Using Crystalline Aluminosilicate Catalyst Patents (Class 585/475)
  • Publication number: 20080319243
    Abstract: A process for the disproportionation of a toluene containing feedstock employing a nickel modified mordenite catalyst comprising particulate mordenite having nickel dispersed throughout the catalyst particles to provide surface nickel and interior nickel within the mordenite crystal structure. The catalyst is pretreated to selectively deactivate the surface nickel to provide a surface nickel content of reduced catalytic activity. The interior nickel thus has a higher catalytic activity than the surface nickel. The feedstock is supplied to a reaction zone containing the catalyst to cause disproportionation of toluene in the feedstock to produce a mixture of benzene and xylene. The non-aromatic content of the product is less than the non-aromatic content of a corresponding disproportionation product which would be produced by the disproportionation of the feedstream in the presence of a corresponding nickel mordenite catalyst which has not been pretreated.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 25, 2008
    Inventors: James R. Butler, Xin Xiao, Rosa Hall
  • Publication number: 20080306318
    Abstract: A process for producing a PX-rich product comprises (a) separating a feedstock containing C8 hydrocarbons to produce a C8 hydrocarbons rich stream; (b) separating at least a first portion of the C8 hydrocarbons rich stream to produce a first PX-rich stream and a first PX-depleted stream; (c) isomerizing at least a portion of the first PX-depleted stream to produce a first isomerized stream having a higher PX concentration than the first PX-depleted stream; (d) separating a second portion of the C8 hydrocarbons rich stream and/or at least a portion of the first isomerized stream to produce a second PX-rich stream and a second PX-depleted stream; (e) isomerizing at least a portion of the second PX-depleted stream to produce a second isomerized stream having a higher PX concentration than the second PX-depleted stream; (f) recovering at least a portion of at least one of the first and second PX-rich streams as PX-rich product; and (g) supplying at least a portion of at least one of the first isomerized stream, t
    Type: Application
    Filed: August 22, 2008
    Publication date: December 11, 2008
    Inventors: John Di-Yi Ou, Harold W. Helmke, JR., John R. Porter
  • Patent number: 7459073
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-47B prepared using a N-cyclopentyl-1,4-diazabicyclo[2.2.2] octane cation as a structure-directing agent and an amine too large to fit in the pores of the molecular sieve nonasil, methods for synthesizing SSZ-47B and processing employing SSZ-47B in a catalyst.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: December 2, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Allen W. Burton, Jr., Stacey I. Zones
  • Publication number: 20080249344
    Abstract: A process for cracking an olefin-containing hydrocarbon feedstock which is selective towards light olefins in the effluent, the process comprising passing a hydrocarbon feedstock containing one or more olefins through a moving bed reactor containing a crystalline silicate catalyst selected from an MFI-type crystalline silicate having a silicon/aluminium atomic ratio of at least 180 and an MEL-type crystalline silicate having a silicon/aluminium atomic ration of from 150 to 800 which has been subjected to a steaming step, at an inlet temperature of from 500 to 600° C., at an olefin partial pressure of from 0.
    Type: Application
    Filed: May 19, 2008
    Publication date: October 9, 2008
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 7432405
    Abstract: A process for the disproportionation of cumene is disclosed which comprises the step of contacting a feed containing cumene, under disproportionation conditions, with a catalyst comprising a molecular sieve, preferably TEA-mordenite. The contacting step disproportionates at least part of the cumene in the feed to provide a disproportionation effluent containing benzene and a mixture of diisopropylbenzene isomers. The effluent is then recovered and contains, prior to any separation step, less 1% of ortho-diisopropylbenzene by weight of the total diisopropylbenzene content of said effluent, less than 1 wt % of n-propylbenzene, less than 5 wt % of triisopropylbenzenes and less than 5 wt % of disproportionation products other than benzene and diisopropylbenzenes.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: October 7, 2008
    Assignee: ExxonMobil Oil Corporation
    Inventors: William A. Weber, Walter R. Cade, Francis S. Bryan, Jose Guadalupe Santiesteban
  • Publication number: 20080221375
    Abstract: A process for preparing a transalkylation catalyst, the catalyst itself, and a transalkylation process for using the catalyst are herein disclosed. The catalyst comprises rhenium metal on a solid-acid support such as mordenite, which has been treated with a sulfur-based agent. Such treatment reduces the amount of methane produced by metal hydrogenolysis in a transalkylation process wherein heavy aromatics like A9+ are reacted with toluene to produce xylenes. Reduced methane production relative to total light ends gas production results in lower hydrogen consumption and lower reactor exotherms.
