Including Nonhydrocarbon Reactant Patents (Class 585/711)
  • Patent number: 9139929
    Abstract: The present invention (in a first embodiment) relates to a process for the dehydration of an alcohol having at least 2 carbon atoms to make the corresponding olefin, comprising: introducing in a reactor a stream (A) comprising at least an alcohol, optionally water, optionally an inert component, contacting said stream with a catalyst in said reactor at conditions effective to dehydrate at least a portion of the alcohol to make an olefin, recovering from said reactor an olefin containing stream (B), Wherein, the catalyst is a crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MIT or TON having Si/Al under 100, or a dealuminated crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MTT or TON having Si/Al under 100, or a phosphorus modified crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MTT or TON having Si/Al under 100, the WHSV of the alcohol is at least 4 h?1 and/or the temperature ranges from 320° C. to 600° C.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 22, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Delphine Minoux, Nikolai Nesterenko, Cindy Adam, Sander Van Donk, Walter Vermeiren
  • Patent number: 8536395
    Abstract: A solid catalyst, such as a molecular sieve catalyst or solid acid catalyst, is supported by a binder, such as amorphous silica or alumina, wherein the binder is charged with metal ions to form an ion-modified binder. The ion-modified binder is capable of attachment to polar contaminants and inhibit their contact with the catalyst. The catalyst can be a zeolite and can be the catalyst for an alkylation reaction, such as the alkylation of benzene with ethylene.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: September 17, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Joseph E. Pelati, Taylor Rives
  • Patent number: 8524623
    Abstract: A process for regenerating a spent ionic liquid catalyst including (a) applying a voltage across one or more pairs of electrodes immersed in a spent ionic liquid catalyst comprising conjunct polymer-metal halide complexes to provide freed conjunct polymers and a regenerated ionic liquid catalyst; and (b) separating the freed conjunct polymers from the regenerated ionic liquid catalyst is described. An alkylation process incorporating the regeneration process is also described.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: September 3, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Saleh Elomari, Thomas V. Harris, James N. Ziemer
  • Publication number: 20110319693
    Abstract: An alkylation process comprising contacting in an alkylation zone under alkylation conditions an olefin containing gas stream with an isoparaffin in the presence of an ionic liquid catalyst composition to provide an alkylate product. In an embodiment, the olefin stream may comprise offgas containing ethylene together with one or more non-condensable and/or inert gases, and the offgas may be fed in its native state to an alkylation reactor containing the ionic liquid catalyst for the alkylation of isoparaffins to provide low volatility, high octane gasoline blending components.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 29, 2011
    Applicant: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Hye-Kyung C. Timken
  • Patent number: 8034988
    Abstract: A process for alkylation of propylene, the process including: contacting a stream comprising propylene and propane with sulfuric acid in a first reaction zone under conditions to form propylene sulfate esters; contacting the propylene sulfate esters with isoparaffin and sulfuric acid in an alkylation reaction zone under conditions to react the propylene sulfate esters and the isoparaffin to form a reactor effluent comprising an acid phase and a hydrocarbon phase comprising unreacted isoparaffin and alkylate product; separating the hydrocarbon phase from the sulfuric acid; separating the hydrocarbon phase to form a fraction comprising unreacted isoparaffin and a fraction comprising the alkylate product.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 11, 2011
    Assignee: Catalytic Distillation Technologies
    Inventors: Mitchell E. Loescher, William M. Cross, Jr., Lawrence A. Smith, Jr.
  • Publication number: 20100130804
    Abstract: A process for regenerating a spent ionic liquid catalyst including (a) applying a voltage across one or more pairs of electrodes immersed in a spent ionic liquid catalyst comprising conjunct polymer-metal halide complexes to provide freed conjunct polymers and a regenerated ionic liquid catalyst; and (b) separating the freed conjunct polymers from the regenerated ionic liquid catalyst is described. An alkylation process incorporating the regeneration process is also described.
    Type: Application
    Filed: May 7, 2009
    Publication date: May 27, 2010
    Inventors: Hye-Kyung C. Timken, Saleh Elomari, Thomas V. Harris, James N. Ziemer
  • Publication number: 20090198091
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, and iso-alkanes, the process including: contacting at least a portion of the alkylation feedstock with sulfuric acid in a reaction zone under conditions to form sulfate esters of the olefins; separating the n-alkanes and the iso-alkanes from the sulfuric acid and the sulfate esters; recovering the n-alkanes and the iso-alkanes in a first product stream; and recovering the sulfate esters in a second product stream; wherein the sulfuric acid has a strength titrating as below 75 weight percent H2SO4/water mixtures.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., Abraham P. Gelbein, William M. Cross, JR.
