Using Acid, Metal Oxide, Or Salt Catalyst Patents (Class 585/642)
-
Patent number: 12054681Abstract: Provided is a technology of converting an oil having a high content of Cl into a solvent. Impurities such as Cl, S, N, and metals are removed from an oil having a boiling point of 180 to 340° C. in a waste oil having a high content of Cl, and hydroisomerization is carried out, thereby applying an oil having a high isoparaffin ratio as a solvent. After a separation by boiling points according to the properties of the solvent product, a solid acid material and an oil having a high Cl content are mixed, impurities are removed by a heat treatment at a high temperature, and hydroisomerization is carried out by a noble metal/1-D zeolite catalyst, thereby, manufacturing a solvent product.Type: GrantFiled: May 4, 2022Date of Patent: August 6, 2024Assignees: SK Innovation Co., Ltd., SK Geo Centric Co., Ltd.Inventors: Hee Jung Jeon, Do Kyoung Kim, Jeong Eop Choi, Seung Woo Lee, Yoon Kyung Lee
-
Patent number: 10252211Abstract: A process for removing halogen compounds, particularly chlorine compounds, from a process fluid, includes the steps of (i) passing a process fluid containing hydrogen halide over a first sorbent to remove hydrogen halide and generate a hydrogen halide depleted process fluid and then, (ii) passing the hydrogen halide depleted process fluid over a second different sorbent to remove organic halide compounds therefrom. A purification system suitable for removing hydrogen halide and organic halide compounds from process fluids is also described.Type: GrantFiled: May 30, 2012Date of Patent: April 9, 2019Assignee: Johnson Matthey Public Limited CompanyInventors: Colin Baptist, Claire Cahill, Matthew John Cousins, David Davis, Michelle Taylor Wilson, Christopher John Young
-
Patent number: 9718747Abstract: A process for removal of trace chloride contaminants from a reactor effluent in a catalytic dehydrogenation process is described. The reactor effluent is compressed in a compressor to provide a compressed effluent. The compressed effluent is introduced from the compressor into a chloride treater. In the chloride treater, trace chloride contaminants in the compressed effluent are adsorbed to provide a treated effluent. The treated effluent is cooled in a cooler.Type: GrantFiled: June 19, 2013Date of Patent: August 1, 2017
-
Publication number: 20150119621Abstract: Generally, regenerable, encapsulated metal oxide catalysts comprising a ceramic matrix and metal catalysts may be used to convert alkanes to alkenes. The encapsulated metal oxide catalyst may be tailored to produce a variety of alkenes including ethylene, butylene, and propylene. Further, the encapsulated metal oxide catalysts advantageously allow for regeneration and reactant recovery for cost effective and environmentally friendly processes.Type: ApplicationFiled: May 6, 2013Publication date: April 30, 2015Applicant: Sajet Development LLCInventors: Jorge Miller, Luisa Kling Miller, Barry L. Stucky
-
Patent number: 9012694Abstract: The present invention provides a process for the production of aldehydes and/or alcohols, which process comprises the steps of: (a) reacting an oxygenate and/or olefinic feed in a reactor in the presence of a molecular sieve catalyst to form an effluent comprising olefins, comprising propylene; (b) separating the effluent comprising olefins as obtained in step (a) into at least a first olefinic product fraction comprising propylene and a second olefinic product fraction; (c) subjecting at least part of the first olefinic product fraction as obtained in step (b) to a hydroformylation process to form aldehydes; (d) separating at least part of the aldehydes as obtained in step (c) into at least a first product fraction of aldehydes and a second product fraction of aldehydes; and (e) hydrogenating at least part of the aldehydes in the first and/or second product fraction of aldehydes as obtained in step (d) to form a first product fraction of alcohols and/or a second product fraction of alcohols; (f) recycling atType: GrantFiled: December 21, 2012Date of Patent: April 21, 2015Assignee: Shell Oil CompanyInventors: Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
-
Publication number: 20150038754Abstract: A phosphorous modified zeolite (A) can be made by a process that includes selecting a zeolite, steaming the zeolite, leaching the zeolite, separating solids from liquid, and calcining. An olefin product can be made from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock by contacting the feedstock with the phosphorous modified zeolite (A) in an XTO reactor under conditions effective to convert at least a portion of the feedstock to olefin products. The XTO reactor effluent can include light olefins and a heavy hydrocarbon fraction. The light olefins can be separated from the heavy hydrocarbon fraction. The heavy hydrocarbon fraction can be contacted in an OCP reactor at conditions effective to convert at least a portion of the heavy hydrocarbon fraction to light olefins.Type: ApplicationFiled: September 11, 2014Publication date: February 5, 2015Inventors: Nikolai Nesterenko, Walter Vermeiren, Delphine Minoux, Sander Van Donk
