Using Transition Metal-containing Catalyst Patents (Class 585/670)
  • Patent number: 11319263
    Abstract: Methods of producing 1-butene from a 2-butene-containing feedstock include feeding a hydrocarbon feed comprising 2-butene to a reactor, the reactor containing an isomerization catalyst and contacting the hydrocarbon feed with the isomerization catalyst in the reactor at a temperature from 150° C. to 350° C. to produce an isomerization reaction effluent comprising 1-butene. Further, the isomerization catalyst comprises a MCM-48 catalyst with WO3 incorporated into a silica framework of the MCM-48 catalyst.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: May 3, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Munir D. Khokhar, Sohel K. Shaikh
  • Patent number: 11033892
    Abstract: One or more embodiments presently disclosed is directed to a method for reacting a chemical stream which may include contacting the chemical stream with a catalyst to produce a product stream. The catalyst may include alumina, silica, and a catalytically active compound such as tungsten.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: June 15, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Brian Hanna, Michele Ostraat
  • Patent number: 10329218
    Abstract: An isomerization catalyst for isomerizing a first straight-chain olefin to a second straight-chain olefin different therefrom in a double bond position in the presence of 20 ppm by volume or more of molecular oxygen and/or water, comprising: Si; and Al.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 25, 2019
    Assignee: JXTG NIPPON OIL & ENERGY CORPORATION
    Inventors: Nobuhiro Kimura, Sosuke Higuchi, Junji Wakabayashi, Atsushi Segawa
  • Patent number: 9266808
    Abstract: The present invention relates to a process for preparing hydroformylation products of olefins having at least four carbon atoms, in which a high proportion of both the linear Ci-olefins having a terminal double bond comprised in the olefin-comprising feed used and of the linear Ci-olefins having an internal double bond is converted into hydroformylation products. Furthermore, the invention relates to a process for preparing 2-propylheptanol which comprises such a hydroformylation process.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: February 23, 2016
    Assignee: BASF SE
    Inventors: Marcus Sigl, Frank Poplow, Rainer Papp, Thomas Mackewitz, Dag Wiebelhaus, Rocco Paciello, Thomas Heldemann, Frank Heimann, Stefan Bitterlich, Martin Volland, Sven Crone, Christoph Obler
  • Patent number: 9040764
    Abstract: A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: May 26, 2015
    Assignee: Lummus Technology Inc.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Marvin I. Greene
  • Publication number: 20150141720
    Abstract: A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a hydrocarbon stream including olefins with a ?-alumina-titania isomerization catalyst to convert at least a portion of the olefin to its positional isomer. The ?-alumina-titania isomerization catalysts disclosed herein may also have the activity to convert alcohol into additional olefins, while having increased resistance to oxygenate poisons.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 21, 2015
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside
  • Patent number: 8742186
    Abstract: Described herein is a process for producing an alpha olefin by obtaining a feed stream of internal olefins having a first carbon number and alpha olefins having a first carbon number. The olefins are isomerized to increase the quantity of the alpha olefins. The olefins are then fractionated, subjecting the overhead material to catalytic metathesis to produce a mixed olefin effluent of internal olefins having a second carbon number and other hydrocarbons. The first isomerization reactor and fractionator are prepared to receive the olefins having a second carbon number, where the internal olefin intermediate is isomerized in the prepared first isomerization reactor. The second isomerization effluent is fractionated in the prepared first fractionator to separate the alpha olefins having the second carbon number from the internal olefins having the second carbon number. A corresponding system is also described, along with a heat pump that may be incorporated into the process.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: June 3, 2014
    Assignee: Lummus Technology Inc.
