Including An Aromatization Step Patents (Class 585/322)
-
Patent number: 11976036Abstract: Processes for producing n-heptane from a mixture of 1-hexene and 1-octene in the presence of a suitable isomerization-metathesis catalyst followed by a hydrogenation step are disclosed. Integrated manufacturing systems for producing n-heptane with minimal waste also are disclosed.Type: GrantFiled: June 21, 2023Date of Patent: May 7, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Steven M. Bischof, Jeffery C Gee, James Hillier, Kamaljeet Kaur, Ronald C. Smith, Darin B. Tiedtke, Mark L. Hlavinka
-
Patent number: 11731921Abstract: Processes for producing n-heptane from a mixture of 1-hexene and 1-octene in the presence of a suitable isomerization-metathesis catalyst followed by a hydrogenation step are disclosed. Integrated manufacturing systems for producing n-heptane with minimal waste also are disclosed.Type: GrantFiled: July 27, 2022Date of Patent: August 22, 2023Inventors: Steven M. Bischof, Jeffery C. Gee, James Hillier, Kamaljeet Kaur, Ronald C. Smith, Darin B. Tiedtke, Mark L. Hlavinka
-
Patent number: 11578023Abstract: The present invention relates to methods and catalysts for producing methylbenzyl alcohol from ethanol by catalytic conversion, and belongs to the field of chemical engineering and technology. The present invention develops a route of producing methylbenzyl alcohol starting from green and sustainable ethanol and provide corresponding catalysts used for the catalytic conversion route. This innovative reaction route has several advantages, such as, simple process, eco-friendly property, and easy separation of products, as compared with a traditional petroleum-based route. This present route has a reaction temperature of 150-450° C. and total selectivity of 72% for methylbenzyl alcohol, and has good industrial application prospect. The innovation of this patent comprises the catalysts synthesis and the reaction route.Type: GrantFiled: September 28, 2018Date of Patent: February 14, 2023Assignee: DALIAN UNIVERSITY OF TECHNOLOGYInventors: Anhui Lu, Wencui Li, Qingnan Wang
-
Patent number: 11390814Abstract: Processes for the catalytic conversion of alcohols and/or ethers to olefins over zeolite catalysts are described. ZSM-48 and metal containing variants, such as Zn ZSM-48, produce high yields of olefins, particularly ethylene or C3+ olefins, between 200 and 500° C.Type: GrantFiled: October 1, 2020Date of Patent: July 19, 2022Assignee: ExxonMobil Technology and Engineering CompanyInventors: Matthew T. Kapelewski, Lei Zhang, Brandon J. O'Neill
-
Patent number: 11148984Abstract: The present invention relates to a method of preparing an aromatic compound from acetylene, which includes synthesizing an aromatic compound from an acetylene-containing reactant gas in the presence of a zeolite catalyst for the aromatization of acetylene, and subjecting the zeolite catalyst deactivated by the coke formed in the aromatization of acetylene, to plasma treatment at ambient temperature and pressure so as to selectively remove the external cokes and partial internal coke, thereby regenerating the zeolite catalyst; a method of regenerating the zeolite catalyst used in the aromatization of acetylene by plasma treatment; and a regenerated zeolite catalyst for the aromatization of acetylene, prepared thereof.Type: GrantFiled: February 28, 2019Date of Patent: October 19, 2021Assignee: Industry-University Cooperation Foundation Sogang UniversityInventors: Kyoung-Su Ha, MahnJung Kim, Juchan Kim, Jaekwon Jeoung
-
Patent number: 11130915Abstract: Methanol-to-gasoline (MTG) conversion may be performed with forward methanol processing. Methanol may be fed to a first reactor where it may be catalytically converted under dimethyl ether formation conditions in the presence of a first catalyst to form a product mixture comprising dimethyl ether (DME), methanol, and water. The DME may be separated from the methanol and the water and delivered to a second reactor. In the second reactor, the DME may be catalytically converted under MTG conversion conditions in the presence of a second catalyst to form a second product mixture comprising gasoline hydrocarbons and light hydrocarbon gas. The methanol and the water from the first reactor may be separated further to obtain substantially water-free methanol, which may be delivered to the second reactor. The separation of methanol from the water may be performed using the light hydrocarbon gas to effect stripping of the methanol.Type: GrantFiled: June 16, 2020Date of Patent: September 28, 2021Assignee: ExxonMobil Research and Engineering CompanyInventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, David W. Staubs, Terry E. Helton, Mitch L. Hindman
