Using Metal Oxide Catalyst Patents (Class 585/640)
  • Patent number: 7238846
    Abstract: The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: July 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Teng Xu, Cor F. Van Egmond, Keith F. Kuechler, Stephen N. Vaughn
  • Patent number: 7232936
    Abstract: A system and process for producing olefins from oxygenate, e.g., methanol or dimethylether, includes a fluidized bed reaction zone that provide contact between the oxygenate and a molecular sieve catalyst such as ZSM-34 or SAPO-34. Improved ethylene selectivity is realized when the oxygenate is stagewise injected into the fluidized bed at one or more locations along the axial direction of the fluidized bed reaction zone.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: June 19, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Sergei Yurchak
  • Patent number: 7230151
    Abstract: This invention is to a process of making olefin, particularly ethylene and propylene, from an oxygenate feed. The invention uses two or more zeolite catalysts. Examples of zeolite catalysts include a first catalyst containing of ZSM-5, and a second catalyst containing a 10-ring molecular sieve, including but not limited to, ZSM-22, ZSM-23, ZSM35, ZSM-48, and mixtures thereof. The ZSM-5 can be unmodified, phosphorous modified, steam modified having a micropore volume reduced to not less than 50% of that of the unsteamed ZSM-5, or various mixtures thereof.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: June 12, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc R. M. Martens, Keith H. Kuechler, James R. Lattner
  • Patent number: 7227048
    Abstract: The present invention provides a process for making an olefin product from an oxygenate-containing feedstock comprising: a) contacting the feedstock in a reaction zone with catalyst particles comprising a molecular sieve containing acid sites and having an average coke loading of 1 to 10 carbon atoms per acid site of said molecular sieve, under conditions effective to convert the feedstock into an olefin product stream and to provide unregenerated catalyst particles, b) removing a portion of said catalyst particles from said reaction zone and contacting said portion with a regeneration medium in a regeneration zone under conditions effective to obtain regenerated catalyst particles which have an average coke loading of no greater than 10 carbon atoms per acid site of said molecular sieve, and c) introducing said regenerated catalyst particles into said reaction zone to provide a catalyst mixture of unregenerated catalyst particles and regenerated catalyst particles, in an amount sufficient to provide an avera
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: June 5, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul N. Chisholm, Nicolas P. Coute, James R. Lattner, Teng Xu, Jeffrey S. Smith, Keith Holroyd Kuechler
  • Patent number: 7214843
    Abstract: This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: May 8, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Cor. F. Van Egmond, Ronald G. Searle, Michael Peter Nicoletti, David Ritchie Lumgair, Jr.
  • Patent number: 7214844
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a making a molecular sieve catalyst composition by forming a slurry by combining a molecular sieve, a binder and a matrix material, wherein the slurry has a pH, above or below the isoelectric point of the molecular sieve. The catalyst composition has improved attrition resistance, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: May 8, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Joseph E. Baumgartner, Stuart L. Soled, Kenneth R. Clem
  • Patent number: 7208648
    Abstract: The present invention is directed toward reducing corrosion in a methanol-to-olefin (MTO) effluent processing system, and particularly in the condensate removal system thereof, by injecting a neutralization agent into one or more target regions of the MTO effluent processing system. The neutralization agent ensures that any localized condensation in the MTO effluent processing system, particularly in the condensate removal system, occurs under basic conditions and that any acidic condensable components are neutralized. The invention is also directed to monitoring corrosion in an MTO effluent processing system and to monitoring the pH of localized corrosion sites in order to ensure proper neutralization of any acidic condensation formed therein.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: April 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David R. Lumgair, Jr., Jeffrey A. Kabin
  • Patent number: 7208649
    Abstract: The present invention comprises a process and apparatus for producing olefins from oxygenates in a reactor. This process comprises these oxygenates with a catalyst to produce a gaseous mixture comprising light olefins and by-products, sending the mixture to a single stage cyclone within said reactor to separate said catalyst from said gaseous mixture and then sending said the to a second stage cyclone. The second stage cyclone is located outside of said reactor and it functions to remove the catalyst from the mixture. Then the catalyst can be returned to the reactor after having been treated in a regeneration zone to remove carbonaceous deposits from the catalyst.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: April 24, 2007