    Inventors: Robert J. Gartside, Shaun M. McGovern, Thulasidas Chellppannair
  • Publication number: 20140066681
    Abstract: A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Marvin I. Greene
  • Publication number: 20140046110
    Abstract: The present invention relates to a process for isomerizing linear alpha-olefins having from 4 to 8 carbon atoms over a heterogeneous catalyst, wherein the catalyst comprises a hydrogenation metal and a selectivity promoter selected from among selenium and tellurium on a support, and also a process for preparing 1-olefins by a metathesis reaction of 2-olefins with ethene, wherein the 2-olefins are prepared by the above mentioned isomerization process.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 13, 2014
    Applicant: BASF SE
    Inventors: Stefan Iselborn, Michael Hesse, Piotr Makarczyk
  • Patent number: 8624075
    Abstract: Process for isomerizing linear alpha-olefins having from 10 to 25 carbon atoms over a heterogeneous catalyst.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 7, 2014
    Assignee: BASF SE
    Inventors: Lucia Königsmann, Ekkehard Schwab, Thilo Hahn, Germain Kons
  • Patent number: 8586813
    Abstract: A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: November 19, 2013
    Assignee: Lummus Technology Inc.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Marvin I. Greene
  • Patent number: 8440874
    Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: May 14, 2013
    Assignees: Lummus Technology Inc., BASF Corporation
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool
  • Patent number: 8299313
    Abstract: A process is provided which is capable of producing olefins stably and efficiently by a metathesis reaction of identical or different olefins while preventing the lowering in metathesis catalyst activity due to trace impurities such as heteroatom-containing compounds that are contained in a starting olefin. The olefin production process includes supplying a starting olefin containing more than 0 ppm by weight to not more than 10 ppm by weight of one or more kinds of heteroatom-containing compounds to a reactor that contains a metathesis catalyst and an isomerization catalyst, the metathesis catalyst including at least one metal element selected from the group consisting of tungsten, molybdenum and rhenium, the isomerization catalyst including calcined hydrotalcite or yttrium oxide, and performing a metathesis reaction of identical or different olefins.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: October 30, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Toshihiro Takai, Hirokazu Ikenaga, Makoto Kotani, Satoru Miyazoe
  • Patent number: 8143468
    Abstract: The present invention relates to the preparation of 3-methylbut-1-ene from a hydrocarbon stream I comprising isobutene by feeding a hydrocarbon stream II which comprises at least 70% by mass of isobutene in relation to the olefins present in the hydrocarbon stream and which has been obtained from hydrocarbon stream I or is identical to it to a process step for hydroformylation in which isobutene is hydroformylated in the presence of a rhodium catalyst, hydrogenating the aldehyde obtained from the hydroformylation of isobutene to the corresponding alcohol and preparing 3-methylbut-1-ene by water elimination from the alcohol.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: March 27, 2012
    Assignee: Evonik Oxeno GmbH
    Inventors: Alfred Kaizik, Klaus-Diether Wiese, Dietrich Maschmeyer, Dieter Hess, Wilfried Bueschken, Franz Nierlich
  • Publication number: 20120016172
    Abstract: A method for manufacturing an olefin through reaction between the same type of or different types of raw material olefins to obtain an olefin having a structure different from the structure of the raw material olefins, the method including using a catalyst containing at least one type of metal element selected from the group consisting of tungsten, molybdenum, and rhenium together with other specific catalysts. In the method, side reactions of a metathesis reaction can be suppressed and the selectivity of a desired product can be increased by facilitating double bond isomerization of raw material olefins. Furthermore, the desired product can be obtained efficiently at a high productivity by maintaining the activity of a metathesis catalyst for a long term and suppressing deterioration of performance of a catalyst (isomerization catalyst) for facilitating double bond isomerization of the raw material olefins.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 19, 2012
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Satoru Miyazoe, Hirokazu Ikenaga, Makoto Kotani
  • Patent number: 7939703
    Abstract: The present invention relates to methods for accelerating the trans-cis isomerization of 1,2-diphenylethylene analogues by using photocatalyst. According to this invention, in the presence of polypyridyl platinum(II) complex with catalytic dosage, a solution containing trans-1,2-diphenylethylene analogues or mixture of cis- and trans-1,2-diphenylethylene analogues is irradiated by visible light to prepare product of cis-1,2-diphenylethylene analogues or product predominantly being cis-1,2-diphenylethylene analogues under inert gas atmosphere. This method has the advantages of fast reaction, high performance, easy separation of reaction system and recycle of the polypyridyl platinum (II) complexes.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: May 10, 2011
    Assignee: Technical Institute of Physics and Chemistry of Chinese Academy of Science
    Inventors: Li-Zhu Wu, Ming-Li Peng, Li Zhou, Deng-Hui Wang
  • Publication number: 20110077444
    Abstract: A catalyst includes a metathesis catalyst and an isomerization catalyst. In one embodiment, WO3 is supported on MgO. Alternate embodiments include an inert support, such as alumina or silica, where either one or both of WO3 and MgO are supported on said inert support. The metathesis catalyst can be used for the metathesis of olefins, such as the metathesis of 2-butene and ethylene to produce propylene.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Applicant: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20110021858
    Abstract: A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Marvin I. Greene
  • Patent number: 7868216
    Abstract: A process for producing high purity propylene comprises: a step for dimerizing ethylene to 1-butene; a step for hydroisomerizing 1-butene to 2-butenes; and a step for metathesis of 2-butenes by ethylene. Advantageously, the ethylene used to produce the 1-butene and ethylene for metathesis derive from a steam cracking unit. To increase propylene production, the process can use a steam cracking or FCC C4cut as an additional butene source.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: January 11, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Jean-Alain Chodorge, Christian Dupraz
  • Publication number: 20100286458
    Abstract: The present invention relates to a process for isomerizing olefins in olefin-comprising hydrocarbon mixtures having from 4 to 20 carbon atoms at temperatures of from 20 to 200° C. and pressures of from 1 to 200 bar in the liquid phase in the presence of a heterogeneous catalyst, wherein a catalyst comprising from 1 to 20% by weight of nickel in oxidic form and from 1 to 20% by weight of at least one element of group VIB on an aluminum oxide support is used.