    Type: Application
    Filed: May 22, 2008
    Publication date: September 11, 2008
    Inventors: Edwin P. Boldingh, Antoine Negiz, Gregory F. Maher, Paula L. Bogdan, Dean E. Rende
  • Patent number: 7423190
    Abstract: Transalkylation catalysts comprising acidic molecular sieve, rhenium, tin and germanium have good activities and attenuate aromatic ring saturation and lights co-production.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: September 9, 2008
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Maureen L. Bricker, Robert B. Larson, Frank S. Modica, James E. Rekoske
  • Patent number: 7419931
    Abstract: A catalyst is described which comprises at least one zeolite with channels with openings defined by a ring having 10 oxygen atoms (10 MI), at least one zeolite with at least channels or side pockets with openings defined by a ring having 12 oxygen atoms (12 MR), at least one metal selected from the group constituted by group IIIA and VIIB metals and at least one porous mineral matrix. Said catalyst optionally also contains at least one metal selected from the group constituted by group IVA and VIB metals. The catalyst of the invention is used in a process for the transalkylation of alkylaromatic hydrocarbons such as toluene or benzene and alkylaromatics containing at least 9 carbon atoms.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: September 2, 2008
    Assignee: Institute Francais du Petrole
    Inventors: José Manuel Serra, Avelino Corma, Emmanuelle Guillon
  • Patent number: 7414163
    Abstract: Transalkylation catalysts comprising acidic molecular sieve, iridium and germanium have good activities and attenuate aromatic ring saturation and lights co-production where high atomic ratios of germanium to iridium are present.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 19, 2008
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Maureen L. Bricker, Robert B. Larson, Frank S. Modica, James E. Rekoske
  • Patent number: 7411101
    Abstract: A process for producing a monoalkylation aromatic product, such as ethylbenzene and cumene, utilizing an alkylation reactor zone and a transalkylation zone in series or a combined alkylation and transkylation reactor zone.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: August 12, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shiou-Shan Chen, Henry Hwang
  • Patent number: 7411102
    Abstract: Transalkylation catalysts comprising acidic molecular sieve, palladium and germanium have good activities and attenuate aromatic ring saturation and lights co-production provided that sufficient palladium is contained in the catalyst.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 12, 2008
    Assignee: UOP LLC
    Inventors: Maureen L. Bricker, Frank S. Modica
  • Patent number: 7405335
    Abstract: Processes and apparatus are provided that provide high yields of xylenes per unit of aromatic-containing feed while enabling a high purity benzene co-product to be obtained without the need for an extraction or distillation to remove C6 naphthenes. The processes of this invention include a transalkylation section and a disproportionation section in the benzene and toluene-containing feed is directly provided to the transalkylation section and in which a benzene recycle loop in the transalkylation section isolates the disproportionation section from C6 naphthenes.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: July 29, 2008
    Assignee: UOP LLC
    Inventors: Edward M. Casey, Patrick J. Silady, Antoine Negiz, Gregory R. Werba
  • Patent number: 7402545
    Abstract: This invention relates to a catalyst that contains at least one BOG-structured zeolite that comprises silicon and at least one Element T that is selected from the group that is formed by aluminum, iron, gallium and boron. The catalyst contains at least one metal that is selected from the group that is formed by the non-noble elements of groups VIB, VIIB and VIII of the periodic table. Said catalyst is used in a process for transalkylation of alkyl-aromatic hydrocarbons such as toluene and the alkyl-aromatic compounds with at least 9 carbon atoms.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: July 22, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Sylvie Lacombe, Emmanuelle Guillon
  • Patent number: 7399894
    Abstract: A process for producing cumene is provided which comprises the step of contacting benzene and propylene under at least partial liquid phase alkylating conditions with a particulate molecular sieve alkylation catalyst, wherein the particles of said alkylation catalyst have a surface to volume ratio of about 80 to less than 200 inch?1.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: July 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ajit B. Dandekar, Michael N M N Hryniszak, David Lawrence Stern
  • Patent number: 7393989
    Abstract: A catalyst, a process for using the catalyst whereby the catalyst effectively transalkylates C7, C9, and C10 aromatics to C8 aromatics are disclosed. The catalyst comprises a support such as mordenite plus a metal component. The catalyst provides an enhanced life and activity for carrying out the transalkylation reactions at relatively low temperatures. This is achieved by reducing the maximum particle diameter of cylindrical pellets to 1/32 inch (0.08 cm) or a trilobe to 1/16 inch (0.16 cm).
