type: ApplicationFiled: August 29, 2013Publication date: March 5, 2015Applicant: UOP LLCInventors: Leonid Bresler, Robert B. Larson, John B. Robertson
-
Patent number: 8969640Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: GrantFiled: November 23, 2011Date of Patent: March 3, 2015Assignee: Virent, Inc.Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
-
Patent number: 8962902Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: GrantFiled: May 22, 2013Date of Patent: February 24, 2015Assignee: Virent, Inc.Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
-
Publication number: 20150045597Abstract: A process for increasing the yields of hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream.Type: ApplicationFiled: April 24, 2014Publication date: February 12, 2015Applicant: UOP LLCInventors: Gregory A. Funk, Steven T. Arakawa
-
Publication number: 20150031928Abstract: Processes and apparatuses for preparing aromatic compounds are provided herein. In an embodiment, a process for preparing aromatic compounds includes providing a first stream that includes an aromatic component, a non-aromatic component, and a sulfur-containing component. The aromatic component and the sulfur-containing component are separated from the non-aromatic component of the first stream to form a separated aromatic stream and a raffinate stream. The separated aromatic stream includes the aromatic component and the sulfur-containing component. The raffinate stream includes the non-aromatic component. The separated aromatic stream is concurrently transalkylated and desulfurized in the presence of a catalyst that includes acid function and metal function to produce a transalkylated aromatic stream and a sulfur-containing gas stream that is separate from the transalkylated aromatic stream.Type: ApplicationFiled: July 23, 2013Publication date: January 29, 2015Applicant: UOP LLCInventors: Jason L. Noe, Peter Kokayeff
-
Patent number: 8933283Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.Type: GrantFiled: November 26, 2008Date of Patent: January 13, 2015Assignee: SK Innovation Co., Ltd.Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
-
Patent number: 8845884Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.Type: GrantFiled: March 10, 2012Date of Patent: September 30, 2014Assignee: UOP LLCInventors: Gregory J. Gajda, Mary Jo Wier, Mark P. Lapinski, David A. Wegerer, Kurt M. VandenBussche, Mark D. Moser
-
Patent number: 8822747Abstract: The xylene isomerization process unit and the transalkylation process units are combined in the present invention. A fractionation column can be shared by the two units, reducing the capital cost of the complex. In some embodiments, a split shell fractionation column and a split separator can be used.Type: GrantFiled: September 25, 2012Date of Patent: September 2, 2014Assignee: UOP LLCInventors: Jason T. Corradi, David W. Ablin, David W. Liu
-
Publication number: 20140221713Abstract: A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.Type: ApplicationFiled: February 4, 2013Publication date: August 7, 2014Applicant: LUMMUS TECHNOLOGY INC.Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
-
Publication number: 20140187833Abstract: The invention provides a process for preparing olefins, comprising: (a) reacting an oxygenate and/or olefinic feed in a first reactor in the presence of a molecular sieve catalyst to form a first effluent comprising olefins; (b) fractionating at least part of the first effluent into an olefinic product fraction comprising ethylene and propylene and an olefinic product fraction comprising olefins containing 4 or more carbon atoms; (c) subjecting a paraffin-containing hydrocarbon feedstock in a second reactor to a steam cracking process to form a second effluent comprising olefins including butadiene; (d) fractionating the second effluent into an olefinic product fraction comprising ethylene and/or propylene and an olefinic product fraction comprising mono-olefins containing 4 or more carbon atoms; and (e) recycling the olefinic product fraction comprising at least part of the ethylene and/or propylene as obtained in step (d) to the reactor in step (a).Type: ApplicationFiled: December 20, 2013Publication date: July 3, 2014Applicant: Shell Oil CompanyInventors: Leslie Andrew CHEWTER, Sivakumar SADASIVAN VIJAYAKUMARI, Jeroen VAN WESTRENEN