-
Patent number: 11118115Abstract: Methanol-to-gasoline (MTG) conversion may be performed with a methanol recycling. Methanol may be fed to a first reactor where it may be catalytically converted under dimethyl ether formation conditions in the presence of a first catalyst to form a product mixture comprising dimethyl ether (DME), methanol, and water. The DME may be separated from the methanol and the water and delivered to a second reactor. In the second reactor, the DME may be catalytically converted under MTG conversion conditions in the presence of a second catalyst to form a second product mixture comprising gasoline hydrocarbons and light hydrocarbon gas. The methanol and the water from the first reactor may be separated further to obtain substantially water-free methanol, which may be returned to the first reactor. The separation of methanol from the water may be performed using the light hydrocarbon gas to effect stripping of the methanol.Type: GrantFiled: June 16, 2020Date of Patent: September 14, 2021Assignee: ExxonMobil Research and Engineering CompanyInventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, David W. Staubs, Terry E. Helton, Mitch L. Hindman
-
Patent number: 11078133Abstract: Processes and apparatuses for alkylating aromatic hydrocarbons with an alkylating reagent to produce an alkylated aromatic product are described. The processes and apparatuses use a riser reactor operated at a superficial velocity of 10 m/s to 25 m/s to produce the alkylated aromatic product. In some embodiments, a combination of steam and aromatic hydrocarbon is used to lift the catalyst.Type: GrantFiled: December 6, 2019Date of Patent: August 3, 2021Assignee: UOP LLCInventors: Gregory B. Kuzmanich, Richard A. Johnson, II, Joseph A. Montalbano, Feng Xu, Robert E. Tsai
-
Patent number: 11041127Abstract: Provided are systems and methods for obtaining ethylene and propylene products from, for example, shale gas and shale gas condensate feedstocks. These systems and method operate by utilizing a hydrocracker train to crack C4 and C5 hydrocarbons to a product stream of propane and ethane or using a hydrogenolysis train to process C4 and C5 hydrocarbons to a product stream of propane and ethane that is provided to a cracker for an efficient conversion to ethylene and propylene. The disclosed systems are configured to reduce the amount of offsite hydrogen needed and also provide product streams that include a well-defined set of products as compared to existing approaches.Type: GrantFiled: August 10, 2018Date of Patent: June 22, 2021Assignee: SABIC GLOBAL TECHNOLOGIES B.V.Inventors: Dustin Fickel, Travis Conant, Dick Alan Nagaki, Raul Velasco Pelaez
-
Patent number: 10435348Abstract: The present invention relates to a process for producing aromatics, a process for producing p-xylene and terephthalic acid, and a device for producing aromatics. The process for producing aromatics at least comprises a step of producing C8 olefin from a compound having a lactone group and a step of producing aromatics from the C8 olefin. The process for producing aromatics has the characters of high yield of aromatics and high selectivity to xylene.Type: GrantFiled: June 17, 2016Date of Patent: October 8, 2019Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY, SINOPECInventors: Dejin Kong, Junlin Zheng, Qi Song, Xiaolan Qi, Xuan Xu, Xiangdong Jiang, Deqin Yang
-