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: July 1, 2008
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Gregory J. Gajda, Sergey V. Gurevich
  • Patent number: 7390395
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-56 prepared using a N,N-diethyl-2-methyldecahydroquinolinium cation as a structure directing agent, methods for synthesizing SSZ-56 and processes employing SSZ-56 in a catalyst.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: June 24, 2008
    Inventor: Saleh Elomari
  • Publication number: 20080139859
    Abstract: A process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, comprising the steps of (a) contacting at least one the alkylatable aromatic compound and at least one the alkylating agent with at least one molecular sieve catalyst under suitable alkylation or transalkylation conditions in at least one reaction zone, to produce at least one effluent which comprises the monoalkylated aromatic compound, wherein the suitable alkylation or transalkylation conditions comprise a water content being in a range from about 1 wppm to about 10 wt. % based on the combined weight of the alkylatable aromatic compound and the alkylating agent; and (b) maintaining the water content in the reaction zone; wherein the cycle length of the molecular sieve catalyst operated inside the range of the water content is greater than the cycle length of the molecular sieve catalyst operated outside the range of the water content.
    Type: Application
    Filed: November 15, 2006
    Publication date: June 12, 2008
    Inventors: Michael C. Clark, Vijay Nanda
  • Patent number: 7371911
    Abstract: A process for the production of ethylbenzene by the ethylation of benzene in the critical phase in a reaction zone containing a molecular sieve aromatic alkylation catalyst comprising cerium-promoted zeolite beta. A polyethylbenzene is supplied into the reaction zone and into contact with the cerium-promoted zeolite beta having a silica/alumina mole ratio within the range of 20-500. The reaction zone is operated at temperature and pressure conditions in which benzene is in the supercritical phase to cause ethylation of the benzene and the transalkylation of polyethylbenzene and benzene in the presence of the zeolite beta catalyst. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated byproducts of no more than 60 wt. % of the ethylbenzene.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: May 13, 2008
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Kevin P. Kelly
  • Patent number: 7368619
    Abstract: A process for the production of low sulfur diesel and aromatic compounds wherein C9+ hydrocarbons are hydrocracked to produce low sulfur diesel and a naphtha boiling range stream which is transalkylated in an integrated transalkylation zone to produce xylene.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: May 6, 2008
    Assignee: UOP LLC
    Inventors: Stanley J. Frey, Vasant P. Thakkar
  • Patent number: 7361798
    Abstract: The invention relates to a process for producing a desired dialkylbenzene isomer having a formula R2C6H4, where R is an alkyl substituent, by contacting a polyalkylbenzene compound of formula RnC6H6-n, where n is an integer between 2 and 4, with a monoalkylbenzene compound of formula RC6H5 in the presence of a molecular sieve catalyst under reaction conditions sufficient to produce said dialkybenzene isomer. The preferred molecular sieve catalysts have pores or surface cavities greater than 5.6 Angstroms in diameter and/or an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07, and 3.42±0.07 Angstrom.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: April 22, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Ronald J. Cimini, Jane C. Cheng, David L. Stern, John Scott Buchanan
  • Patent number: 7326818
    Abstract: In a process for preparing a selectivated catalyst composition useful in the disproportionation of toluene, a catalyst comprising an acidic molecular sieve is contacted with a boron compound at a temperature in excess of 500° C.; and the resultant catalyst is then contacted with a medium containing hydrogen ions to at least partially restore the acid activity of the molecular sieve.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jean W. Beeckman, William G. Borghard, Arthur W. Chester, Robert A. Crane, Owen C. Feeley, John C. Fried, Dominick N. Mazzone, Glenn R. Sweeten
  • Publication number: 20080027258
    Abstract: Transalkylation catalysts comprising acidic molecular sieve, rhenium, tin and germanium have good activities and attenuate aromatic ring saturation and lights co-production.