-
Patent number: 8710286Abstract: A process for the coupling of hydrocarbons and utilizing the heat energy produced by the reaction is disclosed. In one embodiment the process can include reacting methane with oxygen to form a product stream containing ethane and further processing the ethane to ethylene in an existing ethylene production facility while using the heat energy produced by the reaction within the facility.Type: GrantFiled: March 31, 2009Date of Patent: April 29, 2014Assignee: Fina Technology, Inc.Inventor: James R. Butler
-
Patent number: 8680351Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.Type: GrantFiled: March 9, 2012Date of Patent: March 25, 2014Assignee: UOP LLCInventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
-
Patent number: 8563793Abstract: Processes utilizing the integration of (i) processes and the associated equipment used to purify and recover propylene from propane- and/or C4+-containing refinery hydrocarbon streams, with (ii) catalytic dehydrogenation are disclosed. This integration allows for elimination of some or all of the conventional fractionation section of the dehydrogenation process, normally used to purify propylene from unconverted propane in the reactor effluent. Significant capital and utility savings are therefore attained.Type: GrantFiled: June 29, 2009Date of Patent: October 22, 2013Assignee: UOP LLCInventors: Joseph E. Zimmermann, Larry C. Erickson, Gregory J. Nedohin
-
Publication number: 20130253240Abstract: A method for producing a linear paraffin product from natural oil and kerosene includes providing a first feed stream comprising kerosene, pre-fractionating the first feed stream to produce a heart cut paraffin stream comprising paraffins in a heart cut range, and combining the heart cut paraffin stream with a second feed stream comprising natural oil to form a combined stream. The method further includes deoxygenating the natural oil and fractionating the combined stream to remove paraffins that are heavier than the heart cut range.Type: ApplicationFiled: April 2, 2013Publication date: September 26, 2013Applicant: UOP LLCInventors: Andrea G. Bozzano, Stephen W. Sohn
-
Publication number: 20130253239Abstract: A process for producing heavy alkyl aromatics is presented. The process utilizes low molecular weight hydrocarbons for generating larger alkyl groups. The hydrocarbons can be generated from a variety of sources including Fischer-Tropsch liquids. The process includes oligomerization of low molecular weight olefins to larger olefins. The larger olefins are passed to an alkylation reactor to alkylate aromatic compounds.Type: ApplicationFiled: March 23, 2012Publication date: September 26, 2013Applicant: UOP LLCInventors: Andrea G. Bozzano, Jeffery C. Bricker, Bryan K. Glover
-
Patent number: 8536392Abstract: The invention relates to series reactor beds containing different oligomerization catalysts and having independent temperature control, and processes for the oligomerization of light olefins to heavier olefins using such series reactor beds.Type: GrantFiled: August 4, 2009Date of Patent: September 17, 2013Assignee: ExxonMobil Chemical Patents Inc.Inventors: Stephen Harold Brown, Jon Edmond Randoph Stanat, Jose Manuel Vargas, Stephen W. Beadle, Georges Marie K. Mathys, John Stephen Godsmark, Raphael Frans Caers
-
Publication number: 20130217934Abstract: The present invention provides a process for producing aromatic hydrocarbons and ethylene, comprising: a. contacting a lower alkane feed comprising at least one of ethane, propane and butane with an aromatic hydrocarbon conversion catalyst within an alkane-to-aromatic zone to obtain at least hydrogen and aromatic reaction products, including at least benzene; b. converting an oxygenate feedstock in an oxygenate-to-olefin zone to obtain olefins, including at least ethylene; wherein at least part of the oxygenate feedstock is obtained by providing at least part of the hydrogen obtained in step a) and a feed containing carbon monoxide and/or carbon dioxide to an oxygenate synthesis zone and synthesizing oxygenates. In another aspect the invention provides an integrated system for aromatic hydrocarbons and ethylene and the use of hydrogen obtained from a process to convert lower alkanes to benzene to produce an oxygenate feed for an oxygenate-to-olefin process.Type: ApplicationFiled: April 19, 2011Publication date: August 22, 2013Inventors: Leslie Andrew Chewter, Hervé Henry, Ajay Madgavkar, Jeroen Van Westrenen