Patent number: 10106474Abstract: The disclosure is for a process for producing propylene and hexene (along with ethylene, pentenes, product butenes, heptenes and octenes) by metathesis from butenes (iso-, 1- and cis and trans 2-) and pentenes and then aromatizing the hexenes (along with higher olefins, such as heptenes and octenes) to benzene (along with toluene, xylenes, ethylbenzene and styrene). Since the desired products of the metathesis reaction are propylene and hexene, the feed to the metathesis reaction has a molar ratio for 1-butene:2-butene which favors production of propylene and 3-hexene with the concentration of hexenes and higher olefins in the metathesis product being up to 30 mole %. An isomerization reactor may be used to obtain the desired molar ratio of 1-butene:2-butene for the feed composition into the metathesis reactor. After the metathesis reaction, of hexene and higher olefins are separated for aromatization to benzene and other aromatics.Type: GrantFiled: February 4, 2014Date of Patent: October 23, 2018Assignee: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Jaap W. van Hal, Scott A. Stevenson, Jim Allman, David L. Sullivan, Travis Conant
-
Patent number: 9950970Abstract: An ionic liquid reactor and a process for controlling heat generation from an ionic liquid reactor unit. The ionic liquid reactor includes an internal heat exchanger. Impellers break the ionic liquid into small droplets to ensure reactions and mix the fluids to ensure reactions and enhance heat exchanger. Baffles may be used to direct the flow of the fluids within the reactor.Type: GrantFiled: December 12, 2014Date of Patent: April 24, 2018Assignee: UOP LLCInventor: Zhanping Xu
-
Patent number: 9359272Abstract: A process and a plant for producing C2-C4 olefins, in particular propylene, from an educt mixture containing steam as well as methanol vapor and/or dimethyl ether vapor.Type: GrantFiled: June 23, 2006Date of Patent: June 7, 2016Assignee: Lurgi GmbHInventors: Martin Rothaemel, Uwe Finck, Thomas Renner, Henning Buchold
-
Patent number: 9284234Abstract: Provided is a gasoline production device capable of effectively using heat of reaction generated in the synthesis of gasoline and also capable of readily cooling heat generated by synthesizing gasoline. A device 30 for producing gasoline from methanol includes a plurality of reaction tubes 34 configured to synthesize gasoline from methanol and a duct 36 configured to allow air to flow outside the reaction tubes, and heat exchange is carried out between synthesis heat generated within the reaction tubes 34 and the air which flows through the duct 36.Type: GrantFiled: December 13, 2012Date of Patent: March 15, 2016Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.Inventor: Masaki Iijima
-
Patent number: 9187393Abstract: Process for the preparation of dimethyl ether comprising the steps of: a) providing a methanol containing feed stock; b) introducing the feed stock into a reaction zone within a gas cooled dimethyl ether reactor and passing the feed stock through the reaction zone; c) introducing a cooling gas stream into a cooling space within the gas cooled dimethyl ether reactor; d) reacting the feed stock in the reaction zone in presence of a catalyst being active in the dehydration of methanol to dimethyl ether to obtain a reactor effluent comprising dimethyl ether.Type: GrantFiled: January 11, 2011Date of Patent: November 17, 2015Assignee: Haldor Topsoe A/SInventors: Per Juul Dahl, Henrik Otto Stahl
-
Publication number: 20150137043Abstract: A method of processing a coal feed to produce aromatic hydrocarbon compounds includes providing a coal tar stream and converting the coal tar stream to a conversion product comprising at least olefins, paraffins, and aromatics. The process further includes separating the olefins and C5? paraffins from the conversion product, and contacting the separated olefins and the C5? paraffins with a catalyst to dehydrogenize, oligomerize, and cyclize the olefins and the C5? paraffins, to form aromatic hydrocarbon compounds.Type: ApplicationFiled: August 26, 2014Publication date: May 21, 2015Inventors: John Q. Chen, Peter K. Coughlin, Stanley J. Frey, James A. Johnson, Vasant P. Thakkar
-
Publication number: 20150141725Abstract: A process for providing aromatics from a coal tar stream. A coal tar stream is provided, and the coal tar stream is fractionated into at least a naphtha range stream. The naphtha range stream is hydrotreated, and the hydrotreated naphtha range stream is separated to provide at least a naphthene rich stream. The naphthene rich stream is reformed or dehydrogenated to convert the naphthene. The dehydrogenated naphthene rich stream may be combined with a portion of a reformed crude oil hydrocarbon stream.Type: ApplicationFiled: August 19, 2014Publication date: May 21, 2015Inventors: Matthew Lippmann, Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Kurt M. Vanden Bussche