    Type: Application
    Filed: July 28, 2006
    Publication date: January 31, 2008
    Inventors: Edwin P. Boldingh, Maureen L. Bricker, Robert B. Larson, Frank S. Modica, James E. Rekoske
  • Publication number: 20080027257
    Abstract: Transalkylation catalysts comprising acidic molecular sieve, palladium and germanium have good activities and attenuate aromatic ring saturation and lights co-production provided that sufficient palladium is contained in the catalyst.
    Type: Application
    Filed: July 28, 2006
    Publication date: January 31, 2008
    Inventors: Maureen L. Bricker, Frank S. Modica
  • Publication number: 20080027259
    Abstract: This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18±0.25 and 12.33±0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18±0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33±0.23 Angstroms. This invention also relates to a method of making thereof.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 31, 2008
    Inventors: Wieslaw J. ROTH, Thomas YORKE, Michael Charles KERBY, Simon Christopher WESTON
  • Publication number: 20080027260
    Abstract: This disclosure relates to a crystalline MCM-22 family molecular sieve having a platelet aggregates morphology wherein greater than 50 wt % of the molecular sieve having a crystal diameter greater than 1 ?m as measured by the SEM. The crystalline MCM-22 family molecular sieve of this disclosure, wherein the platelet aggregates morphology is rosette habit morphology, or multiple layer plate's morphology.
    Type: Application
    Filed: June 28, 2007
    Publication date: January 31, 2008
    Inventors: Wenyih Frank Lai, Robert Ellis Kay, Mohan Kalyanaraman
  • Publication number: 20070284284
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium)dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 13, 2007
    Inventors: Stacey I. Zones, Allen W. Burton, Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
  • Patent number: 7304195
    Abstract: A process for increasing the production of benzene from a hydrocarbon mixture. A process for producing an aromatic hydrocarbon mixture and liquefied petroleum gas (LPG) from a hydrocarbon mixture, and a solvent extraction process for separating and recovering polar hydrocarbons from a hydrocarbon mixture containing polar hydrocarbons (that is, aromatic hydrocarbons) and nonpolar hydrocarbons (that is, non-aromatic hydrocarbons) are integrated, thereby it is possible to increase the production of benzene.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: December 4, 2007
    Assignee: SK Corporation
    Inventors: Sun Choi, Seung Hoon Oh, Kyoung Hak Sung, Jong Hyung Lee, Sin Choel Kang, Yong Seung Kim, Byeung Soo Lim, Byoung Mu Chang
  • Patent number: 7301063
    Abstract: A process for increasing the production of light olefin hydrocarbons from a hydrocarbon feedstock. A process for producing an aromatic hydrocarbon mixture and liquefied petroleum gas (LPG) from a hydrocarbon mixture, and a process for producing a hydrocarbon feedstock which is capable of being used as a feedstock in the former process, that is to say, a fluidized catalytic cracking (FCC) process, a catalytic reforming process, and/or a pyrolysis process, are integrated, thereby it is possible to increase the production of C2-C4 light olefin hydrocarbons.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: November 27, 2007
    Assignee: SK Corporation
    Inventors: Sun Choi, Seung Hoon Oh, Kyoung Hak Sung, Jong Hyung Lee, Sin Choel Kang, Yong Seung Kim, Byeung Soo Lim, Ahn Seop Choi, Byoung Mu Chang
  • Patent number: 7297831
    Abstract: Disclosed is a process of preparing aromatic hydrocarbons and liquefied petroleum gas (LPG) from a hydrocarbon mixture, in which a non-aromatic compound in the hydrocarbon feedstock mixture is converted into a gaseous material having a large amount of LPG through hydrocracking, and an aromatic compound therein is converted into an oil component having large amounts of benzene, toluene, and xylene (BTX) through dealkylation and transalkylation, in the presence of a catalyst obtained by supporting platinum/bismuth onto a mixture support having zeolite and an inorganic binder. The gaseous product is separated into LPG and a mixture of methane and ethane depending on differences in boiling point through distillation, while the liquid product is separated into benzene, toluene, xylene, and C9+ aromatic compounds depending on differences in boiling point through distillation.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: November 20, 2007