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Daniel N. Myers, Richard A. Johnson, II
  • Patent number: 7205447
    Abstract: The present invention provides a process for removing an oxygenate impurity selected from aldehyde and/or ketone, from an olefinic product stream. A product stream is contacted with a metal oxide-containing catalyst in the presence of a C1 to C6 alcohol under conditions sufficient to convert the oxygenate impurity to an olefin and/or oxygenate of higher carbon number than the aldehyde and/or ketone. The aldehyde can be C2 to C5 aldehyde and the ketone can be C3 to C6 ketone. The metal oxide-containing catalyst typically comprises an oxide of at least one metal selected from the group consisting of Group 2 metals, Group 3 metals (including Lanthanide and Actinide series metals), and Group 4 metals.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: April 17, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, James Clark Vartuli
  • Patent number: 7199277
    Abstract: This invention relates to processes for converting oxygenates to olefins that include a step of pretreating catalyst, which comprises molecular sieve and one or more active metal oxides of one or more metals, with a hydrocarbon composition to provide an integrated hydrocarbon co-catalyst within the molecular sieve. The combination of molecular sieve and hydrocarbon co-catalyst converts oxygenate to an olefin product with high selectivity to light olefins (i.e., ethylene or propylene, or mixture thereof).
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: April 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Nicolas P. Coute, Kenneth R. Clem, Doron Levin, James C. Vartuli
  • Patent number: 7199278
    Abstract: A process is described for converting an oxygenate-containing feedstock into one or more olefins in a moving bed reactor system operating in countercurrent flow using a catalyst composition comprising a molecular sieve and at least one metal oxide having an uptake of carbon dioxide at 100° C. of at least 0.03 mg/m2 of the metal oxide.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun Chong Fung, Doron Levin, Jose Santiesteban, Nicolas P. Coute
  • Patent number: 7199276
    Abstract: The present invention provides various processes for producing methanol and ethanol, preferably in a mixed alcohol stream. In one embodiment, the invention includes directing syngas to a synthesis zone wherein the syngas contacts a methanol synthesis catalyst and an ethanol synthesis catalyst (either a homologation catalyst or a fuel alcohol synthesis catalyst) under conditions effective to form methanol and ethanol. The methanol and ethanol, in a desired ratio, are directed to an oxygenate to olefin reaction system for conversion thereof to ethylene and propylene in a desired ratio. The invention also relates to processes for varying the weight ratio of ethylene to propylene formed in an oxygenate to olefin reaction system.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: April 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jaimes Sher, Cornelis F. Van Egmond, Luc R. M. Martens, Mechilium Johannes Janssen, James R. Lattner, Teng Xu
  • Patent number: 7196239
    Abstract: The present invention provides various processes for producing light olefins from methanol and ethanol, optionally in a mixed alcohol stream. In one embodiment, the invention includes directing a first syngas stream to a methanol synthesis zone to form methanol and directing a second syngas stream and methanol to a homologation zone to form ethanol. The methanol and ethanol are directed to an oxygenate to olefin reaction system for conversion thereof to ethylene and propylene.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: March 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cornelis F. Van Egmond, Andrew Argo, Teng Xu, Marcel Johannes Janssen, Jaimes Sher
  • Patent number: 7193122
    Abstract: The invention is directed to a method of stabilizing metalloaluminophosphate molecular sieves and catalysts derived therefrom. In particular, the invention is directed to a method of treating such molecular sieves with chemisorbed ammonia, which may be easily desorbed before or during use and after storage. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Filip Mees, Etienne Vansant, Marcel Johannes Janssen, Luc R. M. Martens
  • Patent number: 7192987
    Abstract: This invention is directed to processes (i.e., methods) for making methanol compositions, and to processes (i.e., methods) of using the methanol compositions. The methanol compositions contain ethanol and are particularly suitable for contacting with an olefin forming catalyst to form an olefin stream.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Teng Xu
  • Patent number: 7186875
