Using Aluminosilicate Catalyst Patents (Class 585/666)
  • Patent number: 11897779
    Abstract: It relates to a microporous aluminotitanosilicate crystalline zeolite, method of preparation and applications thereof. It extends to a catalytic hydroxylation, by reaction of a compound of formula (I) with H2O2 in the presence of a catalyst comprising the zeolite.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: February 13, 2024
    Assignees: East China Normal University, RHODIA OPERATIONS
    Inventors: Fangzheng Su, Stéphane Streiff, Laurent Garel, Peng Wu, Jianyong Yin, Xinqing Lu
  • Patent number: 11377404
    Abstract: A process (100) for the production of linear alpha-olefins is proposed, wherein ethylene is subjected to catalytic oligomerization (1) in a feed mixture to obtain a product mixture containing alpha-olefins with different chain length and side compounds. In a primary fractionation (2), a primary fraction is formed using at least part of the product mixture, and in a secondary fractionation (4), a secondary fraction is formed using at least part of the primary fraction. The primary fractionation (2) and the secondary fractionation (4) are carried out such that the primary fraction and the secondary fraction predominantly contain one of the alpha-olefins and are low in or free of other alpha-olefins, that the primary fraction contains one or more of the side compounds, and that the secondary fraction is depleted relative to the primary fraction in the one or more side compounds.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: July 5, 2022
    Assignee: LINDE GmbH
    Inventors: Florian Winkler, Richard Schneider, Florian Mündl
  • Publication number: 20150104364
    Abstract: The present disclosure is directed to processes using a new crystalline molecular sieve designated SSZ-96, which is synthesized using a 1-butyl-1-methyl-octahydroindolium cation as a structure directing agent.
    Type: Application
    Filed: May 21, 2014
    Publication date: April 16, 2015
    Applicant: CHEVRON U.S.A. INC.
    Inventor: Saleh Ali ELOMARI
  • Patent number: 8940952
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Mark A. Miller
  • Patent number: 8933287
    Abstract: A new family of crystalline microporous silicometallophosphates designated MAPSO-64 and modified forms thereof have been synthesized. These silicometallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as ETMA+ or DEDMA+, M is an alkaline earth or transition metal cation of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The MAPSO-64 compositions are characterized by a BPH framework topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 13, 2015
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8916738
    Abstract: A new family of crystalline microporous metallophosphates designated AlPO-67 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+ or DEDMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-67 compositions have the LEV topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 23, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8754279
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Mark A. Miller, Christopher P. Nicholas, Stephen T. Wilson
  • Patent number: 8299313
    Abstract: A process is provided which is capable of producing olefins stably and efficiently by a metathesis reaction of identical or different olefins while preventing the lowering in metathesis catalyst activity due to trace impurities such as heteroatom-containing compounds that are contained in a starting olefin. The olefin production process includes supplying a starting olefin containing more than 0 ppm by weight to not more than 10 ppm by weight of one or more kinds of heteroatom-containing compounds to a reactor that contains a metathesis catalyst and an isomerization catalyst, the metathesis catalyst including at least one metal element selected from the group consisting of tungsten, molybdenum and rhenium, the isomerization catalyst including calcined hydrotalcite or yttrium oxide, and performing a metathesis reaction of identical or different olefins.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: October 30, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Toshihiro Takai, Hirokazu Ikenaga, Makoto Kotani, Satoru Miyazoe
  • Patent number: 8198494
    Abstract: A process for producing alkylate comprising contacting a first hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms which contains 1-butene with an isomerization catalyst under conditions favoring the isomerization of 1-butene to 2-butene so the isomerized stream contains a greater concentration of 2-butene than the first hydrocarbon stream and contacting the isomerized stream and a second hydrocarbon stream comprising at least one isoparaffin having from 4 to 6 carbon atoms with an acidic ionic liquid catalyst under alkylation conditions to produce an alkylate stream, wherein the alkylate stream has a RON that is increased from 5 to 32 numbers compared to a comparison alkylate stream made from the first hydrocarbon stream without the step of contacting with the isomerization catalyst.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: June 12, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Hye Kyung C. Tlmken