    Assignee: SK Corporation
    Inventors: Jong Hyung Lee, Seung Hoon Oh, Kyoung Hak Sung, Sun Choi, Yong Seung Kim, Byeung Soo Lim
  • Patent number: 7271303
    Abstract: A multi-zone process for the production of low sulfur diesel and aromatic compounds wherein C9+ hydrocarbons are hydrocracked to produce low sulfur diesel and a naphtha boiling range stream which is reformed and transalkylated within reforming and transalkylation zones to produce an aromatics-rich high-octane stream containing xylene and to balance hydrogen needs.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: September 18, 2007
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Stanley J. Frey
  • Patent number: 7268263
    Abstract: An aromatics complex flow scheme has been developed. C7-C8 aliphatic hydrocarbons are recycled to an isomerization unit of a xylene recovery zone to increase the efficiency of the isomerization unit. This improvement results in an aromatics complex with savings on capital and utility costs and an improvement on the return on investment.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: September 11, 2007
    Assignee: UOP LLC
    Inventors: Stanley J. Frey, Gavin P. Towler
  • Patent number: 7268264
    Abstract: A process for the production of ethylbenzene by the ethylation of benzene in the critical phase over a molecular sieve aromatic alkylation catalyst. An aromatic feedstock having a benzene content of at least 90 wt. % is supplied into a reaction zone into contact with a zeolite beta alkylation catalyst having a silica/alumina ratio within the range of 20-500, specifically 50-150. The alkylation catalyst is a zeolite beta specifically a lanthanum-modified zeolite beta. Ethylene is supplied to the reaction zone to provide a benzene/ethylene mole ratio of 1-15. The reaction zone is operated under conditions in which benzene is in the supercritical phase to produce an alkylation product containing ethylbenzene as a primary product with heavier alkylated by-products of no more than 60 wt. % of the ethylbenzene. The alkylation product is recovered from the reaction zone and supplied to a separation and recovery zone to separate ethylbenzene from a polyalkylated component including diethylbenzene.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: September 11, 2007
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Kevin P. Kelly
  • Patent number: 7265252
    Abstract: A process for the conversion of a hydrocarbon feedstock to produce xylene compounds. The feedstock is selectively hydrocracked and introduced into a transalkylation zone with a hydrocarbonaceous stream rich in benzene, toluene and C9+ hydrocarbons.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: September 4, 2007
    Assignee: UOP LLC
    Inventors: Stanley J. Frey, Suheil F. Abdo, Antoine Negiz, Edwin P. Boldingh, Vasant P. Thakkar, Lubo Zhou
  • Publication number: 20070191656
    Abstract: An MCM-22 family molecular sieve having an X-ray diffraction pattern of the as-synthesized MCM-22 family molecular sieve including d-spacing maxima at 12.4±0.25, 3.57±0.07 and 3.42±0.07 Angstroms and at least one peak between 26.6° and 29° (2?). The peak between 26.6° to 29° (2?) has a two theta (2?) of about 26.9°. A method of manufacturing an MCM-22 family molecular sieve, said method comprising the steps of (a) combining at least one silicon source, at least one source of alkali metal hydroxide, at least one directing-agent (R), water, and optionally one aluminum source, to form a mixture having the following mole composition: Si:Al2=10 to infinity H2O:Si=1 to 20 OH?:Si=0.001 to 2 M+:Si=0.001 to 2 R:Si=0.001 to 0.34 wherein M is an alkali metal; (b) treating said mixture at crystallization conditions for less than 72 hr to form a treated mixture having said MCM-22 family molecular sieve, wherein said crystallization conditions comprises a temperature range from about 160° C. to about 250° C.
