With Heat Conservation Or Using Solid Inert Heat Carrier, E.g., Regenerative Furnace, Etc. Patents (Class 585/535)
  • Patent number: 11945777
    Abstract: A process for removing butenes from C4-hydrocarbon streams containing butanes and butenes involves extractive distillation with a suitable solvent. The process also involves heat integration, which allows utilization of the heat of the solvent for heating and/or at least partly evaporating various streams.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: April 2, 2024
    Assignee: Evonik Oxeno GmbH & Co. KG
    Inventors: Philip Lutze, Stephan Peitz, Armin Matthias Rix, Tanita Valèrie Six, Moritz Schröder, Niklas Paul
  • Patent number: 10651487
    Abstract: A modular apparatus of fuel cell system includes a start burner, a reformer, an after-burner, and a heat exchanger. The start burner, the reformer, the after-burner, and the heat exchanger are disposed in a chamber. The start burner is surrounded by the reformer, and the after-burner is disposed on the start burner and surrounds the reformer. The heat exchanger surrounds the after-burner and the reformer.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: May 12, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Hao Yang, Heng-Ju Lin, Fu-Pin Ting, Jar-Lu Huang, Jia-Syun Lyu
  • Patent number: 10646858
    Abstract: The invention pertains to a composition that comprises at least one chromium precursor, at least one heteroatomic ligand, and, optionally, at least one activator. The invention also pertains to the method for preparation of the composition in accordance with the invention and the use of said composition in a method for oligomerization of olefins.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: May 12, 2020
    Assignee: IFP Energies Nouvelles
    Inventors: Pierre-Alain Breuil, David Proriol
  • Patent number: 10441946
    Abstract: The present invention relates to a novel linear ?-olefin catalyst composition, and preparation and use thereof. The catalyst composition includes a main catalyst and a co-catalyst, wherein the main catalyst is an imino-based iron coordination compound, and the co-catalyst is a mixture of methylaluminoxane, triisobutylaluminum, and borane or GaCl3. The catalyst composition can be used to catalyze ethylene oligomerization to produce linear ?-olefins having a selectivity of greater than 96%, carbon distribution between C4-C28 with the component of C6-C20 being greater than 75%. The catalyst of the invention is stable in structure and can be used for ethylene oligomerization with high catalytic efficiency. The method of the invention has the advantages of relatively convenient in operation, readily available of raw materials, high yield, low costs, less pollution and easy for industrial production.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: October 15, 2019
    Assignee: APALENE TECHNOLOGY CO., LTD. (HANGZHOU)
    Inventors: Dongchu Wei, Bing Li
  • Patent number: 10427991
    Abstract: The present invention relates to a catalyst system for olefin oligomerization and a method for olefin oligomerization, and more specifically, a catalyst system for olefin oligomerization and a method for olefin oligomerization that have more improved supporting efficiency due to a ligand compound capable of functioning as a tether to a support, and thus, exhibit high activity in the olefin oligomerization even with smaller amounts of catalyst composition and cocatalyst, thus enabling more efficient preparation of alpha-olefins.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: October 1, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Yong Ho Lee, Eun Ji Shin, Jin Young Park, Ki Soo Lee, Seok Pil Sa, Seul Ki Im
  • Patent number: 10407366
    Abstract: A process for the combined preparation of a butene and an octene from ethene, proceeds by: a) providing a solvent having a boiling point or boiling range above the boiling points of the butenes and below the boiling points of the octenes and wherein the solvent is an inert solvent or is hexene alone or is hexene admixed with pentane or hexane or heptane or is a mixture of pentane, hexane, and heptane; b) providing a first feed mixture containing at least the solvent and ethene dissolved therein; c) providing a second feed mixture containing at least hexene, the solvent and also ethene dissolved in the solvent and/or in the hexene; d) transferring the first feed mixture into a first synthesis and the second feed mixture into a second synthesis, wherein the first and second syntheses are physically separated from one another; e) oligomerizing of at least part of the ethene present in the first feed mixture in the presence of a first heterogeneous catalyst and in the presence of the solvent in the first synthesi
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: September 10, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Guido Stochniol, Helene Reeker, Stephan Peitz, Dietrich Maschmeyer, Joerg Schallenberg, Horst-Werner Zanthoff, Harald Haeger
  • Patent number: 10207963
    Abstract: Provided are a catalyst system for olefin oligomerization reaction and a method for olefin oligomerization, and more particularly, a catalyst system for olefin oligomerization reaction and a method for olefin oligomerization, which enable more efficient preparation of alpha-olefin, because a catalytic active ingredient is supported on a support, thereby exhibiting high activity in olefin oligomerization reaction even by using smaller amounts of a catalyst composition and a cocatalyst.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: February 19, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Jin Young Park, Yong Ho Lee, Ki Soo Lee, Eun Ji Shin, Seok Pil Sa, Seul Ki Im