  • Patent number: 8053618
    Abstract: A new family of crystalline aluminosilicate zeolitic compositions, UZM-35 compositions, has been synthesized. These zeolitic compositions are represented by the empirical formula. Mmn+Rr+Al1-xExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These compositions comprise a MSE zeolite, a MFI zeolite and an ERI zeolite. The compositions are similar to MCM-68 but are characterized by unique x-ray diffraction patterns and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventors: Jaime G Moscoso, Deng-Yang Jan
  • Patent number: 8022262
    Abstract: A new family of crystalline aluminosilicate zeolitic compositions, UZM-35 compositions, has been synthesized. These zeolitic compositions are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These compositions comprise a MSE zeolite, a MFI zeolite and an ERI zeolite. The compositions are similar to MCM-68 but are characterized by unique x-ray diffraction patterns and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: September 20, 2011
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20110190555
    Abstract: A method for producing an internal olefin by stably isomerizing an ?-olefin by using an inexpensive zeolite catalyst while preventing an oligomerization reaction is provided. The method for producing an internal olefin comprises a step of isomerizing an ?-olefin having from 16 to 18 carbon atoms by passing through a zeolite catalyst bed, wherein the ?-olefin having from 16 to 18 carbon atoms is circulated through and brought into contact with the zeolite catalyst bed before starting the isomerization reaction.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 4, 2011
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Tetsuya SARUWATARI, Hideki Yamane
  • Patent number: 7956229
    Abstract: A method for producing an internal olefin by stably isomerizing an ?-olefin by using an inexpensive zeolite catalyst while preventing an oligomerization reaction is provided. The method for producing an internal olefin comprises a step of isomerizing an ?-olefin having from 16 to 18 carbon atoms by passing through a zeolite catalyst bed, wherein the ?-olefin having from 16 to 18 carbon atoms is circulated through and brought into contact with the zeolite catalyst bed before starting the isomerization reaction.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: June 7, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Tetsuya Saruwatari, Hideki Yamane
  • Patent number: 7915468
    Abstract: A process for producing alkylate comprising contacting a first hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms which contains 1-butene with an isomerization catalyst under conditions favoring the isomerization of 1-butene to 2-butene so the isomerized stream contains a greater concentration of 2-butene than the first hydrocarbon stream and contacting the isomerized stream and a second hydrocarbon stream comprising at least one isoparaffin having from 3 to 6 carbon atoms with an acidic ionic liquid catalyst under alkylation conditions to produce an alkylate stream is disclosed.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 29, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Saleh Elomari
  • Publication number: 20110009680
    Abstract: This disclosure relates to a crystalline molecular sieve comprising silicalite-1 having substantially hexagonal column morphology of at least 90% and having less than 20% crystal twinning as measured by SEM. This disclosure also relates to a method of making the crystalline molecular sieve of this disclosure, the method comprises: (a) providing a mixture comprising at least one source of at least one tetravalent element (Y), at least one source of hydroxide ion, at least one directing-agent (R), water, the mixture having the following molar composition: H2O/Y=10 to 1000 OH?/Y=0.41 to 0.74 R/Y=0.001 to 2 wherein R comprises at least one of TPAOH, TPACl, TPABr, TPAI, and TPAF, wherein OH?/Y is not corrected for trivalent ion; (b) submitting the mixture at crystallization conditions to form a product comprising the crystalline molecular sieve, wherein the crystallization conditions comprise a temperature in the range of from 100° C. to 250° C.
    Type: Application
    Filed: February 13, 2009
    Publication date: January 13, 2011
    Inventor: Sebastien Kremer
  • Patent number: 7663011
    Abstract: A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of refractory oxide containing at least 97% by volume of pores having a pore size ranging from about 15 ? to about 30 ? and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2 theta (?). The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: February 16, 2010
    Assignee: Lummus Technology Inc.