-
Patent number: 8940952Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.Type: GrantFiled: November 7, 2013Date of Patent: January 27, 2015Assignee: UOP LLCInventors: Christopher P. Nicholas, Mark A. Miller
-
Patent number: 8933287Abstract: A new family of crystalline microporous silicometallophosphates designated MAPSO-64 and modified forms thereof have been synthesized. These silicometallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as ETMA+ or DEDMA+, M is an alkaline earth or transition metal cation of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The MAPSO-64 compositions are characterized by a BPH framework topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.Type: GrantFiled: March 25, 2014Date of Patent: January 13, 2015Assignee: UOP LLCInventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
-
Patent number: 8916738Abstract: A new family of crystalline microporous metallophosphates designated AlPO-67 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+ or DEDMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-67 compositions have the LEV topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.Type: GrantFiled: March 25, 2014Date of Patent: December 23, 2014Assignee: UOP LLCInventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
-
Patent number: 8889580Abstract: The present invention is a mixture comprising by weight 0.01 to 28% of at least one medium or large pore crystalline silicoaluminate, silicoaluminophosphate materials or silicoaluminate mesoporous molecular sieves (co-catalyst) (A) for respectively 99.99 to 72% of at least a MeAPO molecular sieve. Preferably the proportion of (A) is 1 to 15% for respectively 99 to 85% of MeAPO molecular sieves. MeAPO molecular sieves having CHA (SAPO-34) or AEI (SAPO-18) structure or mixture thereof are the most preferable. Si is the most desirable metal in MeAPO. The present invention also relates to catalysts consisting of the above mixture or comprising the above mixture.Type: GrantFiled: July 28, 2008Date of Patent: November 18, 2014Assignee: Total Research & Technology FeluyInventors: Walter Vermeiren, Nikolai Nesterenko
-
Publication number: 20140228603Abstract: Embodiments disclose a process for converting gaseous alkanes to higher molecular weight hydrocarbons, olefins or mixtures thereofs wherein a gaseous feed containing alkanes may be reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid then may be reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 or an X or Y type zeolite, at a temperature of from about 250° C. to about 500° C. so as to form hydrobromic acid vapor and higher molecular weight hydrocarbons, olefins or mixtures thereof. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons, olefins or mixtures thereof and to generate bromine from the hydrobromic acid for use in the process.Type: ApplicationFiled: April 17, 2014Publication date: August 14, 2014Applicant: Marathon GTF Technology, Ltd.Inventor: John J. Waycuilis
-
Patent number: 8754279Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.Type: GrantFiled: December 11, 2013Date of Patent: June 17, 2014Assignee: UOP LLCInventors: Mark A. Miller, Christopher P. Nicholas, Stephen T. Wilson
-
Patent number: 8642822Abstract: A process for converting gaseous alkanes to olefins, higher molecular weight hydrocarbons or mixtures thereof wherein a gaseous feed containing alkanes may be thermally or catalytically reacted with a dry bromine vapor to form alkyl bromides and hydrogen bromide. Poly-brominated alkanes present in the alkyl bromides may be further reacted with methane over a suitable catalyst to form mono-brominated species. The mixture of alkyl bromides and hydrogen bromide may then be reacted over a suitable catalyst at a temperature sufficient to form olefins, higher molecular weight hydrocarbons or mixtures thereof and hydrogen bromide. Various methods and reactions are disclosed to remove the hydrogen bromide from the higher molecular weight hydrocarbons, to generate bromine from the hydrogen bromide for use in the process, to store and subsequently release bromine for use in the process, and to selectively form mono-brominated alkanes in the bromination step.Type: GrantFiled: May 27, 2011Date of Patent: February 4, 2014Assignee: Marathon GTF Technology, Ltd.Inventors: Raymond T. Brickey, Greg A. Lisewsky, John J. Waycuilis, Stephen D. York