  • Patent number: 10099971
    Abstract: The present invention relates to a 1-octene composition. The 1-octene composition according to the present invention is prepared by ethylene oligomerization and comprises a high content of 1-octene and monomers useful for copolymerization of 1-octene at the same time.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 16, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Yong Ho Lee, Seok Pil Sa, Eun Ji Shin, Ki Soo Lee, Jin Young Park, Seul Ki Im, Yoon Ki Hong
  • Patent number: 9963641
    Abstract: The present techniques provide a pyrolysis process that is reduced in coke and/or tar formation relative to comparable processes. A flushing fluid is applied or injected directly into a pyrolysis reactor to reduce high levels of coke and tar that can accumulate within the pyrolysis reactor during pyrolysis of the feed.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: May 8, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Paul F. Keusenkothen
  • Patent number: 9676681
    Abstract: An apparatus and method are provided for processing hydrocarbon feeds. The method enhances the conversion of hydrocarbon feeds into conversion products, such as ethylene and propylene. In particular, the present techniques combine a first hydrocarbon feed with a second hydrocarbon feed and a hydrogen (H2) containing stream to manage the hydrogen content of the feed provided to a pyrolysis reactor. The mixture is then exposed to high-severity operating conditions in a pyrolysis reactor and further processing into desired olefins.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: June 13, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Jason D. Davis, Gary D. Mohr
  • Patent number: 9546117
    Abstract: A process for the tetramerization of ethylene includes contacting ethylene with a catalyst under ethylene oligomerization conditions. The catalyst comprises a source of chromium, a ligating compound, and an activator. The ligating compound includes a phosphine that forms part of a cyclic structure.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 17, 2017
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Molise Stephen Mokhadinyana, Munaka Christopher Maumela, Moses Mokgolela Mogorosi, Matthew James Overett, Jan-Albert Van Den Berg, Werner Janse Van Rensburg, Kevin Blann
  • Patent number: 9533922
    Abstract: A process for the oligomerization of ethylene to predominantly 1-hexene or 1-octene or mixtures of 1-hexene and 1-octene includes contacting ethylene with a catalyst under ethylene oligomerization conditions. The catalyst comprises a source of chromium, a diphosphine ligating compound, and optionally an activator. The diphosphine ligating compound includes at least one optionally substituted fused cyclic structure including at least two rings, the optionally substituted fused cyclic structure including a 5- to 7-membered aromatic first ring bonded to a phosphorus atom, the aromatic first ring being fused to a 4- to 8-membered heterocyclic second ring, the heterocyclic second ring including a heteroatom which is separated by two ring atoms along the shortest connecting path from the phosphorous atom that is bonded to the first aromatic ring.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 3, 2017
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Munaka Christopher Maumela, Moses Mokgolela Mogorosi, Molise Stephen Mokhadinyana, Matthew James Overett, Kevin Blann, Cedric Wahl Holzapfel
  • Patent number: 9533923
    Abstract: A process for the oligomerization, preferably the tetramerization, of ethylene to predominantly 1-hexene or 1-octene or mixtures of 1-hexene and 1-octene includes contacting ethylene with a catalyst under ethylene oligomerization conditions. The catalyst comprises a source of chromium, a diphosphine ligating compound, and optionally an activator. The diphosphine ligating compound includes at least one substituted aromatic ring bonded to a phosphorous atom. The substituted aromatic ring is substituted at a ring atom adjacent to the ring atom bonded to the respective phosphorous atom with a group Y, where Y is of the form —AREWG, A being O, S or NR5, where R5 is a hydrocarbyl, heterohydrocarbyl or organoheteryl group, and REWG is an electron withdrawing group.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 3, 2017
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Moses Mokgolela Mogorosi, Munaka Christopher Maumela, Matthew James Overett
  • Patent number: 9126882
    Abstract: Disclosed is a pyrolysis reaction process. The process can be advantageously accomplished using a pyrolysis reactor that has a primary reaction zone comprised of bed packing having multiple passages through the bed packing and a secondary reaction zone having an open flow arrangement. The process includes a step of injecting a pyrolysis feed comprising a first hydrocarbon into the primary reaction zone to produce a primary pyrolysis product containing unsaturated hydrocarbon. A reactive feed comprising a second hydrocarbon is injected into the secondary reaction zone to mix with the primary pyrolysis product and produce a secondary pyrolysis product.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: September 8, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Paul F. Keusenkothen, Frank Hershkowitz
  • Publication number: 20140378728
    Abstract: The invention relates to hydrocarbon conversion processes, to equipment useful in such processes, to the products of such hydrocarbon conversion processes and the use thereof, and to the use of energy derived from such processes.