-
Publication number: 20130165715Abstract: The xylene isomerization process unit and the transalkylation process units are combined in the present invention. A fractionation column can be shared by the two units, reducing the capital cost of the complex. In some embodiments, a split shell fractionation column and a split separator can be used.Type: ApplicationFiled: September 25, 2012Publication date: June 27, 2013Applicant: UOP LLCInventor: UOP LLC
-
Publication number: 20130144097Abstract: In a process for producing para-xylene, a naphtha feed is reformed under conditions effective to convert at least 50 wt % of the naphthenes in the naphtha feed to aromatics, but to convert no more than 25 wt % of the paraffins in the naphtha feed, and thereby produce a reforming effluent. A first stream containing benzene and/or toluene is removed from the reforming effluent and is fed to a xylene production unit under conditions effective to convert benzene and/or toluene to xylenes. In addition, a second stream containing C8 aromatics is removed from the reforming effluent and is fed, together with at least part of the xylenes produced in the xylene production unit, to a para-xylene recovery unit to recover a para-xylene product stream and leave a para-xylene-depleted C8 stream.Type: ApplicationFiled: November 14, 2012Publication date: June 6, 2013Applicant: ExxonMobil Chemical Patents Inc.Inventors: Timothy P. Bender, John W. Rebeck, Rimas V. Vebeliunas, John R. Porter, Anthony Go, Larry L. Iaccino, Glenn C. Wood
-
Publication number: 20130131411Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: ApplicationFiled: November 23, 2011Publication date: May 23, 2013Applicant: Virent Energy Systems, Inc.Inventors: Paul G. Blommel, Li Yuan, Matt Van Straten, Warren Lyman, Randy D. Cortright
-
Publication number: 20130102822Abstract: Processes are provided for the production of butadiene from C4 containing feed stocks that contain isobutene and/or isobutane in addition to n-butene(s) and/or n-butane. The processes of the present invention generally comprise feeding the feed stock to a combination butenes isomerization reaction and distillation tower for conversion of 1-butene to 2-butenes and separation from isobutene and isobutane, followed by an oxydehydrogenation unit to convert n-butenes to butadiene. The processes may also include additional isomerization and/or dehydrogenation steps for the tower overhead and bottoms streams to create additional isobutene and/or n-butenes for valued/uses, which may include additional production of butadiene. The feed to the system may comprise any mixture or separate feeding of C4 olefins and C4 paraffins, at least one of which contains isobutene and/or isobutane.Type: ApplicationFiled: October 17, 2012Publication date: April 25, 2013Applicant: Lummus Technology Inc.Inventor: Lummus Technology Inc.
-
Publication number: 20130102820Abstract: Processes and systems for synthesizing hydrocarbon products, such as high molecular weight hydrocarbons, olefins or mixtures thereof, from alkyl bromides wherein one or more streams of alkyl bromides may be reacted in sequential or concurrent stages at different temperatures. The catalyst used in the synthesis stages may be the same or different and at least in one instance is chosen to form hydrocarbon products having a significant C6+ paraffin content. The stages may be conducted in one or more reactors and the catalyst may be deployed in fixed beds or fluidized beds.Type: ApplicationFiled: December 13, 2012Publication date: April 25, 2013Applicant: MARATHON GTF TECHNOLOGY, LTD.Inventor: MARATHON GTF TECHNOLOGY, LTD.