    Abstract: A process is described for converting an oxygenate-containing feedstock into one or more olefins in a reactor system including a plurality of fixed bed reactors each containing a catalyst composition comprising a molecular sieve and at least one metal oxide having an uptake of carbon dioxide at 100° C. of at least 0.03 mg/m2 of the metal oxide. Each reactor is sequentially rotated between at least one operating mode, wherein the catalyst composition in the reactor is contacted with the oxygenate-containing feedstock, and a regeneration mode, wherein the catalyst composition in the reactor is contacted with a regeneration medium.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 6, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Shun Chong Fung, Doron Levin, Jose Santiesteban, Nicolas P. Coute
  • Patent number: 7183328
    Abstract: A process for producing methanol is described in which a hydrocarbon is steam reformed in a reforming zone, and during the reforming stage, of a cyclic steam reformer having a reforming stage and a regeneration stage, the steam reforming being conducted under conditions effective to produce a first effluent stream containing synthesis gas. A fuel and an oxygen-containing gas are combusted in the regeneration stage of the reformer so as to reheat the reforming zone to a temperature sufficient for the reforming stage and generate a flue gas. At least part of the first effluent stream is contacted with a methanol synthesis catalyst under conditions effective to convert synthesis gas to methanol and form a methanol-containing stream and a tail gas stream comprising unreacted carbon monoxide and hydrogen.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frank Hershkowitz, James R. Lattner
  • Patent number: 7166757
    Abstract: A process is described for converting an oxygenate-containing feedstock into one or more olefins in which the feedstock is contacted in a reaction zone with a fluidized bed of a particulate catalyst composition comprising a molecular sieve and at least one metal oxide having an uptake of carbon dioxide at 100° C. of at least 0.03 mg/m2 of the metal oxide whereby at least part of the feedstock is converted into a product stream comprising one or more olefins and a carbonaceous material is deposited on the catalyst composition to produce a coked catalyst composition. The coked catalyst composition is separated from the product stream and divided into at least first and second portions. The first portion of the coked catalyst composition is contacted with a regeneration medium in a regeneration zone under conditions to remove at least part of the carbonaceous material from the coked catalyst composition and produce a regenerated catalyst composition, which is subsequently recycled to the reaction zone.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: January 23, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun Chong Fung, Doron Levin, Jose Santiesteban, Nicolas P. Coute
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 7148171
    Abstract: The present invention provides a method for adding heat to a reactor system used to convert oxygenates to olefin, in which supplemental heat is added with a heating fuel, e.g., a torch oil, having low autoignition temperature, low sulfur, and low nitrogen content.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: December 12, 2006
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: James R. Lattner, Keith H. Kuechler, Richard E. Walter
  • Patent number: 7148261
    Abstract: A process for producing methanol is described in which a hydrocarbon is steam reformed in a reforming zone, and during the reforming stage, of a cyclic steam reformer having a reforming stage and a regeneration stage, the steam reforming being conducted under conditions effective to produce a first effluent stream containing synthesis gas. Fuel and an oxygen-containing gas are combusted in the regeneration stage of the reformer so as to reheat the reforming zone to a temperature sufficient for the reforming stage and generate a flue gas. At least part of the first effluent stream is contacted with a methanol synthesis catalyst under conditions effective to convert synthesis gas to methanol and form a methanol-containing stream and a tail gas stream comprising unreacted carbon monoxide and hydrogen. At least part of the tail gas stream is recycled as fuel for the regeneration stage of the cyclic steam reformer.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: December 12, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frank Hershkowitz, James R. Lattner
  • Patent number: 7141711
    Abstract: The present invention is a process for removing catalyst fines from a reactor effluent stream that has catalyst fines therein. The process comprises withdrawing the reactor effluent stream from the reactor. The reactor effluent stream is transported in a first conduit to a quench device and is quenched to form a quenched effluent stream and a liquid fraction containing a majority of the catalyst fines. The liquid fraction is transported in a second conduit to a solids separation device. The conditions under which the catalyst fines are moved prevent accumulation of catalyst fines in the catalyst fines process steps.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: November 28, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Richard E. Walter