-
Patent number: 9035118Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.Type: GrantFiled: December 15, 2011Date of Patent: May 19, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
-
Publication number: 20150133705Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: ApplicationFiled: December 26, 2014Publication date: May 14, 2015Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
-
Patent number: 9029618Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.Type: GrantFiled: December 15, 2011Date of Patent: May 12, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
-
Patent number: 9024098Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.Type: GrantFiled: December 15, 2011Date of Patent: May 5, 2015Assignee: UOP LLCInventors: Mark D. Moser, David A. Wegerer, Manuela Serban, Kurt M. VandenBussche
-
Patent number: 9024097Abstract: A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.Type: GrantFiled: December 15, 2011Date of Patent: May 5, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
-
Patent number: 9024099Abstract: A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.Type: GrantFiled: December 15, 2011Date of Patent: May 5, 2015Assignee: UOP LLCInventors: Mark D. Moser, Kurt M. VandenBussche, David A. Wegerer, Gregory J. Gajda
-
Publication number: 20150072916Abstract: The production of linear alkylbenzene from a natural oil is provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.Type: ApplicationFiled: June 6, 2014Publication date: March 12, 2015Applicant: UOP LLCInventors: Stanley J. Frey, Daniel L. Ellig, Andrea G. Bozzano, Geoffrey W. Fichtl, Debarshi Majumder
-
Publication number: 20150065769Abstract: Disclosed are reactors and reaction processes for contacting hydrocarbon reactant in the presence of oxygen stored and released within a thermal mass region of the reactor, and catalytically converting at least a portion of alkane, e.g., methane, in the hydrocarbon reactant to produce a reaction mixture comprising a C5+ composition. Oxygen storage and release for carrying out the catalytic conversion is achieved by including an oxygen storage material in a thermal mass region of the reactor. Flow-through reactors can be used to carry out oxygen storage and the hydrocarbon conversion reactions. Reverse-flow reactors are examples of flow-through reactors, which can be used to carry out oxygen storage and the hydrocarbon conversion reactions.Type: ApplicationFiled: August 26, 2014Publication date: March 5, 2015Inventors: Juan D. Henao, Paul F. Keusenkothen
-
Patent number: 8969640Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: GrantFiled: November 23, 2011Date of Patent: March 3, 2015Assignee: Virent, Inc.Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
-
Patent number: 8962902Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: GrantFiled: May 22, 2013Date of Patent: February 24, 2015Assignee: Virent, Inc.Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
-
Publication number: 20150038752Abstract: Systems and methods for producing aromatic products are provided. An aromatic stream is provided with aromatic compounds and olefins. The olefins are reacted with aromatic compounds to form colored bodies, and the aromatic stream is distilled to produce an overhead stream and reboiler stream. The colored bodies are in the reboiler stream, and the reboiler stream is passed through an absorbent to remove the colored bodies.Type: ApplicationFiled: July 30, 2013Publication date: February 5, 2015Applicant: UOP LLCInventors: Jon Eric Prudhom, Jason L. Noe
-
Patent number: 8940950Abstract: The process relates to the use of any naphtha-range stream containing a portion of C8+ aromatics combined with benzene, toluene, and other non-aromatics in the same boiling range to produce toluene. By feeding the A8+ containing stream to a dealkylation/transalkylation/cracking reactor to increase the concentration of toluene in the stream, a more suitable feedstock for the methylation reaction can be produced. This stream can be obtained from a variety of sources, including the pygas stream from a steam cracker, “cat naphtha” from a fluid catalytic cracker, or the heavier portion of reformate.Type: GrantFiled: November 23, 2011Date of Patent: January 27, 2015Assignee: ExxonMobil Chemical Patents Inc.Inventors: Justin M. Ellrich, Robert D. Strack, John W. Rebeck, Allen S. Gawlik, Larry L. Iaccino, Glenn C. Wood, Stephen H. Brown, Timothy Paul Bender