-
Publication number: 20130079570Abstract: Embodiments of methods for co-production of linear alkylbenzene and biofuel from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form paraffins. A first portion of the paraffins is hydrocracked to form a first stream of normal and lightly branched paraffins in the C9 to C14 range and a second stream of isoparaffins. The first stream is dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product. A second portion of the paraffins and the isoparaffins are processed to form biofuel.Type: ApplicationFiled: September 23, 2011Publication date: March 28, 2013Applicant: UOP LLCInventors: Amarendra Anumakonda, Srikantiah Raghuram, Joao Jorge da Silva Ferreira Alves, Andrea G. Bozzano
-
Publication number: 20130066120Abstract: A process is disclosed that permits the manufacture of renewable diesel while simultaneously manufacturing petroleum based jet fuel and/or diesel fuel. The process provides for the sulfiding of hydroprocessing catalyst used to hydroprocess sulfur deficient biomass derived feedstocks and permits the use of petroleum derived feedstock deactivated hydoprocessing catalyst in biomass derived feedstock service.Type: ApplicationFiled: September 14, 2011Publication date: March 14, 2013Applicant: BP Corporation North America Inc.Inventor: John W. Shabaker
-
Patent number: 8377288Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.Type: GrantFiled: September 22, 2009Date of Patent: February 19, 2013Assignee: BP Corporation North America Inc.Inventors: Nicholas J. Gudde, John W. Shabaker
-
Patent number: 8373013Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.Type: GrantFiled: July 12, 2007Date of Patent: February 12, 2013Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPECInventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
-
Publication number: 20120277508Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.Type: ApplicationFiled: March 10, 2012Publication date: November 1, 2012Applicant: UOP LLCInventors: Gregory J. Gajda, Mary Jo Wier, Mark P. Lapinski, David A. Wegerer, Kurt M. Vanden Bussche, Mark D. Moser
-
Publication number: 20120277507Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.Type: ApplicationFiled: March 9, 2012Publication date: November 1, 2012Applicant: UOP LLCInventors: Manuela Serban, Antoine Negiz, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
-
Patent number: 8273930Abstract: A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock.Type: GrantFiled: July 12, 2007Date of Patent: September 25, 2012Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SinopecInventors: Zhiguo Wu, Wenhua Xie, Chaogang Xie, Qiang Liu, Xuhong Mu, Jiushun Zhang, Yibin Luo, Xingtian Shu, Chenghan Yan
-
Publication number: 20120172643Abstract: A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction, an optional intermediate fraction, and heavy fraction based on their boiling points. The light fraction and optional intermediate fraction can be upgraded via hydrotreatment to produce a renewable gasoline and a renewable diesel, which may be combined with their petroleum-derived counterparts. The heavy fraction may be subjected to cracking and further separated into light, intermediate, and heavy fractions in order to increase the yield of renewable gasoline and renewable diesel.Type: ApplicationFiled: August 23, 2011Publication date: July 5, 2012Applicant: KIOR INC.Inventors: MARIA MAGDALENA RAMIREZ CORREDORES, VICENTE SANCHEZ IGLESIAS
-
Publication number: 20120149956Abstract: One exemplary embodiment can be a process for oligomerizing one or more hydrocarbons. Usually, the process includes providing a feed including one or more C3 and C4 hydrocarbons to a separation zone, separating a first stream including an effective amount of C3 olefins for oligomerizing, separating a second stream including an effective amount of one or more C4 olefins for oligomerizing, providing at least a portion of the first stream to a first oligomerization zone for producing at least one of a C9 and a C12 hydrocarbon, and providing at least a portion of the second stream to a second oligomerization zone for producing at least one of a C8 and a C12 hydrocarbon.Type: ApplicationFiled: December 10, 2010Publication date: June 14, 2012Applicant: UOP, LLCInventors: Steven Lee Krupa, Christian D. Freet, Mohamed Shakur
-
Publication number: 20120149957Abstract: One exemplary embodiment can be a process for oligomerizing one or more hydrocarbons. The process can include providing a feed including one or more C3 and C4 hydrocarbons to a separation zone, separating at least a portion of C3 olefins, sending the C3 olefins to a first oligomerization zone for producing one or more C9 hydrocarbons, and returning at least a portion of an effluent from the first oligomerization zone to the separation zone.Type: ApplicationFiled: December 10, 2010Publication date: June 14, 2012Applicant: UOP, LLCInventors: Steven Lee Krupa, Christian D. Freet, Mohamed Shakur
-