  • Patent number: 7138557
    Abstract: An improved methanol-to-olefin (MTO) product recovery scheme is provided which enables substantial reduction in the amount of light olefins that are undesirably captured in a dimethylether (DME) recycle stream when a portion of the methanolic feed to the MTO reaction zone is used as the scrubbing solvent in a primary DME absorption zone in order to recycle this DME oxygenate by-product to the MTO reaction zone. In accordance with the present invention, a liquid solvent stream recovered from the primary DME absorption zone is subjected in a stripping zone to light olefin stripping conditions sufficient to lift a substantial portion of the light olefins that are absorbed in the DME solvent without stripping a significant portion of this methanol solvent, thereby increasing the recovery of desired light olefins while simultaneously diminishing the amount of light olefins carried by the DME recycle stream back to MTO conversion step.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 21, 2006
    Assignee: UOP LLC
    Inventor: John J. Senetar
  • Patent number: 7138558
    Abstract: The invention is a process and the corresponding apparatus for producing light olefins from oxygenates in an OTO reactor comprising sending an oxygenate feed stream through a feed stream distributor into an OTO reactor, contacting the oxygenates with a catalyst to produce a mixture comprising light olefins, diolefins, unreacted oxygenate and other by-products; separating the unreacted oxygenate and diolefins from said light olefins and said by-products; and returning the unreacted oxygenate and diolefins to the OTO reactor. The unreacted oxygenate and diolefins are sent through at least one feed nozzle into said reactor at a point separate from the oxygenate feed stream.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: November 21, 2006
    Assignee: UOP LLC
    Inventors: Lawrence A. Lacijan, Daniel N. Myers, Paolo Palmas
  • Patent number: 7132581
    Abstract: This invention concerns processes for converting oxygenates to olefins that include a step of pretreating catalyst used in the conversion reaction. A fresh or regenerated metalloaluminophosphate molecular sieve, which is low in carbon content, is pretreated with an aldehyde. The aldehyde forms a hydrocarbon co-catalyst within the pore structure of the molecular sieve, and the pretreated molecular sieve containing the co-catalyst is used to convert oxygenate to an olefin product.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 7, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Nicolas P. Coute, Kenneth Ray Clem, Cornelis F. Van Egmond
  • Patent number: 7132580
    Abstract: An improved methanol-to-olefin (MTO) product recovery scheme is provided which enables substantial reduction in the amount of light olefins that are undesirably captured in a dimethylether (DME) recycle stream and improved recovery of methanol when a portion of the methanolic feed to the MTO reaction zone is used as the scrubbing solvent in a primary DME absorption zone in order to recycle this DME oxygenate by-product to the MTO reaction zone. In accordance with the present invention, a liquid solvent stream recovered from the primary DME absorption zone is subjected in a stripping zone to light olefin stripping conditions sufficient to lift a substantial portion of the light olefins that are absorbed in the DME solvent without stripping a significant portion of this methanol solvent, thereby increasing the recovery of desired light olefins while simultaneously diminishing the amount of light olefins carried by the DME recycle stream back to MTO conversion step.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: November 7, 2006
    Assignee: UOP LLC
    Inventor: John J. Senetar
  • Patent number: 7119242
    Abstract: A method for the post synthesis modification of molecular sieves with organometallic reagents. The method may be used for large pore molecular sieves and small pore molecular sieves, such as SAPO-34. SAPO-34 is a useful catalyst for the conversion of oxygenates, such as methanol, to olefins. Post synthesis organometallic modification improves catalyst performance and increases light olefin selectivity in the conversion of methanol to olefins.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: October 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Guang Cao, Michael Joseph Brennan, Karl G. Strohmaier, Richard B. Hall
  • Patent number: 7119241
    Abstract: The present invention is a process for removing catalyst fines from an effluent stream in an oxygenate to olefin process. Specifically, the catalyst fines in the effluent stream are separated from the effluent stream. Then the carbonaceous deposits are removed from the catalyst fines by incineration.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: October 10, 2006
    Assignee: ExxonMobile Chemical Patents Inc.
    Inventors: James Harding Beech, Jr., Michael Peter Nicoletti, David Ritchie Lumgair, Jr.