    Type: Application
    Filed: May 19, 2014
    Publication date: December 25, 2014
    Inventors: Stephen Mark Davis, Mark L. Merrifield, Keith H. Kuechler, Loren K. Starcher
  • Patent number: 8748686
    Abstract: A process and apparatus are provided to produce acetylene from a feed stream of low hydrogen content hydrocarbons such as coal by: (a) blending the hydrocarbons with methane to provide a blended mixture containing at least about 12.5 wt % atomic hydrogen; (b) partially combusting the blended mixture in a reactor in the presence of a source of oxygen to provide a partially combusted mixture at or above a temperature sufficient to produce methyl radicals; (c) maintaining the partially combusted mixture at or above the temperature for a residence time sufficient to produce a product stream containing enhanced yields of acetylene without significant formation of coke or coke precursors; (d) cooling the product stream to reduce the temperature of the product stream within a time sufficiently brief to substantially arrest any cracking reactions and provide a cooled product stream; and (e) recovering acetylene from the cooled product stream.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 10, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz
  • Publication number: 20130211169
    Abstract: The invention relates to a process for converting hydrocarbons into unsaturated products such as acetylene and/or ethylene. The invention also relates to converting acetylene to olefins such as ethylene and/or propylene, to polymerizing the olefins, and to equipment useful for these processes.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 15, 2013
    Inventors: Frank Hershkowitz, Paul F. Keusenkothen, Jeffrey W. Frederick, Richard J. Basile, John W. Fulton
  • Patent number: 8455707
    Abstract: The present invention provides a process for the manufacture of acetylene and other higher hydrocarbons from methane feed using a reverse-flow reactor system, wherein the reactor system includes (i) a first reactor and (ii) a second reactor, the first and second reactors oriented in a series relationship with respect to each other, the process comprising supplying each of first and second reactant through separate channels in the first reactor bed of a reverse-flow reactor such that both of the first and second reactants serve to quench the first reactor bed, without the first and second reactants substantially reacting with each other until reaching the core of the reactor system.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 4, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frank Hershkowitz, John Scott Buchanan, Harry W. Deckman, Jeffrey W. Frederick
  • Publication number: 20120116120
    Abstract: In one aspect, the inventive process comprises a process for pyrolyzing a hydrocarbon feedstock containing nonvolatiles in a regenerative pyrolysis reactor system. The inventive process comprises: (a) heating the nonvolatile-containing hydrocarbon feedstock upstream of a regenerative pyrolysis reactor system to a temperature sufficient to form a vapor phase that is essentially free of nonvolatiles and a liquid phase containing the nonvolatiles; (b) separating said vapor phase from said liquid phase; (c) feeding the separated vapor phase to the pyrolysis reactor system; and (d) converting the separated vapor phase in said pyrolysis reactor system to form a pyrolysis product.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Inventors: Paul F. Keusenkothen, James N. McCoy, Frank Hershkowitz
  • Patent number: 8080697
    Abstract: The present invention relates to a process for the production of ethylene, comprising the following steps of: (a) thermally converting a feed charge containing methane into acetylene as an intermediate, (b) in-situ hydrogenation of the acetylene produced in step (a) into ethylene by a non-catalytic hydrogen transfer mechanism, characterized by (c) recovering heat from hot effluents obtained in step (b) which may be utilized for different purposes.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: December 20, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Yungyi Lin, Mohamed Abdelghani
  • Publication number: 20110288342
    Abstract: The method for catalytic conversion of alcohols according to the present invention using a zinc oxide catalyst comprises a thermal pretreatment stage in an inert and/or reducing atmosphere at a temperature of at least 100° C., prior to the reaction stage.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 24, 2011