    Type: Application
    Filed: January 24, 2007
    Publication date: August 16, 2007
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Publication number: 20070191660
    Abstract: A method of crystallizing a crystalline molecular sieve having a pore size in the range of from about 2 to about 19 ?, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element (Y), at least one hydroxide source (OH?), and water, said mixture having a solid-content in the range of from about 15 wt. % to about 50 wt. %; and (b) treating said mixture to form the desired crystalline molecular sieve with stirring at crystallization conditions sufficient to obtain a weight hourly throughput from about 0.005 to about 1 hr?1, wherein said crystallization conditions comprise a temperature in the range of from about 200° C. to about 500° C. and a crystallization time less than 100 hr.
    Type: Application
    Filed: January 29, 2007
    Publication date: August 16, 2007
    Inventors: Ivy D. Johnson, Wenyih Frank Lai
  • Publication number: 20070191659
    Abstract: The invention relates to a crystalline molecular sieve composition which is obtainable by crystallizing a pre-formed extrudate mixture in a reactor and, during crystallization, removing excess alkali metal hydroxide from the pre-formed extrudate. The pre-formed extrudate mixture comprises at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X. The reaction mixture has the following mole composition: Y:X2=10 to infinity; OH?:Y=0.001 to 2; and M+:Y=0.001 to 2; wherein M is an alkali metal. The amount of water in the mixture is at least sufficient to permit extrusion of said reaction mixture.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 16, 2007
    Inventors: Wenyih Frank Lai, Robert Ellis Kay, Christine N. Elia, Frederick Y. Lo, David O. Marler
  • Publication number: 20070191663
    Abstract: A method of making a crystalline molecular sieve of MFS framework type, said method comprising the steps of (a) adding at least one source of ions of tetravalent element (Y), at least one source of ions of trivalent element (X), at least one hydroxide source (OH?), at least one structure-directing-agent (R), at least one seed source (Seed), and water (H2O) to form a mixture having the following mole composition (expressed in term of oxide): YO2:(n)X2O3:(x)OH?:(y)R:(z)H2O+(m)Seed wherein the m is in the range of from about 10 wtppm to about 2 wt. % (based on total weight of the synthesis mixture), the n is in the range of from about 0.005 to 0.05, the x is in the range of from about 0.01 to about 0.3, the y is in the range of from about 0.