-
Patent number: 8937186Abstract: Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of acids from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of acids in the hydrocarbon stream by use of adsorbents or basic solutions.Type: GrantFiled: July 25, 2013Date of Patent: January 20, 2015
-
Patent number: 8937205Abstract: A hydrocarbon upgrading process is described in which a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising aliphatic and aromatic hydrocarbons. A second stream comprising C6-C9 aliphatic and aromatic hydrocarbons is recovered from the first stream and aliphatic hydrocarbons are removed from at least part of the second stream to produce an aliphatic hydrocarbon-depleted stream. The aliphatic hydrocarbon-depleted stream is then dealkylated and/or transalkylated and/or cracked (D/T/C) by contact with a catalyst under suitable reaction conditions to produce a third stream having an increased benzene and/or toluene content compared with said aliphatic hydrocarbon-depleted stream and a light paraffin by-product. Benzene and/or toluene from the third stream is then methylated with a methylating agent to produce a xylene-enriched stream.Type: GrantFiled: May 7, 2012Date of Patent: January 20, 2015Assignee: ExxonMobil Chemical Patents Inc.Inventors: Larry L. Iaccino, Glenn C. Wood, Jesus A. Ramos, Lane L. McMorris
-
Publication number: 20150011813Abstract: A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.Type: ApplicationFiled: July 1, 2014Publication date: January 8, 2015Inventors: Chaitanya K. Narula, Brian H. Davison
-
Patent number: 8921633Abstract: In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12+ olefinic and aromatic hydrocarbons is recovered from the first stream and blended said second stream with a residual fraction from a steam cracker or an atmospheric or vacuum distillation unit to produce a third stream. The third stream is then catalytically pyrolyzed in a reactor under conditions effective to produce a fourth stream having an increased benzene and/or toluene content compared with said second stream and a C3-olefin by-product. The C3-olefin by-product is recovered and benzene and/or toluene are recovered from the fourth stream.Type: GrantFiled: May 7, 2012Date of Patent: December 30, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventors: Larry L. Iaccino, Stephen M. Davis, Steven E. Silverberg
-
Publication number: 20140371500Abstract: A method for removing tightly bound sodium from a zeolitic support comprising contacting the support with a sodium specific removal agent to produce a treated support. A method comprising providing an aromatization catalyst comprising a treated support, and contacting the aromatization catalyst with a hydrocarbon feed in a reaction zone under conditions suitable for the production of an aromatic product. A catalyst support comprising an L-zeolite having less than 0.35 wt. % sodium.Type: ApplicationFiled: August 28, 2014Publication date: December 18, 2014Inventor: Gyanesh P. Khare
-
Publication number: 20140349361Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting biomass to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: ApplicationFiled: May 22, 2014Publication date: November 27, 2014Applicant: Virent, Inc.Inventors: Paul Blommel, Andrew Held, Ralph Goodwin, Randy Cortright
-
Publication number: 20140350317Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting carboxylic acids to aromatic hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.Type: ApplicationFiled: May 22, 2014Publication date: November 27, 2014Applicant: Virent, Inc.Inventors: Paul Blommel, Randy Cortright
-
Publication number: 20140322781Abstract: A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.Type: ApplicationFiled: April 28, 2014Publication date: October 30, 2014Applicant: UT-BATTELLE, LLCInventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