    Inventors: Zhiping Shan, Jacobus Cornelis Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer, Mohamed S. Hamdy
  • Patent number: 7655827
    Abstract: A process for selectively making 2-alkenes from a NAO using a mesoporous catalyst that has been surface modified with a Brönsted acid compound. The Brönsted acid compound has a reactive silane connector, an organic linking group, and a Brönsted acid group. The mesoporous catalyst has an average pore diameter in a range of about 12 to about 100 Angstroms and a surface area of between about 400 to about 1400 m2/gram.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 2, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ta Yen Ching, Jeffery Gee, Ruthann M Hickox
  • Patent number: 7550073
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-70 prepared using a N,N?-diisopropyl imidazolium cation as a structure-directing agent, methods for synthesizing SSZ-70 and processes employing SSZ-70 in a catalyst.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: June 23, 2009
    Assignee: Chevron U.S.A., Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Patent number: 7537685
    Abstract: The present invention relates to new molecular sieve SSZ-71 prepared using a N-benzyl-1,4-diazabicyclo[2.2.2]octane cation as a structure-directing agent, methods for synthesizing SSZ-71 and processes employing SSZ-71 in a catalyst.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: May 26, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cong-Yan Chen, Allen W. Burton, Jr., Ann J. Liang
  • Publication number: 20080167510
    Abstract: A method for producing an internal olefin by stably isomerizing an ?-olefin by using an inexpensive zeolite catalyst while preventing an oligomerization reaction is provided. The method for producing an internal olefin comprises a step of isomerizing an ?-olefin having from 16 to 18 carbon atoms by passing through a zeolite catalyst bed, wherein the ?-olefin having from 16 to 18 carbon atoms is circulated through and brought into contact with the zeolite catalyst bed before starting the isomerization reaction.
    Type: Application
    Filed: December 28, 2005
    Publication date: July 10, 2008
    Applicant: Idemitsu Kosan Co., Ltd
    Inventors: Tetsuya Saruwatari, Hideki Yamane
  • Patent number: 7355087
    Abstract: A catalytic distillation process for isomerizing and separating 1-alkenes from a mixed alkene stream. The process comprises contacting a mixed alkene stream comprising the 1-alkene and homologs thereof with a supported isomerization catalyst under isomerization/distillation conditions effective to convert at least a portion of the homologs to the 1-alkene, the isomerization/distillation conditions also being effective to produce a distillation overhead comprising a sufficient portion of the 1-alkene to drive isomerization of the homologs to the 1-alkene while maintaining the mixed alkene stream at least partially in liquid phase. The isomerization/distillation conditions are effective to recover a quantity of 1-alkene greater than an equilibrium quantity of 1-alkene recovered under isomerization conditions alone.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: April 8, 2008
    Assignee: Shell Oil Company
    Inventors: Manuel Luis Cano, David Morris Hamilton, Jr., Terry Blane Thomason
  • Publication number: 20070287875
    Abstract: A process for selectively making 2-alkenes from a NAO using a mesoporous catalyst that has been surface modified with a Brönsted acid compound. The Brönsted acid compound has a reactive silane connector, an organic linking group, and a Brönsted acid group. The mesoporous catalyst has an average pore diameter in a range of about 12 to about 100 Angstroms and a surface area of between about 400 to about 1400 m2/gram.
    Type: Application
    Filed: May 16, 2006
    Publication date: December 13, 2007
    Inventors: TA YEN CHING, JEFFERY GEE, RUTHANN M. HICKOX
  • Patent number: 7244657
    Abstract: The present invention provides a zeolite sol which can be formed into a porous film that can be thinned to an intended thickness by a method used in the ordinary semiconductor process, that excels in dielectric properties, adhesion, film consistency and mechanical strength, and that can be easily thinned; a composition for film formation; a porous film and a method for forming the same; and a high-performing and highly reliable semiconductor device which contains this porous film inside. More specifically, the zeolite sol is prepared by hydrolyzing and decomposing a silane compound expressed by a general formula: Si(OR1)4 (wherein R1 represents a straight-chain or branched alkyl group having 1 to 4 carbons, and when there is more than one R1, the R1s can be independent and the same as or different from each other) in a conventional coating solution for forming a porous film in the presence of a structure-directing agent and a basic catalyst; and then by heating the silane compound at a temperature of 75° C.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: July 17, 2007
    Assignee: Shin-Etsu Chemical Co. Ltd.
    Inventors: Tsutomu Ogihara, Fujio Yagihashi, Hideo Nakagawa, Masaru Sasago
  • Patent number: 7176103
    Abstract: The present invention provides a zeolite sol which can be formed into a porous film that can be thinned to an intended thickness by a method used in the ordinary semiconductor process, that excels in dielectric properties, adhesion, film consistency and mechanical strength, and that can be easily thinned; a composition for film formation; a porous film and a method for forming the same; and a high-performing and highly reliable semiconductor device which contains this porous film inside. More specifically, the zeolite sol is prepared by hydrolyzing and decomposing a silane compound expressed by a general formula: Si(OR1)4 (wherein R1 represents a straight-chain or branched alkyl group having 1 to 4 carbons, and when there is more than one R1, the R1s can be independent and the same as or different from each other) in a conventional coating solution for forming a porous film in the presence of a structure-directing agent and a basic catalyst; and then by heating the silane compound at a temperature of 75° C.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: February 13, 2007
    Assignees: Shin-Etsu Chemical Co. Ltd., Matsushita Electric Industrial Co., Ltd.