    Type: Application
    Filed: October 15, 2008
    Publication date: November 11, 2010
    Applicant: BASF SE
    Inventors: Stefan Iselborn, Thomas Heidemann
  • Patent number: 7601881
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7576251
    Abstract: A process is disclosed for the preferential conversion to 2-butene of a stream containing C4 compounds including 1-butene and 2-butene. The process involves mixing the C4 stream with a first hydrogen stream to form a feed stream, hydroisomerizing the feed stream in the presence of a first hydroisomerization catalyst in order to convert at least a portion of the 1-butene to 2-butene, thereby producing a hydroisomerization effluent, passing the hydroisomerization effluent through a fractionation column to form a top stream comprising isobutane and isobutylene and a bottoms stream comprising 2-butene, withdrawing a recycle stream from said fractionation column at a location above the feed point at which the weight ratio of 1-butene to 2-butene is high, and combining the recycle stream with at least one of the C4 stream and the feed stream upstream from the hydroisomerization catalyst. A corresponding apparatus also is disclosed.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: August 18, 2009
    Assignee: ABB Lummus Global Inc.
    Inventors: Robert J. Gartside, Thomas P. Skourlis, Hassan Kaleem
  • Publication number: 20090186953
    Abstract: A catalytically active oxide mixture as well as a process for the production thereof and the use thereof.
    Type: Application
    Filed: February 5, 2007
    Publication date: July 23, 2009
    Inventors: Ulrich Gesenhues, Bernd Proft, Elke Hirschberg
  • Publication number: 20090163687
    Abstract: The present invention relates to the preparation of 3-methylbut-1-ene from a hydrocarbon stream I comprising isobutene by feeding a hydrocarbon stream II which comprises at least 70% by mass of isobutene in relation to the olefins present in the hydrocarbon stream and which has been obtained from hydrocarbon stream I or is identical to it to a process step for hydroformylation in which isobutene is hydroformylated in the presence of a rhodium catalyst, hydrogenating the aldehyde obtained from the hydroformylation of isobutene to the corresponding alcohol and preparing 3-methylbut-1-ene by water elimination from the alcohol.
    Type: Application
    Filed: May 11, 2007
    Publication date: June 25, 2009
    Applicant: Evonik Oxeno GmbH
    Inventors: Alfred Kaizik, Klaus-Diether Wiese, Dietrich Maschmeyer, Dieter Hess, Wilfried Büschken, Franz Nierlich
  • Publication number: 20080319244
    Abstract: A process for the preparation of a (E,Z)-7,8-cyclohexadecen-1-one isomeric mixture is described, comprising the following step: partial isomerisation of (E,Z)-8-cyclohexadecen-1-one so that the (E,Z)-7,8-cyclohexadecen-1-one isomeric mixture is formed.