Publication number: 20120136187Abstract: One exemplary embodiment can be a fluid catalytic cracking unit. The fluid catalytic cracking unit can include a first riser, a second riser, and a disengagement zone. The first riser can be adapted to receive a first feed terminating at a first reaction vessel having a first volume. The second riser may be adapted to receive a second feed terminating at a second reaction vessel having a second volume. Generally, the first volume is greater than the second volume. What is more, the disengagement zone can be for receiving a first mixture including at least one catalyst and one or more products from the first reaction vessel, and a second mixture including at least one catalyst and one or more products from the second reaction vessel. Typically, the first mixture is isolated from the second mixture.Type: ApplicationFiled: February 8, 2012Publication date: May 31, 2012Applicant: UOP LLCInventors: Paolo Palmas, Robert Mehlberg
-
Publication number: 20120108864Abstract: A process for the production of propylene, the process including: fractionating a hydrocarbon stream comprising n-butenes, isobutylene, and paraffins into at least two fractions including a light C4 fraction comprising isobutylene and a heavy C4 fraction comprising n-butenes and paraffins; contacting at least a portion of the heavy C4 fraction with a metathesis catalyst to form a metathesis product comprising ethylene, propylene, C4+ olefins, and paraffins; fractionating the metathesis product into at least four fractions including an ethylene fraction, a propylene fraction, a C4 fraction comprising C4 olefins and paraffins, and a C5+ fraction; cracking the light C4 fraction and the C5+ fraction to produce a cracking product comprising ethylene, propylene, and heavier hydrocarbons; and fractionating the cracking product into at least two fractions including a light fraction comprising propylene and a fraction comprising C5 to C6 hydrocarbons.Type: ApplicationFiled: January 4, 2012Publication date: May 3, 2012Applicant: LUMMUS TECHNOLOGY INC.Inventors: Robert J. Gartside, Bala Ramachandran
-
Patent number: 8147766Abstract: The present invention relates to methods and systems for processing biomass to selectively yield a variety of hydrocarbon molecules and hydrogen as products, wherein some or all of these products can be further utilized for other biomass processing sub-processes, particularly wherein they lead to the generation of biofuels and/or other high-value products.Type: GrantFiled: May 2, 2011Date of Patent: April 3, 2012Assignee: Chevron U.S.A. Inc.Inventors: Kerry K. Spilker, Roger Vogel, James F. Stevens, Peter C. Ricci
-
Publication number: 20110288354Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.Type: ApplicationFiled: November 26, 2008Publication date: November 24, 2011Applicant: SK INNOVATION CO., LTD.Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
-
Patent number: 7956227Abstract: Methods of oligomerizing hydrocarbons are disclosed. These methods include contacting olefins with an oligomerization catalyst in an oligomerization zone under oligomerization reaction conditions.Type: GrantFiled: December 6, 2007Date of Patent: June 7, 2011Assignee: ConocoPhillips CompanyInventors: Bruce B. Randolph, Jason J. Gislason, M. Bruce Welch, Richard L. Anderson, Dhananjay B. Ghonasgi, Robert W. Morton, Roland Schmidt
-
Publication number: 20110040133Abstract: Process for the selective production of ethylene, propylene and isoprene from light hydrocarbons comprising: a) fractionating a butane fraction in a de-isobutanizer to obtain an enriched iso-butane fraction and an enriched normal-butane fraction, b) cracking said normal-butane fraction and optionally an ethane fraction, optionally a propane fraction, in a non-catalytic cracking zone to produce an olefin rich stream, c) treating said olefin rich stream in a separating section to recover: an ethylene stream, a propylene stream, d) transforming the recovered iso-butane of step a) into iso-butene or t-butyl hydroperoxide or partly into iso-butene and partly into t-butyl hydroperoxide, e) optionally reacting iso-butene of step d), if any, with formaldehyde to make isoprene, f) optionally reacting t-butyl hydroperoxide of step d), if any, with an olefin to give an epoxide and t-butanol and further separating t-butanol, or optionally having t-butyl hydroperoxide of step d), if any, decomposed to t-butanol and reacteType: ApplicationFiled: November 20, 2008Publication date: February 17, 2011Applicant: TOTAL PETROCHEMICALS RESEARCH FELUYInventors: Walter Vermeiren, Francois Bouvart
-
Publication number: 20100292519Abstract: Byproduct formation in aromatic alkylation processes is reduced when different polyalkylated aromatic compounds are first fractionated into separate streams enriched in these respective polyalkylated aromatic compounds, and the separate streams are sent to different transalkylation reaction zones, which may or may not be in the same reactor. The different transalkylation reaction zones allow for greater control of the transalkylation of the respective polyalkylated aromatic compounds, such as diisopropylbenzene (DIPB) and triisopropylbenzene (TIPB) that accompany the alkylation of benzene with propylene in a process for cumene production.Type: ApplicationFiled: May 18, 2009Publication date: November 18, 2010Inventors: Patrick J. Bullen, Steven P. Lankton, Robert J. Schmidt