    Inventors: Tsutomu Ogihara, Fujio Yagihashi, Hideo Nakagawa, Masaru Sasago
  • Patent number: 7166756
    Abstract: The present invention is directed at a process to isomerize C10+ hydrocarbon feedstreams by contacting a C10+ hydrocarbon feedstream with a steamed catalyst.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: January 23, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Madhav Acharya, David L. Stern
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 7078579
    Abstract: A process for the double bond isomerization of a vinylidene olefin, comprising contacting a feed comprising the vinylidene olefin with an isomerization catalyst which comprises a molecular sieve in an acidic form, which molecular sieve comprises pores which have a pore size of more than 0.6 nm; and a process for treating an olefin mixture which comprises a linear ?-olefin and a vinylidene olefin which is isomeric to the linear ?-olefin and which is of the general formula CH2?C(R1)R2, wherein R1 represents an ethyl group and R2 represents a linear 1-alkyl group, which process comprises isomerizing the vinylidene olefin to form a double bond isomer of the vinylidene olefin by contacting a feed comprising the olefin mixture with an isomerization catalyst which comprises a molecular sieve in an acidic form, which molecular sieve comprises pores which have a pore size of more than 0.6 nm, and separating the linear ?-olefin from the double bond isomer of the vinylidene olefin.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: July 18, 2006
    Assignee: Shell Oil Company
    Inventors: Michael Joseph Doll, Brendan Dermot Murray
  • Patent number: 7041865
    Abstract: A process for the double bond isomerization of an olefin, which process comprises contacting a feed comprising the olefin with an isomerization catalyst, wherein prior to contacting the feed with the isomerization catalyst one or more components of the feed are pretreated by contacting with a pretreating material which comprises a zeolite which has a pore size of at least 0.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: May 9, 2006
    Assignee: Shell Oil Company
    Inventors: Michael Joseph Doll, Brendan Dermot Murray
  • Patent number: 7022784
    Abstract: A liquid polymer suitable for use as a lubricant base oil is produced by polymerizing ethylene and at least one alpha-olefin using a metallocene catalyst to provide a polymer which is then isomerized and hydrogenated to produce the liquid polymer.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 4, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Margaret May-Som Wu, Steven P. Rucker, Richard T. Spissell, Steven Edward Donnachie
  • Patent number: 6930217
    Abstract: A catalytic material includes a microporous zeolite supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite beta, zeolite Y or ZSM-5. The mesoporous inorganic oxide can be, e.g., silica or alumina, and can optionally include other metals. Methods for making and using the catalytic material are described herein.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: August 16, 2005
    Assignee: ABB Lummus Global Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Johannes Hendrik Koegler, Thomas Maschmeyer
  • Patent number: 6930219
    Abstract: A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 ? to about 30 ? and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2?. The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: August 16, 2005
    Assignee: ABB Lummus Global Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer, Mohamed S. Hamdy
  • Patent number: 6841713
    Abstract: The invention relates to economical and efficient methods for producing 2-methylene-3-methylbicyclo[2,2,1]heptane, 2,3-dimethylbicyclo[2.2.1]hept-2-ene and the like that are useful for materials of producing base oil of traction drive fluid for traction drive lubricating oil. The methods comprise reacting one or more C3-4 acyclic olefins with cyclopentadiene and isomerizing the resulting bicyclo[2.2.1]heptene derivatives in the presence of an isomerization catalyst to give one or more bicyclo[2.2.1]heptane derivatives.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: January 11, 2005
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Toshiyuki Tsubouchi, Yukio Yoshida, Motohisa Ido, Masahiro Katayama
  • Patent number: 6827843
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-63 prepared using N-cyclodecyl-N-methyl-pyrrolidinium cation as a structure-directing agent, methods for synthesizing SSZ-63 and processes employing SSZ-63 in a catalyst.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 7, 2004
    Assignee: Chevron U.S.A., Inc.