    Applicants: IFP ENERGIES NOUVELLES, UNIVERSITE DE PARIS 6 - PIERRE ET MARIE CURIE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Charlotte DROUILLY, Guylene Costentin, Helene Lauron-Pernot, Delphine Bazer-Bachi, Celine Chizallet, Vincent Lecocq
  • Patent number: 7847141
    Abstract: The invention relates to a process for converting a hydrocarbon charge of linear and branched olefins, comprises the following stages: a) a stage of membrane separation of the hydrocarbon charge under conditions making it possible to produce a cut ? containing the majority of the linear olefins present in said charge, and a cut ? containing the majority of the branched olefins, b) a stage of treatment of the linear olefins contained in the effluents originating from the membrane separation stage (cut ?) under moderate oligomerization conditions, c) a stage of distillation separation of the effluents originating from the oligomerization stage into at least two cuts, d) a stage of hydrogenation of the cut ? under conditions for obtaining a gas oil with a high cetane number.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: December 7, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Briot, Arnaud Baudot, Vincent Coupard, Alain Methivier
  • Publication number: 20100130803
    Abstract: A process and apparatus are provided to produce acetylene from a feed stream of low hydrogen content hydrocarbons such as coal by: (a) blending the hydrocarbons with methane to provide a blended mixture containing at least about 12.5 wt % atomic hydrogen; (b) partially combusting the blended mixture in a reactor in the presence of a source of oxygen to provide a partially combusted mixture at or above a temperature sufficient to produce methyl radicals; (c) maintaining the partially combusted mixture at or above the temperature for a residence time sufficient to produce a product stream containing enhanced yields of acetylene without significant formation of coke or coke precursors; (d) cooling the product stream to reduce the temperature of the product stream within a time sufficiently brief to substantially arrest any cracking reactions and provide a cooled product stream; and (e) recovering acetylene from the cooled product stream.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz
  • Patent number: 7705193
    Abstract: The invention relates to a process for conversion of a gasoline-range hydrocarbon feed into a gasoline fraction with a higher octane rating than that of the feedstream, and a gasoil fraction with a cetane number higher than 45, including the following steps: a) a membrane separation step (B) applied to the hydrocarbon feed under conditions enabling selective separation of the majority of the linear olefins present in said feed and constituting the ? fraction, the fraction containing the majority of the branched olefins, termed the ? fraction, constituting a gasoline with a high octane rating, greater than that of the feed; b) an oligomerisation step (C) applied to the linear olefins (? fraction) contained in the effluent stream from the membrane separation step (B) under moderate oligomerisation conditions; c) a distillation separation step (D) applied to the effluent stream arising from the oligomerisation step in at least two fractions; d) a hydrogenation step (E) applied to one of the fractions obtained at
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: April 27, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Briot, Arnaud Baudot, Vincent Coupard, Stéphane Morin, Alain Methivier
  • Patent number: 7390395
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-56 prepared using a N,N-diethyl-2-methyldecahydroquinolinium cation as a structure directing agent, methods for synthesizing SSZ-56 and processes employing SSZ-56 in a catalyst.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: June 24, 2008
    Inventor: Saleh Elomari
  • Publication number: 20080064911
    Abstract: A process for the oligomerization of propylene is disclosed wherein MCM-22 zeolite prepared as a distillation structure is used in a reaction distillation zone under conditions of temperature and pressure to concurrently react the propylene to produce oligomers thereof and separate the oligomer products from unreacted propylene by fractional distillation in a distillation column reactor. Compared to the prior art tubular or plug flow reactors, lower temperatures and pressures are used to produce higher conversions and selectivities to preferred isomeric forms.