    Type: Application
    Filed: January 29, 2007
    Publication date: August 16, 2007
    Inventors: Ivy D. Johnson, Machteld M. Mertens, An Verberckmoes
  • Patent number: 7249469
    Abstract: This invention relates to a method for separating a stream having benzene, toluene and alkyl benzene, said method comprising: feeding the stream into a first distillation column, wherein the stream comprises between about 60 mole percent to about 85 mole percent toluene, between about seven mole percent to about 20 mole percent benzene, and between about seven mole percent to about 20 mole percent alkyl benzene; separating the steam into a first mixture stream and a second mixture stream; feeding the first mixture stream and the second mixture stream into a distillation system; separating the first mixture stream and the second mixture stream into a first product stream, a system recycle stream, and a second product stream.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: July 31, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: John Roger Porter
  • Patent number: 7241930
    Abstract: A process for making an ethylated polycyclic aromatic compound in a mixed aromatic fluid, the process comprising contacting the mixed aromatic fluid containing a polycyclic aromatic compound and a monocyclic aromatic compound having an ethyl substituent in the presence of an acid catalyst under conditions sufficient to effect transalkylation to form the ethylated polycyclic compound and a de-ethylated monocyclic aromatic compound and removal of the de-ethylated monocyclic aromatic compound. A process for decreasing naphthalene concentration in a naphthalene-containing aromatic fluid by acid catalyzed transalkylation of an alkylbenzene and naphthalene to form benzene and an alkylnaphthalene.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: July 10, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard Henry Schlosberg, Edmund John Mozeleski, Francisco M. Benitez, Steven M. Silverberg, Terry Eugene Helton
  • Patent number: 7230152
    Abstract: An improved process is disclosed for the selective disproportionation of toluene. The process preferably uses a disproportionation catalyst comprising a pentasil type zeolite such as MFI that is bound with aluminum-phosphate. Running the process at a toluene conversion greater than about 30 wt-% and at a hydrogen-to-hydrocarbon ratio less than 3.0, and especially a ratio of 0.1 to 1.0, improves the maximum yield of para-xylene. Optional periodic rejuvenation by increasing the hydrogen-to-hydrocarbon ratio removes some carbon deposits and restores catalyst activity. An inert diluent gas assists in selective pre-coking of the catalyst as well.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: June 12, 2007
    Assignee: UOP LLC
    Inventor: Edwin P. Boldingh
  • Patent number: 7220885
    Abstract: A process for preparing a transalkylation catalyst, the catalyst itself, and a transalkylation process for using the catalyst are herein disclosed. The catalyst comprises rhenium metal on a solid-acid support such as mordenite, which has been treated with a sulfur-based agent. Such treatment reduces the amount of methane produced by metal hydrogenolysis in a transalkylation process wherein heavy aromatics like A9+ are reacted with toluene to produce xylenes. Reduced methane production relative to total light ends gas production results in lower hydrogen consumption and lower reactor exotherms.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: May 22, 2007
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Antoine Negiz, Gregory F. Maher, Paula L. Bogdan, Dean E. Rende
  • Patent number: 7189887
    Abstract: A process for the reduction of naphthalene in process streams containing alkylaromatic solvents. Naphthalene is contacted with alkylbenzenes in a distillation column reactor in the presence of transalkylation catalyst to produce alkylnaphthalenes which are concurrently separated by fractional distillation as bottoms and the alkylbenzenes are separated as overheads.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 13, 2007
    Assignees: Catalytic Distillation Technologies, ExxonMobil Chemical Patents, Inc.
    Inventors: Mitchell E. Loescher, Christopher C. Boyer, Michael J. Keenan, Steven E. Silverberg
  • Patent number: 7154014
    Abstract: A transalkylation process for reacting carbon number nine aromatics with toluene to form carbon number eight aromatics such as para-xylene is herein disclosed. The process is based on the discovery that deactivating contaminants present in typical hydrocarbon feeds, such as chlorides, can be removed with an alumina guard bed prior to contacting with a transalkylation catalyst. Effective transalkylation catalysts have a solid-acid component such as mordenite, and a metal component such as rhenium. The invention is embodied in a process, a catalyst system, and an apparatus. The invention provides for longer catalyst cycle life when processing aromatics under commercial transalkylation conditions.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: December 26, 2006
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Sergio A. Pischek
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 7148391
    Abstract: In a process for converting C9+ aromatic hydrocarbons to lighter aromatic products a feed comprising C9+ aromatic hydrocarbons is contacted under transalkylation reaction conditions with a catalyst composition comprising (i) a first molecular sieve selected from the group consisting of ZSM-12, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07; and (ii) a second molecular sieve having a constraint index ranging from 3 to 12. At least the first molecular sieve has a hydrogenation component associated therewith and the first and second molecular sieves are contained in the same catalyst bed. The C9+ aromatic hydrocarbons are converted under the transalkylation reaction conditions to a reaction product containing xylene.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: December 12, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Ronald J. Cimini, Frank Wenyih Lai, Jose G. Santiesteban, David A. Stachelczyk, David L. Stern, Hye-Kyung C. Timken, William A. Weber, Robert A. Crane
  • Patent number: 7128883
    Abstract: The use of two transalkylation catalysts to react aromatic compounds of carbon number nine (and heavier carbon numbers) with benzene to form carbon number eight aromatics is disclosed. The two catalyst system preserves ethyl-group species on the heavier aromatics that would otherwise de-ethylate over most gas-phase transalkylation catalysts to form undesired ethane gas with benzene or toluene. Thus, by using a transalkylation step to save ethylbenzene, a greater yield of para-xylene or other carbon number eight aromatics may be achieved within an integrated complex. An apparatus and process for the two transalkylation catalyst system is disclosed with a liquid-phase unit and a gas-phase unit.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: October 31, 2006
    Assignee: UOP LLC
    Inventor: Robert B. James, Jr.