    Inventor: Saleh Elomari
  • Patent number: 6808620
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-64 prepared using a N-cyclobutylmethyl-N-ethylhexamethyleneiminium cation or N-cyclobutylmethyl-N-ethylheptamethyleneiminium cation structure directing agent, and processes employing SSZ-64 in a catalyst.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: October 26, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Publication number: 20040182744
    Abstract: A family of crystalline aluminosilicate zeolites designated UZM-8HS and derived from UZM-8 have been synthesized. The aluminum content of the UZM-8HS is lower than that of the starting UZM-8 thus changing its ion exchange capacity and acidity.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Inventors: Deng Yang Jan, Jaime G. Moscoso, Susan G. Koster, Lisa M. Rohde, Gregory J. Lewis, Mark A. Miller, R. Lyle Patton, Stephen T. Wilson
  • Patent number: 6768038
    Abstract: A method for making alpha olefins from internal olefins using catalytic distillation techniques and an olefin double bond isomerization catalyst, and separately recovering said alpha olefins.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 27, 2004
    Assignee: Equistar Chemicals, LP
    Inventor: Donald H. Powers
  • Publication number: 20040124123
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-63 prepared using N-cyclodecyl-N-methyl-pyrrolidinium cation as a structure-directing agent, methods for synthesizing SSZ-63 and processes employing SSZ-63 in a catalyst.
    Type: Application
    Filed: December 26, 2002
    Publication date: July 1, 2004
    Inventor: Saleh Elomari
  • Publication number: 20040089587
    Abstract: The invention relates to a method for synthesizing a family of zeolite materials, grouped together under the name ITQ-16, in an OH− medium and in the absence of fluorides and to the catalytic applications thereof. The zeolite ITQ-16 family of materials is characterized by having different proportions of distinct polymorphs A, B and C described as possible intergrowths in the Beta zeolite and, therefore, the X-ray diffraction patterns of said family are different from that described for the Beta zeolite. In its calcinated form, zeolite ITQ-16 has the following empirical formula: x(MXO2):tTO2:gGeO2:(1−g)SiO2, wherein T is one or more elements having +4 oxidation status and different from Ge and Si; X is one or more elements having +3 oxidation status; and M can be H+ or one or more inorganic cations with a +n charge.
    Type: Application
    Filed: August 1, 2003
    Publication date: May 13, 2004
    Inventors: Avelino Corma Canos, Teresa Navarro Villalba, Susana Valencia Valencia, Fernando Rey Garcia
  • Publication number: 20040020828
    Abstract: The present invention relates to a new crystalline zeolite SSZ-53 prepared by using phenylcycloalkylmethyl ammonium cations as structure directing agents.
    Type: Application
    Filed: July 10, 2003
    Publication date: February 5, 2004
    Applicant: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 6649662
    Abstract: Methods for converting of syngas to higher molecular weight products using Fischer-Tropsch synthesis, and methods for optimizing the catalyst systems in the synthesis, are disclosed. In one embodiment, the methods use cobalt/ruthenium Fischer-Tropsch catalysts in combination with an olefin isomerization catalyst, which isomerizes double bonds in C4+ olefins as they are formed. In another embodiment, the methods use Fischer-Tropsch catalysts that may or may not be cobalt/ruthenium catalysts, in combination with olefin isomerization catalysts which are acidic enough to isomerize the C4+ olefins but not too acidic to cause rapid coking. A benefit of using the relatively less acidic zeolites is that the ratio of iso-paraffins to aromatics is increased relative to when more acidic zeolites are used. Also, the relatively less acidic zeolites do not coke as readily as the relatively more acidic zeolites.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: November 18, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Charles L. Kibby
  • Patent number: 6616830
    Abstract: The present invention relates to a new crystalline zeolite SSZ-57 and processes employing SSZ-57 in a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 9, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 6547958
    Abstract: The present invention relates to new crystalline zeolite SSZ-59 and processes employing SSZ-59 as a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: April 15, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 6540905
    Abstract: The present invention relates to new crystalline zeolite SSZ-58 and processes employing SSZ-58 as a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: April 1, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 6540906
    Abstract: The present invention relates to new crystalline zeolite SSZ-60 and processes employing SSZ-60 as a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: April 1, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Publication number: 20030009070
    Abstract: A process for the double bond isomerization of an olefin, which process comprises contacting a feed comprising the olefin with an isomerization catalyst, wherein prior to contacting the feed with the isomerization catalyst one or more components of the feed are pretreated by contacting with a pretreating material which comprises a zeolite which has a pore size of at least 0.