-
Publication number: 20130317269Abstract: A mixture can include 0.01 to 30 weight % of a medium or large pore crystalline silicoaluminate, silicoaluminophosphate materials, or silicoaluminate mesoporous molecular sieves (A), and 99.99 to 70 weight % of a MeAPO molecular sieve. The mixture can be included in a catalyst. An XTO process can include contacting an oxygen-containing, halogenide-containing, or sulphur-containing organic feedstock with the catalyst under conditions effective to convert the organic feedstock to olefin products. A combined XTO and OCP process can include contacting the organic feedstock with the catalyst at conditions effective to convert at least a portion of the organic feedstock to form an XTO reactor effluent including light olefins and a heavy hydrocarbon fraction, separating the light olefins from the heavy hydrocarbon fraction, and contacting the heavy hydrocarbon fraction in an OCP reactor at conditions effective to convert at least a portion of the heavy hydrocarbon fraction to light olefins.Type: ApplicationFiled: April 22, 2013Publication date: November 28, 2013Applicant: TOTAL PETROCHEMICALS RESEARCH FELUYInventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk
-
Patent number: 8536393Abstract: The present invention provides an integrated process for producing aromatic hydrocarbons and/or C4+ non-aromatic hydrocarbons from low molecular weight alkanes, which includes contacting the low molecular weight alkanes with a halogen and coupling the monohaloalkanes to form aromatic hydrocarbons and/or C4+ non-aromatic hydrocarbons.Type: GrantFiled: May 11, 2010Date of Patent: September 17, 2013Assignee: Shell Oil CompanyInventors: Wayne Errol Evans, Glenn Charles Komplin, Duraisamy Muthusamy
-
Patent number: 8445741Abstract: Process for the production of a hydrocarbon by reacting, in a reactor, a reactant selected from methanol, dimethyl ether, methyl acetate and mixtures thereof, with an olefin. The process is performed in the presence of methyl halide and/or hydrogen halide and at least one compound selected from ruthenium carbonyl halides, osmium carbonyl halides and mixtures thereof.Type: GrantFiled: August 29, 2007Date of Patent: May 21, 2013Assignee: BP Oil International LimitedInventor: John Glenn Sunley
-
Publication number: 20130079564Abstract: Embodiments disclose a process for converting gaseous alkanes to higher molecular weight hydrocarbons, olefins or mixtures thereof wherein a gaseous feed containing alkanes may be reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid then may be reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 or an X or Y type zeolite, at a temperature of from about 250° C. to about 500° C. so as to form hydrobromic acid vapor and higher molecular weight hydrocarbons, olefins or mixtures thereof. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons, olefins or mixtures thereof and to generate bromine from the hydrobromic acid for use in the process.Type: ApplicationFiled: November 16, 2012Publication date: March 28, 2013Applicant: MARATHON GTF TECHNOLOGY, LTD.Inventor: Marathon GTF Technology, Ltd.
-
Patent number: 8367884Abstract: Processes and systems for synthesizing hydrocarbon products, such as high molecular weight hydrocarbons, olefins or mixtures thereof, from alkyl bromides wherein one or more streams of alkyl bromides may be reacted in sequential or concurrent stages at different temperatures. The catalyst used in the synthesis stages may be the same or different and at least in one instance is chosen to form hydrocarbon products having a significant C6+ paraffin content. The stages may be conducted in one or more reactors and the catalyst may be deployed in fixed beds or fluidized beds.Type: GrantFiled: February 17, 2011Date of Patent: February 5, 2013Assignee: Marathon GTF Technology, Ltd.Inventor: John J Waycuilis
-
Patent number: 8338656Abstract: This invention pertains to separating an olefin stream into at least two olefin streams. The olefin stream that is to be separated is low in diene composition, which allows the olefin stream to be compressed at a relatively high temperature without causing fouling problems in the compressor system. The invention is particularly relevant to separating olefins obtained from an oxygen to olefins unit.Type: GrantFiled: October 1, 2007Date of Patent: December 25, 2012Assignees: Lummus Technology Inc., ExxonMobil Chemical Patents Inc.Inventors: David Ritchie Lumgair, Michael Peter Nicoletti, Ram Mallik, Wadie Malaty, Malcolm Pettigrew
-