    Type: Application
    Filed: July 18, 2005
    Publication date: December 25, 2008
    Applicant: SYMRISE GMBH & CO. KG
    Inventors: Horst Surburg, Erich Dilk, Aurelia Reckziegel, Walter Kuhn
  • Patent number: 7432407
    Abstract: The invention relates to a process by which C4- to C6-olefins or an essentially sulfur-free olefin cut comprising C4- to C6-olefins is isomerized over a catalyst comprising an element of the eighth transition group of the Periodic Table, in the presence of at least one added sulfur compound, and any polyunsaturated hydrocarbons contained therein are selectively hydrogenated and hydroisomerized, and also the sulfur compounds are separated from the product and optionally recycled, so that virtually sulfur-free products are obtained.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: October 7, 2008
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Andreas Beckmann, Armin Rix, Udo Knippenberg, Franz Nierlich, Wilfried Bueschken, Ralf Duessel
  • Patent number: 7405339
    Abstract: A process of contacting at least one isoparaffin and at least one C5 olefin in the presence of a catalyst composition under conversion conditions to provide for converting the at least one isoparaffin and the at least one C5 olefin is provided. The catalyst composition contains a heteropoly acid, zinc, and a support component.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 29, 2008
    Assignee: ConocoPhillips Company
    Inventor: Bruce B. Randolph
  • Patent number: 7393991
    Abstract: The present invention is a method for producing an internal olefin, wherein an ?-olefin containing 50 ppm water or less according to a Karl Fischer test method is contacted with a zeolite catalyst and/or a montmorillonite catalyst for the isomerization thereof and provides an industrially advantageous method for the selective internal isomerization of the raw material ?-olefin using a inexpensive catalyst while preventing catalyst deterioration and side reactions such as skeletal isomerization, oligomerization and cracking.
    Type: Grant
    Filed: February 21, 2005
    Date of Patent: July 1, 2008
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Nobuo Fujikawa
  • Patent number: 7355087
    Abstract: A catalytic distillation process for isomerizing and separating 1-alkenes from a mixed alkene stream. The process comprises contacting a mixed alkene stream comprising the 1-alkene and homologs thereof with a supported isomerization catalyst under isomerization/distillation conditions effective to convert at least a portion of the homologs to the 1-alkene, the isomerization/distillation conditions also being effective to produce a distillation overhead comprising a sufficient portion of the 1-alkene to drive isomerization of the homologs to the 1-alkene while maintaining the mixed alkene stream at least partially in liquid phase. The isomerization/distillation conditions are effective to recover a quantity of 1-alkene greater than an equilibrium quantity of 1-alkene recovered under isomerization conditions alone.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: April 8, 2008
    Assignee: Shell Oil Company
    Inventors: Manuel Luis Cano, David Morris Hamilton, Jr., Terry Blane Thomason
  • Publication number: 20070287875
    Abstract: A process for selectively making 2-alkenes from a NAO using a mesoporous catalyst that has been surface modified with a Brönsted acid compound. The Brönsted acid compound has a reactive silane connector, an organic linking group, and a Brönsted acid group. The mesoporous catalyst has an average pore diameter in a range of about 12 to about 100 Angstroms and a surface area of between about 400 to about 1400 m2/gram.
    Type: Application
    Filed: May 16, 2006
    Publication date: December 13, 2007
    Inventors: TA YEN CHING, JEFFERY GEE, RUTHANN M. HICKOX
  • Patent number: 7271308
    Abstract: The present invention relates to embodiments for a process for the isomerization of at least one alpha olefin to an internal olefin via a multi-step process resulting in a mixture comprising alkene isomers and a low level of oligomers. According to the present invention an alkylaluminum compound is used in combination with the Group VIII transition metal salt for interaction with the latter, and thereby generating catalytically active species for the isomerization of 1-alkenes to internal alkenes, wherein this mixture is subsequently combined with an acid washed clay.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: September 18, 2007
    Assignee: Hercules Incorporated
    Inventor: Jian Jian Zhang
  • Patent number: 7166756
    Abstract: The present invention is directed at a process to isomerize C10+ hydrocarbon feedstreams by contacting a C10+ hydrocarbon feedstream with a steamed catalyst.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: January 23, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Madhav Acharya, David L. Stern
  • Patent number: 7132582
    Abstract: The present invention relates to a catalytic process for preparation of isolongifolene using nanocrystalline solid super acid. This process is an eco-friendly, single step, solvent free catalytic process for the preparation of a tricyclic sesqui-terpene hydrocarbon, isolongifolene. More particularly, the present invention provides a process for the catalytic isomerisation of longifolene to iso-longifolene using nano-crystalline sulfated zirconia as a solid super acid catalyst.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 7, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Raksh Vir Jasra, Beena Tyagi, Manish Kumar Mishra
  • Patent number: 7041866
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component comprising at least one Group III A (IUPAC 13) component, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 9, 2006
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6977322
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element, yttrium or mixtures thereof, which is preferably ytterbium or holmium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: December 20, 2005
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6875901
    Abstract: An olefin isomerization process employs a basic metal oxide catalyst, such as magnesium oxide, which retains at least about 85 percent of its initial activity for at least about 168 hours of on-stream time. The catalyst is preferably a high purity magnesium oxide. The olefin isomerization process and catalyst described herein are advantageously used for the production of a terminal olefin such as 1-butene from an internal olefin such as 2-butene.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: April 5, 2005
    Assignee: ABB Lummus Global Inc.