  • Patent number: 7256152
    Abstract: A composition defined: either as comprising at least one Broensted acid, designated HB, dissolved in a liquid medium with an ionic nature of general formula Q+A?, in which Q+ represents an organic cation and A? represents an anion that is different from B, or as resulting from dissolving at least one Broensted acid, designated HB, in a non-aqueous liquid medium with an ionic nature of general formula Q+A?, in which Q+ represents an organic cation and A? represents an anion that is identical to the anion B, can be used as a catalyst and solvent in acid catalysis processes, in particular in the alkylation of aromatic hydrocarbons, the oligomerization of olefins, the dimerization of isobutene, the alkylation of olefins by isoparaffins, the isomerization of n-paraffins into isoparaffins, the isomerization of n-olefins into iso-olefins, the isomerization of the double bond of an olefin and the purification of an olefin mixture that contains branched alpha olefins as impurities.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: August 14, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Helene Olivier-Bourbigou, Dominique Commereuc, Olivia Martin, Lionel Magna, Emmanuel Pellier
  • Publication number: 20020193618
    Abstract: Process for the preparation of completely or partly saturated organic compounds by catalytic hydrogenation of unsaturated organic compounds with hydrogen or hydrogen-containing gas mixtures in the presence of a shaped Raney catalyst as the hydrogenation catalyst, wherein the Raney catalyst is in the form of hollow bodies. Nickel, cobalt, copper, iron, platinum, palladium or ruthenium are preferably used as catalytically active constituents.
    Type: Application
    Filed: January 3, 2002
    Publication date: December 19, 2002
    Inventors: Daniel Ostgard, Monika Berweiler, Stefan Roder
  • Patent number: 6103947
    Abstract: Although alkenes commonly are used to alkylate alkanes using various solid acid catalysts, the process is severely hampered by short catalyst lifetimes attending substantial alkene oligomerization. This problem can be avoided by using an alkene-alkyl chloride mixture as the alkylating agent. Thus, alkylation of isobutane by a butyl chloride/butene mixture at a molar ratio of 1:3 in the presence of an AlCl.sub.3 -type Friedel-Crafts catalyst at 30.degree. C. maintains at least an 80% conversion of (alkene and alkyl chloride) for almost twice as long as is the case for a 1:19 molar ratio of butyl chloride/butene.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: August 15, 2000
    Assignee: UOP LLC
    Inventor: Paul T. Barger
  • Patent number: 5907075
    Abstract: Improved isoparaffin-olefin alkylation solid catalyst processes are provided which are characterized by low coke laydown and catalyst deactivation rates and production of valuable branched chain, high octane number alkylates. The processes of the invention involve providing a starting reactant mixture comprising an isoparaffin, an olefin and a co-solvent or diluent (carbon dioxide in molar excess, methane, hydrogen or mixtures thereof), and contacting the reactant mixture with an alkylation catalyst at near-critical or preferably supercritical conditions for the reaction mixture. The carbon dioxide serves as a co-solvent and reduces the critical temperature (T.sub.c) of the reaction mixture, thereby allowing lower reaction temperatures. The isoparaffin and olefin reactants are preferably pretreated to minimize moisture, peroxide and oxygenate impurities therein.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: May 25, 1999
    Assignee: The University of Kansas
    Inventors: Bala Subramaniam, Michael C. Clark
  • Patent number: 5895831
    Abstract: A process for the production of motor fuel alkylate by reacting an alkene hydrocarbon, an alkane hydrocarbon and a hydrogen halide with a solid alkylation catalyst disposed in swing beds. The spent solid alkylation catalyst is regenerated in a highly integrated flow scheme associated with the alkylate recovery.
    Type: Grant
    Filed: December 4, 1996
    Date of Patent: April 20, 1999
    Assignee: UOP LLC
    Inventors: Robert S. Brasier, Paul A. Sechrist, Dale J. Shields
  • Patent number: 5866747
    Abstract: Although alkenes commonly are used to alkylate alkanes using various solid acid catalysts, the process is severely hampered by short catalyst lifetimes attending substantial alkene oligomerization. This problem can be avoided by using an alkene-alkyl chloride mixture as the alkylating agent. Thus, alkylation of isobutane by a butyl chloride/butene mixture at a molar ratio of 1:3 in the presence of an AlCl.sub.3 -type Friedel-Crafts catalyst at 30.degree. C. maintains at least an 80% conversion of (alkene and alkyl chloride) for almost twice as long as is the case for a 1:19 molar ratio of butyl chloride/butene.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: February 2, 1999
    Assignee: UOP LLC
    Inventor: Paul T. Barger
  • Patent number: 5777189
    Abstract: Disclosed is a process for the alkylation of an olefin with an isoparaffin using sulphuric acid as a catalyst. In this process, a finely-dispersed emulsion of isoparaffin and sulphuric acid is prepared first, in a separate emulsion preparation zone. This preparation is carried out by injecting the isoparaffin into the acid through a set of nozzles, thereby allowing the isoparaffin to "scavenge" at high speed through the acid and thus to form an extremely homogeneous emulsion. This makes it possible to achieve proper mixing without need of impellers or other similar mixing devices that usually call for substantial maintenance and operating costs. Then, the emulsion that was so prepared and which forms an already "finished" phase per se, is fed into a reaction zone which is separate from the emulsion preparation zone and in which the olefin is injected preferably at a plurality of points and in directions perpendicular to the emulsion flow.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: July 7, 1998
    Assignee: Orgral International Technologies Corporation
    Inventors: Georgy G. Alexanyan, Nikolay B. Librovitch, Yuri A. Prochukhane