Patent number: 8278493Abstract: A method of synthesizing hydrocarbons from smaller hydrocarbons includes the steps of hydrocarbon halogenation, simultaneous oligomerization and hydrogen halide neutralization, and product recovery, with a metal-oxygen cataloreactant used to facilitate carbon-carbon coupling. Treatment with air or oxygen liberates halogen and regenerates the cataloreactant.Type: GrantFiled: May 13, 2011Date of Patent: October 2, 2012Assignee: GRT, Inc.Inventor: Ivan M. Lorkovic
-
Patent number: 8232441Abstract: A process for converting gaseous alkanes to liquid hydrocarbons wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid are then reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 zeolite, at a temperature of from about 150° C. to about 450° C. so as to form higher molecular weight hydrocarbons and hydrobromic acid vapor. Propane and butane which comprise a portion of the products may be recovered or recycled back through the process to form additional C5+ hydrocarbons. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons and to generate bromine from the hydrobromic acid for use in the process.Type: GrantFiled: July 13, 2009Date of Patent: July 31, 2012Assignee: Marathon GTF Technology, Ltd.Inventor: John J. Waycuilis
-
Patent number: 8198495Abstract: Processes and systems for synthesizing alkyl bromides to hydrocarbon products, such as high molecular weight hydrocarbons, olefins or mixtures thereof, wherein one or more streams of alkyl bromides may be synthesized in sequential or concurrent stages at different temperatures. The catalyst used in the synthesis stages may be the same or different and at least in one instance is chosen to form hydrocarbon products having a significant C6+ paraffin content. The stages may be conducted in one or more reactors and the catalyst may be deployed in fixed beds or fluidized beds.Type: GrantFiled: March 2, 2010Date of Patent: June 12, 2012Assignee: Marathon GTF Technology, Ltd.Inventors: John J. Waycuilis, William J. Turner
-
Patent number: 8173851Abstract: A process for converting gaseous alkanes to olefins, higher molecular weight hydrocarbons or mixtures thereof wherein a gaseous feed containing alkanes is thermally reacted with a dry bromine vapor to form alkyl bromides and hydrogen bromide. Poly-brominated alkanes present in the alkyl bromides are further reacted with methane over a suitable catalyst to form mono-brominated species. The mixture of alkyl bromides and hydrogen bromide is then reacted over a suitable catalyst at a temperature sufficient to form olefins, higher molecular weight hydrocarbons or mixtures thereof and hydrogen bromide. Various methods are disclosed to remove the hydrogen bromide from the higher molecular weight hydrocarbons, to generate bromine from the hydrogen bromide for use in the process, and to selectively form mono-brominated alkanes in the bromination step.Type: GrantFiled: June 3, 2009Date of Patent: May 8, 2012Assignee: Marathon GTF Technology, Ltd.Inventors: John J. Waycuilis, William J. Turner, Raphael Thomas
-
Patent number: 8053619Abstract: Process for the production of alkenes from a feedstock comprising monohydric aliphatic paraffinic alcohols having from 2 to 3 carbon atoms, in which the monohydric aliphatic paraffinic alcohols containing 2 to 3 carbon atoms are dehydrated into the corresponding same carbon number alkenes at a pressure of more than 0.5 MPa but less than 4.0 MPa and at a temperature of less than 300° C. The alcohols present in the feedstock comprise ethanol, propanol(s), less than 1 wt % of methanol and less than 1 wt % of C3+ alcohols.Type: GrantFiled: June 29, 2006Date of Patent: November 8, 2011Assignee: BP Chemicals LimitedInventor: Benjamin Patrick Gracey
-
Patent number: 8017822Abstract: An integrated process for producing aromatic hydrocarbons and ethylene and/or propylene and optionally other lower olefins from low molecular weight hydrocarbons, preferably methane, which comprises: (a) contacting at least one low molecular weight alkane, preferably methane, with a halogen, preferably bromine, under process conditions sufficient to produce a monohaloalkane, preferably monobromomethane, (b) reacting the monohaloalkane in the presence of a coupling catalyst to produce aromatic hydrocarbons and C2+ alkanes, (c) separating the aromatic hydrocarbons from the product mixture of step (b) to produce aromatic hydrocarbons, and (d) cracking at least part of the C2+ alkanes in an alkane cracking system to produce ethylene and/or propylene and optionally other lower olefins.Type: GrantFiled: October 5, 2009Date of Patent: September 13, 2011Assignee: Shell Oil CompanyInventors: Howard Lam Ho Fong, Richard Dale Swain
-