    Inventors: Robert J. Gartside, Marvin I. Greene
  • Patent number: 6860987
    Abstract: The present invention pertains to a process for the hydroprocessing of hydrocarbon feedstocks wherein said hydrocarbon feedstocks are contacted, at hydroprocessing conditions, with a catalyst composition comprising at least one Group VIII non-noble metal component and at least two Group VIB metal components. The catalyst composition further comprises at least about 0.01 mole of an organic oxygen-containing additive per mole of the total of Group VIB metals and Group VIII non-noble metals present in the catalyst composition. The total of the Group VIII and Group VIB metal components, calculated as oxides, make up at least about 50 wt. % of the catalyst composition, calculated on dry weight.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: March 1, 2005
    Assignee: Akzo Nobel N.V.
    Inventors: Frans Lodewijk Plantenga, Sonja Eijsbouts, Marinus Bruce Cerfontain
  • Patent number: 6858769
    Abstract: A catalyst for the selective oxidation of hydrogen has been developed. It comprises an inert core such as cordierite and an outer layer comprising a lithium aluminate support. The support has dispersed thereon a platinum group metal and a promoter metal, e.g. platinum and tin respectively. This catalyst is particularly effective in the selective oxidation of hydrogen in a dehydrogenation process.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Guy B. Woodle, Andrew S. Zarchy, Jeffery C. Bricker, Andrzej Z. Ringwelski
  • Patent number: 6841713
    Abstract: The invention relates to economical and efficient methods for producing 2-methylene-3-methylbicyclo[2,2,1]heptane, 2,3-dimethylbicyclo[2.2.1]hept-2-ene and the like that are useful for materials of producing base oil of traction drive fluid for traction drive lubricating oil. The methods comprise reacting one or more C3-4 acyclic olefins with cyclopentadiene and isomerizing the resulting bicyclo[2.2.1]heptene derivatives in the presence of an isomerization catalyst to give one or more bicyclo[2.2.1]heptane derivatives.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: January 11, 2005
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Toshiyuki Tsubouchi, Yukio Yoshida, Motohisa Ido, Masahiro Katayama
  • Patent number: 6822130
    Abstract: A catalyst composition comprising an alumina carrier, a Group VIII noble metal, and a halogen compound wherein the catalyst composition has total pore volume of more than 0.48 ml/g and wherein at least 50% of this total pore volume resides in pores with a diameter smaller than 12 nm. This catalyst composition has a higher activity in isomerization reactions, per gram of catalyst and per gram of Group VIII noble metal, than prior art catalyst compositions.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 23, 2004
    Assignee: Akzo Nobel N.V.
    Inventor: Pieter Jan Nat
  • Patent number: 6783856
    Abstract: Metal oxyanion coated substrates are disclosed comprising a three dimensional inorganic porous substrate having a coating of metal oxyanion on at least a portion of all three dimensions thereof, produced by a unique process having particular applicability to the manufacture of metal oxysulfide, oxycarbide and oxynitride coated three dimensional substrates. Certain novel coated substrates, such as diatomite porous substrates are disclosed. The coated substrates are useful in polymers, catalysis, heat dissipation and shielding applications.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: August 31, 2004
    Assignee: Ensci Inc
    Inventor: Thomas J. Clough
  • Publication number: 20040004026
    Abstract: The present invention relates to new crystalline zeolite SSZ-54 prepared using a templating agent comprising N-isopropyl ethylenediamine, or a mixture of 1-N-isopropyl diethylenetriamine and isobutylamine, and processes employing SSZ-54 in a catalyst.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 8, 2004
    Inventor: Stacey Zones
  • Patent number: 6593505
    Abstract: A catalyst comprising A) a stationary acid component selected from the group consisting of a perfluorinated ion exchange polymer on an inert support, a silane modified perfluorosulfonic acid, and a sulfated metal oxide; and B) a mobile acid component selected from the group consisting of chlorosulfonic acid, fluorosulfonic acid, a fluorinated monosulfonic acid, a fluorinated sulfonimide, a fluorinated disulfonic acid, and an adjunct acid mixture is disclosed.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: July 15, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark A. Harmer, Eugene F. Hartstein
  • Publication number: 20030009072
    Abstract: An olefin isomerization process employs a basic metal oxide catalyst, such as magnesium oxide, which retains at least about 85 percent of its initial activity for at least about 168 hours of on-stream time. The catalyst is preferably a high purity magnesium oxide. The olefin isomerization process and catalyst described herein are advantageously used for the production of a terminal olefin such as 1-butene from an internal olefin such as 2-butene.