  • Patent number: 7115198
    Abstract: A novel crystalline aluminophosphate and metalloaluminophosphate of the molecular sieve type, denominated SSZ-51, is prepared by hydrothermal synthesis from reactive sources of aluminum and phosphorus, fluorine and an organic templating agent, 4-dimethylaminopyridine. SSZ-51 is useful in catalysts for, e.g., hydrocarbon conversion reactions.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: October 3, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Thomas V. Harris
  • Patent number: 7109389
    Abstract: A process for the disproportionation and transalkylation of toluene and the heavy aromatics comprises: subjecting a first stream of toluene, and a stream enriched in aromatics of nine carbon atoms to toluene disproportionation and transalkylation reactions in the presence of hydrogen in a first reaction zone to produce a first product mixture comprising benzene, aromatics of eight carbon atoms and heavy aromatics of ten and more carbon atoms; subjecting a second stream of toluene, and a stream enriched in heavy aromatics of ten and more carbon atoms to transalkylation reaction in the presence of hydrogen in a second reaction zone to produce a second product mixture comprising benzene, aromatics of eight carbon atoms and aromatics of nine carbon atoms; and isolating and recovering benzene and aromatics of eight carbon atoms from the first and second product mixtures.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: September 19, 2006
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Dejin Kong, Deqin Yang, Huaying Li, Hongli Guo, Tian Ruan
  • Patent number: 7094941
    Abstract: A repeated “soak and dry” selectivation process for preparing a modified metallosilicate catalyst composite is disclosed comprising of a mixture of amorphous silica, alumina and a pore size controlled metallosilicate useful for alkylaromatic conversion. The process comprises (a) contacting an intermediate pore metallosilicate with an organosilicon compound in a solvent for a specific duration and then recovering the solvent, (b) combining the organosilicon compound treated metallosilicate with water and then drying the catalyst, (c), repeating the steps a) and b) above and (d) calcining the catalyst in an oxygen containing atmosphere sufficient to remove the organic material and deposit siliceous matter on the metallosilicate. In a another embodiment, when the organosilicon compound is water soluble, step (b) may be avoided.
    Type: Grant
    Filed: December 14, 2002
    Date of Patent: August 22, 2006
    Assignee: Indian Petrochemicals Corp., Ltd.
    Inventors: Jagannath Das, Anand Bhimrao Halgeri
  • Patent number: 7091390
    Abstract: Hydrocarbon conversion processes using a new family of zeolites identified as UZM-8 and UZM-8HS are described. The UZM-8 and UZM-8HS are related in that the UZM-8HS are derived from the UZM-8 zeolite by treating the UZM-8 with a fluoro-silicate salt, an acid, etc. The UZM-8 and -8HS have unique x-ray diffraction patterns. These zeolites can be used in alkylation of aromatics, transalkylation of aromatics, isomerization of aromatics and alkylation of isoparaffins.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 15, 2006
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Raelynn M. Miller, Mathias P. Koljack, John E. Bauer, Paula L. Bogdan, Gregory J. Lewis, Gregory J. Gajda, Susan C. Koster, Michael G. Gatter, Jaime G. Moscoso