Patent number: 8008535Abstract: A process for converting gaseous alkanes to olefins and higher molecular weight hydrocarbons wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid are then reacted over a synthetic crystalline alumino-silicate catalyst, such as an X or Y type zeolite, at a temperature of from about 250° C. to about 500° C. so as to form olefins, higher molecular weight hydrocarbons and hydrobromic acid vapor. Various methods are disclosed to remove the hydrobromic acid vapor from the olefins and higher molecular weight hydrocarbons and to generate bromine from the hydrobromic acid for use in the process.Type: GrantFiled: April 30, 2008Date of Patent: August 30, 2011Assignee: Marathon GTF Technology, Ltd.Inventor: John J. Waycuilis
-
Publication number: 20110166303Abstract: The present invention relates to a process to make light olefins, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a) providing a catalyst comprising zeolitic molecular sieves containing 10 member and larger channels in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock in the XTO reactor with the catalyst at conditions effective to convert at least a portion of the feedstock to form a XTO reactor effluent comprising light olefins and aType: ApplicationFiled: June 24, 2009Publication date: July 7, 2011Applicant: Total Petrochemicals Research FeluyInventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
-
Patent number: 7964764Abstract: A method of synthesizing hydrocarbons from smaller hydrocarbons includes the steps of hydrocarbon halogenation, simultaneous oligomerization and hydrogen halide neutralization, and product recovery, with a metal-oxygen cataloreactant used to facilitate carbon-carbon coupling. Treatment with air or oxygen liberates halogen and regenerates the cataloreactant.Type: GrantFiled: January 7, 2010Date of Patent: June 21, 2011Assignee: GRT, Inc.Inventor: Ivan M. Lorkovic
-
Publication number: 20110071264Abstract: The invention covers a process for obtaining an alkaline earth or rare earth metal-P-modified molecular sieve (M-P-modified molecular sieve) comprising the following steps: a). selecting at least one molecular sieve selected from one of: a P-modified molecular sieve which contains at least 0.3 wt % of P obtained by dealuminating a molecular sieve in a steaming step, followed by a leaching step using an acid solution containing a source of P a molecular sieve which is modified with P during step b) by dealuminating the molecular sieve in a steaming step, followed by a leaching step using an acid solution containing a source of P thereby introducing at least 0.3 wt % of P b). contacting said molecular sieve with an alkaline earth or rare earth metal-containing compound (M-containing compound) to introduce at least 0.05 wt % of the alkaline earth or rare earth metal to the molecular sieve. The invention also covers a catalyst composite comprising: a).Type: ApplicationFiled: January 23, 2009Publication date: March 24, 2011Applicant: TOTAL PETROCHEMICALS RESEARCH FELUYInventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk, Delphine Minoux
-
Patent number: 7847139Abstract: A method of synthesizing hydrocarbons from smaller hydrocarbons includes the steps of hydrocarbon halogenation, simultaneous oligomerization and hydrogen halide neutralization, and product recovery, with a metal-oxygen cataloreactant used to facilitate carbon-carbon coupling. Treatment with air or oxygen liberates halogen and regenerates the cataloreactant.Type: GrantFiled: July 2, 2008Date of Patent: December 7, 2010Assignees: GRT, Inc., The Regents of the University of CaliforniaInventors: Ivan M. Lorkovic, Maria Noy, Jeffrey H. Sherman, Michael J. Weiss, Galen D. Stucky
-
Patent number: 7829750Abstract: The present invention relates to processes for fluidizing a population of catalyst particles that are depleted of catalyst fines. In one embodiment, the process includes providing a plurality of catalyst particles in the reactor, wherein the catalyst particles have a d2 value of greater than about 40 microns. The catalyst- particles are contacted with a fluidizing medium under conditions effective to cause the catalyst particles to behave in a fluidized manner and form a fluidized bed. The particles are contacted with one or more primary obstructing members while in the fluidized bed. By fluidizing the catalyst particles in this manner, the catalyst particles can be maintained at an axial gas Peclet number of from about 10 to about 20.Type: GrantFiled: December 2, 2005Date of Patent: November 9, 2010Assignee: ExxonMobil Chemical Patents Inc.Inventors: James H. Beech, Jr., Nicolas Coute, Jeffrey S. Smith, Michael Peter Nicoletti
-