  • Patent number: 7115791
    Abstract: A process for controlling an oxygenates to olefin reactor is disclosed which comprises: contacting oxygenate-containing feedstock, e.g., methanol, in a reaction zone in the presence of a molecular sieve oxygenate to olefins conversion catalyst under conditions sufficient to provide an olefins-containing effluent containing alkyl alcohol and dialkyl ether, e.g., methanol and dimethyl ether; analyzing a single gas phase of the effluent determine alkyl alcohol concentration and dialkyl ether concentration; and adjusting reactor conditions, e.g., WHSV, as a function of alkyl alcohol concentration and dialkyl ether concentration, as necessary to provide a substantially consistent effluent composition. A corresponding apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: October 3, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey Alan Kabin, Nicolas P. Coute, Stephen N. Vaughn
  • Patent number: 7115198
    Abstract: A novel crystalline aluminophosphate and metalloaluminophosphate of the molecular sieve type, denominated SSZ-51, is prepared by hydrothermal synthesis from reactive sources of aluminum and phosphorus, fluorine and an organic templating agent, 4-dimethylaminopyridine. SSZ-51 is useful in catalysts for, e.g., hydrocarbon conversion reactions.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: October 3, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Thomas V. Harris
  • Patent number: 7102051
    Abstract: This invention is directed to a molecular sieve composition or a catalyst containing molecular sieve which has a relatively high residual silica index, preferably at least about 1.5. The molecular sieve or catalyst can be made by contacting a template-containing molecular sieve with a silicon containing material having an average kinetic diameter that is larger than the average pore diameter of the sieve or catalyst, and heating to leave residual silica at the sieve or catalyst surface. The molecular sieve or catalyst is particularly effective in making an olefin product from an oxygenate feedstock.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: September 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, John Di-Yi Ou, Jar-Lin Kao, Hsiang-Ning Sun
  • Patent number: 7102048
    Abstract: This invention provides a methanol composition, a method of making the composition, and a method of using the composition. The methanol composition of this invention is supplemented with certain additional alcohols and/or aldehydes, and serves as a particularly desirable feed stream for use in the manufacture of olefins such as ethylene and propylene. Such feed streams result in increased production of ethylene or in the increased production of both ethylene and propylene.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Teng Xu
  • Patent number: 7102049
    Abstract: The present invention is a process for producing olefin(s) from oxygenates that is more effective than previously known processes at removing carbon dioxide from the effluent stream by operating a quench tower at a pH greater than 7.0.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: September 5, 2006
    Assignee: ExxonMobil Chemical Patens Inc.
    Inventors: Zhong Yi Ding, James Richardson Lattner, David Ritchie Lumgair, Jr., Jeffrey Alan Kabin, Cor F. Van Egmond
  • Patent number: 7102050
    Abstract: The present invention is directed to a hydrocarbon conversion apparatus. The apparatus comprises the following: a plurality of riser reactors, each of the riser reactors having a first end into which a catalyst can be fed and a second end through which the catalyst can exit the riser reactor; a separation zone into which the second ends of the riser reactors extend, the separation zone being provided to separate the catalyst from products of a reaction conducted in the hydrocarbon conversion apparatus; and at least one catalyst return in fluid communication with the separation zone and the first ends of the riser reactors, the catalyst return being provided to transfer the catalyst from the separation zone to the first ends of the riser reactors.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: September 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Jeffrey S. Smith, Nicolas P. Coute, Keith H. Kuechler
  • Patent number: 7102037
    Abstract: A process for selectively converting a dialkyl ether to the corresponding alkene and alkanol comprises contacting a feed containing at least one dialkyl ether with a catalyst comprising a mixed metal oxide which comprises at least one metal selected from Group 4 of the Periodic Table of Elements and at least one metal selected from Group 3 (including the Lanthanides and Actinides) and Group 6 of the Periodic Table of Elements.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, Shifang Luo, James Clarke Vartuli, Charles Morris Yarbrough, Dane Clark Grenoble
  • Patent number: 7094389