-
Patent number: 8859835Abstract: In a process for the regeneration of a coked metal-containing catalyst, the coked catalyst is contacted in a regeneration zone with an atmosphere which contains carbon dioxide and carbon monoxide at a temperature of at least 400° C.Type: GrantFiled: August 26, 2011Date of Patent: October 14, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventors: Kenneth R. Clem, Larry L. Iaccino, Mobae Afeworki, Juan D. Henao, Neeraj Sangar, Xiaobo Zheng, Lorenzo C. DeCaul
-
Publication number: 20140296570Abstract: The invention relates to a process for converting hydrocarbons into products containing aldehydes and/or alcohols. The invention also relates to producing olefins from the aldehyde and alcohol, to polymerizing the olefins, and to equipment useful for these processes.Type: ApplicationFiled: December 20, 2011Publication date: October 2, 2014Applicant: Exxonmobile Chemical Patents Inc.Inventors: Paul F. Keusenkothen, Frank Hershkowitz
-
Publication number: 20140275584Abstract: Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a NinSnm alloy and a crystalline alumina support.Type: ApplicationFiled: March 14, 2014Publication date: September 18, 2014Applicant: Virent, Inc.Inventors: Taylor Beck, Brian Blank, Casey Jones, Elizabeth Woods, Randy Cortright
-
Publication number: 20140275571Abstract: Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Group VIII metal and a crystalline alumina support.Type: ApplicationFiled: March 14, 2014Publication date: September 18, 2014Applicant: Virent, Inc.Inventors: Taylor Beck, Brian Blank, Casey Jones, Elizabeth Woods, Randy Cortright
-
Patent number: 8835706Abstract: A process for the conversion of mixed lower alkanes into aromatics which comprises first reacting a mixed lower alkane feed comprising at least propane and ethane in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of propane into first stage aromatic reaction products, separating ethane from the first stage aromatic reaction products, reacting ethane in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of ethane into second stage aromatic reaction products, and optionally separating ethane from the second stage aromatic reaction products.Type: GrantFiled: October 29, 2010Date of Patent: September 16, 2014Assignee: Shell Oil CompanyInventors: Mahesh Venkataraman Iyer, Ann Marie Lauritzen, Ajay Madhav Madgavkar
-
Publication number: 20140179963Abstract: A process and system for recovering hydrogen bromide, methane, ethane and propane from butane and higher hydrocarbon products by means of condensation, cryogenic liquefaction and distillation, and for oxidation of the hydrogen bromide to bromine for re-use within a gas-conversion process for producing higher-molecular weight hydrocarbons.Type: ApplicationFiled: December 13, 2013Publication date: June 26, 2014Inventor: John J. Waycuilis
-
Publication number: 20140171691Abstract: The present invention discloses a system for converting methanol or synthesis gas to liquid hydrocarbons with comparable energy content to gasoline within a mixed bed single reactor or double reactor systems. Varying catalyst composition and temperature profiles allow for significant tailoring of reaction conditions to the specific feedstocks or the desired products.Type: ApplicationFiled: December 11, 2013Publication date: June 19, 2014Applicant: PIONEER ENERGY INC.Inventors: Adam M. Kortan, Michael T. Kelly, Heather A. Rose, Robert M. Zubrin
-
Patent number: 8754276Abstract: A reverse flow regenerative reactor having first and second zones, each having first and second ends, the first zone having a plurality of channels capable of separately conveying at least two components of a combustible gas mixture, a gas distributor configured for injecting the components of the combustible gas mixture into first zone, a combustion zone including a selective combustion catalyst disposed at or downstream of the second end of said channels for catalyzing combustion, wherein the second zone is positioned and situated to receive a combusted gas mixture. Processes usefully conducted in the reactor are also disclosed.Type: GrantFiled: August 10, 2012Date of Patent: June 17, 2014Assignee: ExxonMobil Research and Engineering CompanyInventors: John Scott Buchanan, Stephen Mark Davis, Frank Hershkowitz, John Slocum Coleman, Seth McConkie Washburn