Patent number: 7763765Abstract: A gas-solids reaction system is provided for improving product recovery in a multiple reactor reaction system. An oxygenate feedstock, desirably of high concentration in oxygenate, is reacted with a catalyst having a low to modest acidity and a Si/Al2 ratio of from 0.10 to 0.32. The reaction occurs in a reaction zone of a fluidized bed reactor at an oxygenate partial pressure of at least 45 psia and a reactor gas superficial velocity of at least 10 ft/s, conveying catalyst through the reaction zone to a circulation zone. The catalyst undergoes displacement with an inert gas in the circulation zone at a displacement gas superficial velocity of at least 0.03 m/s, after which at least a portion, preferably a large portion is returned to the reaction zone. The catalyst has a residence time in the circulation zone of at least twice that of the residence time of catalyst in the reaction zone.Type: GrantFiled: January 26, 2007Date of Patent: July 27, 2010Assignee: ExxonMobil Chemical Patents Inc.Inventors: Keith H. Kuechler, James H. Beech, Doron Levin, Stephen N. Vaughn, Stephen H. Brown
-
Patent number: 7674941Abstract: A process for converting gaseous alkanes to olefins, higher molecular weight hydrocarbons or mixtures thereof wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid is then reacted over a suitable catalyst at a temperature sufficient to form olefins, higher molecular weight hydrocarbons or mixtures thereof and hydrobromic acid vapor. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons, to generate bromine from the hydrobromic acid for use in the process, and to selectively form monobrominated alkanes in the bromination step.Type: GrantFiled: June 13, 2008Date of Patent: March 9, 2010Assignee: Marathon GTF Technology, Ltd.Inventors: John J. Waycuilis, William J. Turner
-
Patent number: 7642392Abstract: The present invention relates to a process for the production of branched chain hydrocarbons from methanol and/or dimethyl ether, which process comprises contacting, in a reactor, methanol and/or dimethyl ether with a catalyst comprising indium halide.Type: GrantFiled: August 19, 2004Date of Patent: January 5, 2010Assignee: BP Oil International LimitedInventors: Richard Daniel Kay, George Ernest Morris, John Glenn Sunley
-
Patent number: 7560607Abstract: A process for converting gaseous alkanes to liquid hydrocarbons wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid are then reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 zeolite, at a temperature of from about 150° C. to about 450° C. so as to form higher molecular weight hydrocarbons and hydrobromic acid vapor. Propane and butane which comprise a portion of the products may be recovered or recycled back through the process to form additional C5+ hydrocarbons. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons and to generate bromine from the hydrobromic acid for use in the process.Type: GrantFiled: December 14, 2007Date of Patent: July 14, 2009Assignee: Marathon GTF Technology, Ltd.Inventor: John J. Waycuilis
-
Publication number: 20080275284Abstract: Embodiments disclose a process for converting gaseous alkanes to higher molecular weight hydrocarbons, olefins or mixtures thereofs wherein a gaseous feed containing alkanes may be reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid then may be reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 or an X or Y type zeolite, at a temperature of from about 250° C. to about 500° C. so as to form hydrobromic acid vapor and higher molecular weight hydrocarbons, olefins or mixtures thereof. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons, olefins or mixtures thereof and to generate bromine from the hydrobromic acid for use in the process.Type: ApplicationFiled: May 20, 2008Publication date: November 6, 2008Applicant: MARATHON OIL COMPANYInventor: John J. Waycuilis
-
Patent number: 7442844Abstract: A process for producing isoprene is provided, which includes continuously or intermittently supplying isobutylene and/or t-butanol, formaldehyde and water into an acidic aqueous solution, and reacting the reaction mixture while distilling away a mixture containing produced isoprene, water, unreacted starting materials and other low boiling point components from this reaction mixture to the outside of the reaction system, wherein the reaction is carried out while controlling the concentration of high boiling point byproducts, which is produced and accumulated in the reaction mixture, to fall within the range of 0.5-40 mass %.Type: GrantFiled: March 24, 2004Date of Patent: October 28, 2008Assignee: Kuraray Co., Ltd.Inventors: Osamu Yamada, Manabu Kusano, Nobuo Takayanagi, Hideki Arimoto
-