    Type: Application
    Filed: September 8, 2006
    Publication date: March 13, 2008
    Inventors: Mitchell E. Loescher, Christopher C. Boyer, Michael J. Keenan, Jon E.R. Stanat
  • Patent number: 7119240
    Abstract: A process for converting natural gas to an olefin includes heating the gas to a selected range of temperature to convert a fraction of the gas stream to reactive hydrocarbons, primarily ethylene or acetylene, and reacting with hydrogen in the presence of a catalyst to produce the olefin, usually ethylene. A portion of the incoming natural gas may be used to heat the remainder of the natural gas to the selected range of temperature. Hydrogen resulting from the reactions may be used to make electricity in a fuel cell. Alternatively, hydrogen may be burned to heat the natural gas to the selected range of temperature.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: October 10, 2006
    Assignee: The Texas A&M University System
    Inventors: Kenneth R. Hall, Jerry A. Bullin, Philip T. Eubank, Aydin Akgerman, Rayford G. Anthony
  • Patent number: 6602920
    Abstract: A process for converting natural gas to a liquid includes heating the gas to a selected range of temperature to convert a fraction of the gas stream to reactive hydrocarbons, primarily ethylene or acetylene, and reacting methane and the reactive hydrocarbons in the presence of an acidic catalyst to produce a liquid, predominantly naphtha or gasoline. A portion of the incoming natural gas may be used to heat the remainder of the natural gas to the selected range of temperature. Hydrogen resulting from the reactions may be used to make electricity in a fuel cell. Alternatively, hydrogen may be burned to heat the natural gas to the selected range of temperature.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: August 5, 2003
    Assignee: The Texas A&M University System
    Inventors: Kenneth R. Hall, Jerry A. Bullin, Philip T. Eubank, Aydin Akgerman, Rayford G. Anthony
  • Patent number: 6130362
    Abstract: In the presence of a heterogeneous catalyst made of palladium supported on active carbon, ethylbenzene is prepared from 4-vinylcyclohexene through catalytic transfer hydrogenation in a hydrogen donor solvent with an oxidizing agent. Reaction temperature ranges from 50 to 110.degree. C. The hydrogen donor solvent is selected from the group consisting of alcohol, water, and a mixture of these. The oxidizing agent is selected from monovalent or divalent nitro compounds, water, hydrogen peroxide, NaOCl, NaClO.sub.2, NaClO.sub.3, NaClO.sub.4, oxygen and air, and used in the amount of 0.02 to 3 moles per mole of 4-vinylcyclohexene.
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: October 10, 2000
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Young J. Joo, Jeong-Im Won, Kwang-Chun Park, Chang-Min Kim
  • Patent number: 6130260
    Abstract: A process for converting natural gas to a liquid includes heating the gas to a selected range of temperature to convert a fraction of the gas stream to reactive hydrocarbons, primarily acetylene, and reacting methane and the reactive hydrocarbons in the presence of an acidic catalyst to produce a liquid, predominantly pentane. Hydrogen resulting from the reactions is used to heat the incoming natural gas, either with a hydrogen furnace or by electrical energy generated from the hydrogen. Little or no use of methane is required to supply energy for the process.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: October 10, 2000
    Assignee: The Texas A&M University Systems
    Inventors: Kenneth R. Hall, Jerry A. Bullin, Philip T. Eubank, Aydin Akgerman, Rayford G. Anthony
  • Patent number: 4346040
    Abstract: The invention relates to a process for converting an aldehyde into a corresponding alkene and of the type wherein the aldehyde is placed in the presence of a phosphoric reagent and a base in solution in an organic aprotic solvent; the process comprising using a mineral base evincing in an aqueous medium a basic force less than or equal to that of the hydroxide ion or a strongly basic organic base of the nitrogen compounds family and adjusting the hydration rate of the reaction medium in such a manner that there are about 0.5 to 5 moles of water per mole of aldehyde.
    Type: Grant
    Filed: July 21, 1981
    Date of Patent: August 24, 1982
    Assignee: Agrifurane S.A.
    Inventors: Michel Delmas, Antoine Gaset, Yves Le Bigot