-
Publication number: 20140163276Abstract: A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for dehydrocyclodimerization reactions. These zeolites are represented by the empirical formula. NanMmn+RrQqAl1-xExSiyOz where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,?-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting at least one aliphatic hydrocarbon having from 2 to about 6 carbon atoms per molecule with the coherently grown composites of TUN and IMF zeotypes to produce at least one aromatic hydrocarbon.Type: ApplicationFiled: December 11, 2013Publication date: June 12, 2014Applicant: UOP LLCInventors: Christopher P. Nicholas, Mark A. Miller
-
Publication number: 20140163268Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include reacting a triacylglycerides-containing oil-carbon dioxide mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.Type: ApplicationFiled: December 11, 2012Publication date: June 12, 2014Applicant: LUMMUS TECHNOLOGY INC.Inventor: Marvin I. Greene
-
Publication number: 20140155665Abstract: A process for making a bio-naphtha and optionally bio-propane from a complex mixture of natural occurring fats & oils, wherein said complex mixture is subjected to a refining treatment for removing the major part of non-triglyceride and non-fatty acid components, thereby obtaining refined fats & oils; said refined fats & oils are transformed into linear or substantially linear paraffin's as the bio-naphtha by an hydrodeoxygenation or from said refined fats & oils are obtained fatty acids that are transformed into linear or substantially linear paraffin's as the bio-naphtha by hydrodeoxygenation or decarboxylation of the free fatty acids or from said refined fats & oils are obtained fatty acids soaps that are transformed into linear or substantially linear paraffin's as the bio-naphtha by decarboxylation of the soaps.Type: ApplicationFiled: December 3, 2013Publication date: June 5, 2014Applicant: TOTAL PETROCHEMICALS RESEARCH FELUYInventors: Walter Vermeiren, Nicolas Van Gyseghem
-
Patent number: 8742187Abstract: The method of the present invention provides a high yield pathway to 2,5-dimethylhexadiene from renewable isobutanol, which enables economic production of renewable p-xylene (and subsequently, terephthalic acid, a key monomer in the production of PET) from isobutanol. In addition, the present invention provides methods for producing 2,5-dimethylhexadiene from a variety of feed stocks that can act as “equivalents” of isobutylene and/or isobutyraldehyde including isobutanol, isobutylene oxide, and isobutyl ethers and acetals. Catalysts employed in the present methods that produce 2,5-dimethylhexadiene can also catalyze alcohol dehydration, alcohol oxidation, epoxide rearrangement, and ether and acetal cleavage.Type: GrantFiled: April 19, 2012Date of Patent: June 3, 2014Assignee: GEVO, Inc.Inventors: Thomas Jackson Taylor, Joshua D. Taylor, Matthew W. Peters, David E. Henton
-
Publication number: 20140148629Abstract: The disclosure is for a process for producing propylene and hexene (along with ethylene, pentenes, product butenes, heptenes and octenes) by metathesis from butenes (iso-, 1- and cis and trans 2-) and pentenes and then aromatizing the hexenes (along with higher olefins, such as heptenes and octenes) to benzene (along with toluene, xylenes, ethylbenzene and styrene). Since the desired products of the metathesis reaction are propylene and hexene, the feed to the metathesis reaction has a molar ratio for 1-butene:2-butene which favors production of propylene and 3-hexene with the concentration of hexenes and higher olefins in the metathesis product being up to 30 mole %. An isomerization reactor may be used to obtain the desired molar ratio of 1-butene:2-butene for the feed composition into the metathesis reactor. After the metathesis reaction, of hexene and higher olefins are separated for aromatization to benzene and other aromatics.Type: ApplicationFiled: February 4, 2014Publication date: May 29, 2014Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Jaap W. van Hal, Scott A. Stevenson, Jim Allman, David L. Sullivan, Travis Conant