Patent number: 7348464Abstract: A process for converting gaseous alkanes to liquid hydrocarbons wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid are then reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 zeolite, at a temperature of from about 150° C. to about 450° C. so as to form higher molecular weight hydrocarbons and hydrobromic acid vapor. Propane and butane which comprise a portion of the products may be recovered or recycled back through the process to form additional C5+ hydrocarbons. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons and to generate bromine from the hydrobromic acid for use in the process.Type: GrantFiled: April 8, 2005Date of Patent: March 25, 2008Assignee: Marathon Oil CompanyInventor: John J. Waycuilis
-
Patent number: 7307196Abstract: The invention relates to a catalyst composition, a method of making the same and its use in the conversion of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene The catalyst composition comprises a molecular sieve and at least one oxide of a metal from Group 4, optionally in combination with at least one metal from Groups 2 and 3, of the Periodic Table of Elements.Type: GrantFiled: August 3, 2004Date of Patent: December 11, 2007Assignee: ExxonMobil Chemical Patents Inc.Inventors: Doron Levin, James Clark Vartuli
-
Patent number: 7244867Abstract: A process for converting gaseous alkanes to liquid hydrocarbons wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid are then reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 zeolite, at a temperature of from about 150° C. to about 400° C. so as to form higher molecular weight hydrocarbons and hydrobromic acid vapor. Hydrobromic acid vapor is removed from the higher molecular weight hydrocarbons. A portion of the propane and butane is removed from the higher molecular weight hydrocarbons and reacted with the mixture of alkyl bromides and hydrobromic acid over the synthetic crystalline alumino-silicate catalyst to form C5+ hydrocarbons.Type: GrantFiled: April 16, 2004Date of Patent: July 17, 2007Assignee: Marathon Oil CompanyInventor: John J. Waycuilis
-
Patent number: 7091391Abstract: The specification discloses a process for the production of olefins, including ethylene, propylene and butenes, from methane, the process comprising first, second and third reaction steps operated in tandem. In the first reaction step, hydrogen chloride, perchloroethylene and oxygen are reacted in the presence of a catalyst, using methane as a diluent, to yield hexachloroethane and water. In the second reaction step, the hexachoroethane from the first reaction step is reacted with methane to produce methyl chloride, hydrogen chloride and perchloroethylene. In the third reaction step, the methyl chloride from the second reaction step is reacted to give the desired olefins and hydrogen chloride. By recycling the perchloroethylene from the second reaction step and the hydrogen chloride from both the second and third reaction steps to the first reaction step, a balanced process is achieved that is self-sufficient in chlorine values.Type: GrantFiled: March 19, 2003Date of Patent: August 15, 2006Inventor: John E. Stauffer
-
Patent number: 6906232Abstract: The invention relates to a conversion process of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene, in the presence of a molecular sieve catalyst composition that includes a molecular sieve and a Group 3 metal oxide and/or an oxide of a Lanthanide or Actinide series element. The invention is also directed to methods of making and formulating the molecular sieve catalyst composition useful in a conversion process of a feedstock into one or more olefin(s).Type: GrantFiled: August 9, 2002Date of Patent: June 14, 2005Assignee: ExxonMobil Chemical Patents Inc.Inventors: Doron Levin, James Clark Vartuli
-
Patent number: 6794534Abstract: The invention is directed to the cross-metathesis and ring-closing metathesis reactions between geminal disubstituted olefins and terminal olefins, wherein the reaction employs a Ruthenium or Osmium metal carbene complex. Specifically, the invention relates to the synthesis of &agr;-functionalized or unfunctionalized olefins via intermolecular cross-metathesis and intramolecular ring-closing metathesis using a ruthenium alkylidene complex. The catalysts preferably used in the invention are of the general formula wherein: M is ruthenium or osmium; X and X1 are each independently an anionic ligand; L is a neutral electron donor ligand; and, R, R1R6, R7, R8, and R9 are each independently hydrogen or a substituent selected from the group consisting of C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthio, C1-C20 alkylsulfonyl and C1-C20 alkylsulfinyl.Type: GrantFiled: June 25, 2001Date of Patent: September 21, 2004Assignee: California Institute of TechnologyInventors: Robert H. Grubbs, Arnab K. Chatterjee, John P. Morgan, Matthias Scholl, Tae-Lim Choi