    Type: Application
    Filed: May 23, 2001
    Publication date: January 9, 2003
    Inventors: Robert J. Gartside, Marvin I. Greene
  • Publication number: 20030004385
    Abstract: A process is provided for treating a basic metal oxide olefin isomerization catalyst, such as magnesium oxide. The catalyst is activated by contact with a deoxygenated nitrogen under activation conditions. The olefin isomerization process and catalyst described herein are advantageously used for the production of a terminal olefin such as 1-butene from an internal olefin such as 2-butene.
    Type: Application
    Filed: May 23, 2001
    Publication date: January 2, 2003
    Inventors: Robert J. Gartside, Marvin I. Greene
  • Patent number: 6495732
    Abstract: A process for the isomerization of mono-olefins in aliphatic hydrocarbon streams is carried out at 40 to 300° F. under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psi at 0 to 350 psig in a distillation column reactor containing a hydrogenation catalyst which serves as a component of a distillation structure, such as supported PdO encased in tubular wire mesh. Essentially no hydrogenation of the mono-olefins occurs.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: December 17, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Edward M. Jones, Jr., Lawrence A. Smith, Jr., Gary R. Gildert
  • Patent number: 6420619
    Abstract: The C3 to C6 cut from a cracking process containing propylene, butane, 1-butene, 2-butene and acetylenic and diene components including butadiene are preferentially converted to propylene. The cut is simultaneously fractionated and catalytically hydrogenated to hydrogenate the acetylenic and diene components. The fractionation and subsequent separation recovers a C4 component comprising a mixture of isobutene, 1-butene and 2-butene. This C4 component is then further simultaneously fractionated and catalytically hydrogenated and hydroisomerized to hydrogenate remaining butadiene, remove isobutene overhead and convert 1-butene to 2-butene leaving a bottoms of 2-butene. The 2-butene is then injected with ethylene and catalytically metathesized to form propylene.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: July 16, 2002
    Inventors: Robert J. Gartside, Gary R. Gildert
  • Patent number: 6414207
    Abstract: A catalyst comprising at least one alkali metal and at least one metallic or semimetallic promoter selected from the group consisting of Ca, Sr, Ba, Ag, Au, Zn, Cd, Hg, In, Tl, Sn, As, Sb and Bi, on a support which may be doped with one or more compounds of an alkali metal and/or alkaline earth metal, where the alkali metal/support ratio by weight is from 0.01 to 5, the promoter/alkali metal ratio by weight is from 0.0001 to 5 and, when a dopant is present, the dopant/support ratio by weight is from 0.01 to 5.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: July 2, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Steinbrenner, Eugen Gehrer
  • Patent number: 6407302
    Abstract: A method for the isomerization of a mixture of vinyl and vinylidene olefins having 10 to 35 carbons atoms to form a mixture comprising both di- and tri-substituted internal olefins including deep internal olefins.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: June 18, 2002
    Assignee: BP Corporation North America Inc.
    Inventors: Fred Chun-Chien Twu, William L. Cox
  • Patent number: 6395945
    Abstract: A novel integrated olefin processing scheme is provided where olefins and paraffins are processed to produce high octane gasoline blending components. The integrated process involves the processing of olefins by hydroisomerization to produce a hydroisomerate stream which is subsequently alkylated in an alkylation process with branched chain paraffin hydrocarbons to produce an alkylate product. The alkylate product can further be separated into various fractions, including propane, n-butane, i-butane and a C5+ alkylate stream. The C5+ alkylate stream can be separated into an i-pentane stream and a deisopentanized C5+ alkylate stream.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: May 28, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Bruce B. Randolph