    Type: Application
    Filed: June 10, 2002
    Publication date: January 9, 2003
    Inventors: Michael Joseph Doll, Brendan Dermot Murray
  • Publication number: 20030009071
    Abstract: A process for the double bond isomerization of a vinylidene olefin, comprising contacting a feed comprising the vinylidene olefin with an isomerization catalyst which comprises a molecular sieve in an acidic form, which molecular sieve comprises pores which have a pore size of more than 0.6 nm; and a process for treating an olefin mixture which comprises a linear &agr;-olefin and a vinylidene olefin which is isomeric to the linear &agr;-olefin and which is of the general formula CH2═C(R1)R2, wherein R1 represents an ethyl group and R2 represents a linear 1-alkyl group, which process comprises isomerizing the vinylidene olefin to form a double bond isomer of the vinylidene olefin by contacting a feed comprising the olefin mixture with an isomerization catalyst which comprises a molecular sieve in an acidic form, which molecular sieve comprises pores which have a pore size of more than 0.6 nm, and separating the linear &agr;-olefin from the double bond isomer of the vinylidene olefin.
    Type: Application
    Filed: June 10, 2002
    Publication date: January 9, 2003
    Inventors: Michael Joseph Doll, Brendan Dermot Murray
  • Patent number: 6281404
    Abstract: A process for the double bond isomerization of olefinic feed compounds is provided comprising contacting the olefinic feed compounds and a catalyst under reaction conditions sufficient to produce double bond isomerization, wherein the catalyst is an aluminophosphate-containing molecular sieve with pores having a diameter in the range of about 3.8 Å to about 5 Å. The process provides high conversion of normal alpha-olefins and high selectivity for linear internal olefins.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: August 28, 2001
    Assignee: Chevron Chemical Company LLC
    Inventor: Stephen J. Miller
  • Patent number: 6218591
    Abstract: The present invention relates to new crystalline zeolite SSZ-36 prepared using a cyclic or polycyclic quaternary ammonium cation templating agent.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: April 17, 2001
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gregory S. Lee, Stacey I. Zones, Yumi Nakagawa, Susan T. Evans
  • Patent number: 6054415
    Abstract: The present invention relates to synthetic hydrocarbons produced by skeletal isomerization, and the isomerization process. The products are especially useful as the continuous phase of a drilling fluid, for example when prepared from C.sub.14 to C.sub.18 linear alpha-olefins via isomerization or hydroisomerization, and as lube oils.The present invention also relates to a process for producing synthetic hydrocarbons by skeletally isomerizing C.sub.12+ olefins over a catalyst comprising an intermediate pore size molecular sieve, with or without Group VIII metals under skeletal isomerization conditions which result in little, preferably in substantially no, olefin cracking or oligomerization.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: April 25, 2000
    Assignee: Chevron Chemical Company LLC
    Inventors: Jeffrey C. Gee, Roger C. Williamson, Christophe J. Lawrie, Stephen J. Miller
  • Patent number: 6027707
    Abstract: The invention concerns NU-88 zeolite, characterized by:i) a chemical composition with the following formula, expressed in terms of the mole ratios of the oxides for the anhydrous state:100 XO.sub.2, mY.sub.2 O.sub.3, pR.sub.2/n Owherem is 10 or less;p is 20 or less;R represents one or more cations with valency n;X represents silicon and/or germanium;Y represents one or more of the following elements: aluminium, iron, gallium, boron, titanium, vanadium, zirconium, molybdenum, arsenic, antimony, chromium and manganese; andii) an X ray diffraction diagram, in its as synthesized state, which comprises the results shown in Table 1 of the description.The invention also concerns the preparation of the zeolite, any catalyst containing the zeolite and any catalytic process using such a catalyst.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: February 22, 2000
    Assignee: Institut Francais du Petrole
    Inventors: John Leonello Casci, Sheena Maberly, Eric Benazzi, Loic Rouleau, Roland Patrick Henney