-
Patent number: 6482999Abstract: A method for converting oxygenates to light olefins.Type: GrantFiled: February 17, 1999Date of Patent: November 19, 2002Assignee: ExxonMobil Chemical Patents, Inc.Inventors: Shun C. Fung, James R. Lattner, Stephen N. Vaughn, Richard B. Hall, Hsiang-Ning Sun, Ron G. Searle, Luc R. M. Martens
-
Patent number: 6452060Abstract: The present invention relates to a method to prepare cyclopropenes.Type: GrantFiled: April 4, 2001Date of Patent: September 17, 2002Assignee: Rohm and Haas CompanyInventor: Richard Martin Jacobson
-
Patent number: 6452058Abstract: An oxidative halogenation process involving contacting a reactant hydrocarbon selected from methane, a halogenated C1 hydrocarbon, or a mixture thereof with a source of halogen and, preferably, a source of oxygen in the presence of a rare earth halide or rare earth oxyhalide catalyst, so as to form a halogenated C1 hydrocarbon having a greater number of halogen substituents as compared with the reactant hydrocarbon. Preferably, the product is a monohalogenated methane, more preferably, methyl chloride. The oxidative halogenation process to form methyl halide can be integrated with downstream processes to produce valuable commodity chemicals, for example, methyl alcohol and/or dimethyl ether; light olefins, including ethylene, propylene, and butenes; higher hydrocarbons, including gasolines; vinyl halide monomer, and acetic acid. Hydrogen halide, which is a co-product of these downstream processes, can be recycled to the oxidative halogenation process.Type: GrantFiled: May 21, 2001Date of Patent: September 17, 2002Assignee: Dow Global Technologies Inc.Inventors: Albert E. Schweizer, Mark E. Jones, Daniel A. Hickman
-
Patent number: 6441261Abstract: This invention relates to a method for converting an oxygenate feedstock to an olefin product. In particular, this invention relates to a method for converting an oxygenate feedstock, including a diluent co-feed, to an olefin product, by contacting the feedstock with a silicoaluminophosphate catalyst at a high total pressure of the feedstock while maintaining a low partial pressure of the oxygenates undergoing reaction.Type: GrantFiled: July 28, 2000Date of Patent: August 27, 2002Assignee: ExxonMobil Chemical Patents Inc.Inventors: Keith H. Kuechler, Stephen N. Vaughn, Gary F. Janda, Russell D. Sellen
-
Patent number: 6187983Abstract: A process comprises contacting an oxygenate feed with a molecular sieve catalyst in the presence of an electromagnetic energy and converting the oxygenate feed to olefins.Type: GrantFiled: April 29, 1998Date of Patent: February 13, 2001Assignee: Exxon Chemical Patents IncInventor: Hsiang-ning Sun
-
Patent number: 6166282Abstract: An oxygenate conversion process and fast-fluidized bed reactor are disclosed having an upper disengaging zone and a lower reaction zone. The process is carried out in a reaction zone having a dense phase zone in the lower reaction zone and a transition zone which extends into the disengaging zone. The feedstock in the presence of a diluent is passed to the dense phase zone containing a non-zeolitic catalyst to effect at least a partial conversion to light olefins and then passed to the transition zone above the dense phase zone to achieve essentially complete conversion. A portion of the catalyst is withdrawn from above the transition zone in the disengaging zone, at least partially regenerated, and returned to a point above the dense phase zone, while catalyst is continuously circulated from the disengaging zone to the lower reaction zone.Type: GrantFiled: August 20, 1999Date of Patent: December 26, 2000Assignee: UOP LLCInventor: Lawrence W. Miller
-
Patent number: 6100438Abstract: A process for producing a tertiary olefin by decomposing a tertiary alkyl ether comprises a) decomposing at least one ether to a product containing an alcohol and a tertiary olefin, b) fractionating at least a portion of the product from a) in a fractionation zone (C1) to obtain the tertiary olefin and the alcohol, c) purifying at least a portion of the tertiary olefin obtained from step b) wherein said portion is sent to a water washing extraction zone (L1) from which a fraction (D) containing the tertiary olefin is recovered, and d) a step in which at least a portion of the fraction (D) from c) is sent to a separation zone (Co) from which a liquid aqueous fraction (Le) and a liquid hydrocarbon fraction (Lc) containing the major portion of the tertiary olefin are recovered.Type: GrantFiled: February 20, 1998Date of Patent: August 8, 2000Assignee: Institut Francais du PetroleInventors: Marie-Claire Marion, Vincent Coupard, Alain Forestiere, Philippe Travers, Jean-Charles Viltard