    Abstract: A crystalline material substantially free of framework phosphorus and comprising a CHA framework type molecular sieve with stacking faults or at least one intergrown phase of a CHA framework type molecular sieve and an AEI framework type molecular sieve, wherein said material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to about 0.5. The material exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 22, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld M. Mertens, Karl G. Strohmaier, Richard B. Hall, Thomas Herman Colle, Mobae Afeworki, Antonie J. Bons, Wilfried J. Mortier, Chris Kliewer, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder
  • Patent number: 7084319
    Abstract: The present invention provides various processes for fluidizing molecular sieve catalyst compositions in a fluidized bed reaction system. The invention comprises fluidizing a molecular sieve catalyst composition with a reactive fluidizing medium under conditions effective to convert at least a portion of the fluidizing medium to additional product. The invention is ideally suited for implementation into an oxygenate to olefin reaction system, in which the fluidizing medium optionally comprises byproducts of the oxygenate to olefin conversion reaction.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: August 1, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith Holroyd Kuechler, Nicolas P. Coute, Jeffrey Scott Smith, Stephen Harold Brown, Richard B. Hall, Teng Xu, Stephen Nell Vaughn
  • Patent number: 7078578
    Abstract: A process for the conversion of oxygenates to hydrocarbons comprising contacting a feed stream comprising oxygenates with a catalyst containing a microporous material under oxygenate conversion conditions, wherein the catalyst contains a crystalline microporous material with intra-crystalline mesopores. The invention also includes a composition for use in the above process.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: July 18, 2006
    Assignee: Haldor Topsoe A/S
    Inventors: Ton V. W. Janssens, Søren Dahl, Claus Hviid Christensen
  • Patent number: 7074979
    Abstract: A feed vaporization process and apparatus for oxygenate to olefin conversion is provided, which uses a vapor-liquid disengaging drum to separate non-volatiles and/or low-volatiles from volatiles in the oxygenate feed and produce a vaporized effluent that is reduced in non-volatiles and/or low-volatiles while at the same time maintaining the effluent at optimal temperature and pressure as a feed for oxygenate to olefin conversion. The feed vaporization process and apparatus is particularly well suited for selectively removing non-volatile contaminants such as soot and rust from an oxygenate-containing feed, which may have become contaminated during shipping.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Michael Peter Nicoletti, Ronald G. Searle
  • Patent number: 7067108
    Abstract: The synthesis of a crystalline material, in particular a high silica zeolite, having a chabazite-type framework is aided by the addition to the synthesis mixture of seeds of an AEI framework-type material. The chabazite-type product has a relatively small crystal size and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: June 27, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Guang Cao, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder
  • Patent number: 7060865
    Abstract: Disclosed is a process for removing DME from a stream containing C4 olefins. The process includes providing a first stream comprising C4 olefins, C5+ hydrocarbons, DME, and methanol. The first stream is separated into a second stream comprising the C4 olefins and the DME and a third stream comprising the C5+ hydrocarbons and the methanol. The second stream is directed to a DME absorption unit, wherein the second stream contacts water under conditions effective to separate the C4 olefins from the DME. Also disclosed is a process including contacting the first stream with water in a methanol removal unit under conditions effective to separate remove the methanol therefrom; distilling the methanol-depleted stream to remove C5+ hydrocarbon components, and contacting the stream with water in a DME removal unit under conditions effective to form an overhead stream comprising the C4 olefins and a bottoms stream comprising the DME.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: June 13, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Zhong Yi Ding, James Richardson Lattner
  • Patent number: 7060866
    Abstract: Disclosed is a method of removing dimethyl ether from an ethylene and/or propylene containing stream. Dimethyl ether is removed at a high pressure, preferably in a distillation column. The high pressure separation has the benefit of providing a relatively low bottoms temperature separation, while allowing for recovery of a highly concentrated ethylene and/or propylene stream.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: June 13, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Jeffrey L. Brinen, James R. Lattner, Michael Peter Nicoletti
  • Patent number: 7057083
    Abstract: This invention relates to processes for converting oxygenates to olefins that include a step of pretreating molecular sieve used in the conversion reaction with a C4–C7 olefin composition, which contains one or more C4–C7 olefins. Fresh or regenerated molecular sieve, which is low in carbon content, is contacted or pretreated with the olefin composition to form a hydrocarbon co-catalyst within the pore structure of the molecular sieve, and the pretreated molecular sieve containing the co-catalyst is used to convert oxygenate to a lighter olefin product.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: June 6, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Nicolas P. Coute, Kenneth Ray Clem, Keith H. Kuechler
  • Patent number: 7052664
    Abstract: Small particle size silicoaluminophosphate molecular sieves are obtained by providing the source of the silicon in the form of a basic organic solution.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: May 30, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Mertens, Karl G. Strohmaier
  • Patent number: 7053260
    Abstract: The present invention provides a process for making an olefin product from an oxygenate feedstock which comprises: a) contacting the feedstock in a reaction zone with a catalyst comprising i) a molecular sieve having defined pore openings and ii) a CO oxidation metal, under conditions effective to convert the feedstock into an olefin product stream comprising C2–C3 olefins and to form carbonaceous deposits on the catalyst so as to provide a carbon-containing catalyst; b) contacting at least a portion of the carbon-containing catalyst with a regeneration medium comprising oxygen in a regeneration zone comprising a fluid bed regenerator having a dense fluid phase and a dilute fluid phase under conditions effective to obtain a regenerated catalyst portion, wherein the difference between the temperature of the dilute phase and the temperature of the dense phase is no greater than 100° C.; c) introducing said regenerated catalyst portion into said reaction zone; and d) repeating steps a)–c).
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 30, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Paul N. Chisholm, Stephen Neil Vaughn, Shun Chong Fung, Keith Holroyd Kuechler, James R. Lattner, Kenneth Ray Clem, Patrick J. Maher, Dean C. Draemel
  • Patent number: 7045672
    Abstract: This invention relates to processes for converting oxygenates to olefins and olefins to polyolefins. The processes include a step of pretreating molecular sieve used in the conversion of oxygenate to olefin with a dimethyl ether composition. Fresh or regenerated molecular sieve, which is low in carbon content, is contacted or pretreated with the dimethyl ether composition to form a hydrocarbon co-catalyst within the pore structure of the molecular sieve, and the pretreated molecular sieve containing the co-catalyst is used to convert oxygenate to a lighter olefin product.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: May 16, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Kenneth Ray Clem, Keith H. Kuechler
  • Patent number: 7041866
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component comprising at least one Group III A (IUPAC 13) component, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 9, 2006
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 7038102
    Abstract: A process is provided for converting oxygenate to olefins from a fluidized bed reactor which comprises removal of catalyst fines from a quenched vaporous effluent by contacting with a liquid low in catalyst fines content, e.g., oxygenate feedstock, or by-product water from the oxygenates to olefins conversion which is stripped and/or filtered.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: May 2, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Zhong Yi Ding
  • Patent number: 7034196
    Abstract: Disclosed is a method and apparatus for reducing the amount of metal catalyzed side-reaction byproducts formed in the feed vaporization and introduction system of a methanol to olefin reactor system by monitoring and/or maintaining the temperature of at least a portion of the feed vaporization and introduction system and/or of the feedstock contained therein below about 400° C., 350° C., 300° C., 250° C., 200° C. or below about 150° C. The temperature can be maintained in the desired range by jacketing at least a portion of the feed vaporization and introduction system, such as at least a portion of the feed introduction nozzle, with a thermally insulating material or by implementing a cooling system.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: April 25, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kenneth Ray Clem, Stephen N. Vaughn, Teng Xu, Jeffrey L. White
  • Patent number: 7030284
    Abstract: Disclosed is a method and reactor system for converting oxygenate and/or olefin contaminants in a methanol to olefin reactor system product effluent to hydrocarbons, including paraffin compounds, preferably over a sulphided catalyst of the type Nickel or Cobalt combined with Molybdenum or Tungsten. In one embodiment, the oxygenate-containing stream to be hydrogenated comprises one or more of the following streams, alone or in combination: a quench tower bottoms stream, a water absorption unit bottoms stream, a C4+ stream, and/or a C5+ stream.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 18, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: John Richard Shutt