With Preliminary Treatment Of Paraffin Feed Patents (Class 585/737)
  • Patent number: 5831139
    Abstract: A process combination is disclosed to selectively upgrade naphtha in accordance with expected trends leading to more-aliphatic gasolines. Such gasolines contain lower concentrations of aromatics and have lower end points with concomitant reduced harmful automotive emissions. The present process combination converts the higher-boiling portion of the naphtha, yields isobutane and other isoparaffins which are particularly suitable for upgrading or blending, and reduces cyclics in intermediate processing steps.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: November 3, 1998
    Assignee: UOP LLC
    Inventors: Robert J. Schmidt, Paula L. Bogdan, Leonid B. Galperin, Jennifer S. Holmgren
  • Patent number: 5814109
    Abstract: A process for producing additive compositions, especially via a Fischer-Tropsch reaction, useful for improving the cetane number or lubricity, or both the cetane number and lubricity, of a mid-distillate, diesel fuel. In producing the additive, the product of a Fischer-Tropsch reaction is separated into a high boiling fraction and a low boiling, e.g., a 700.degree. F.- fraction. The high boiling fraction is hydroisomerized at conditions sufficient to convert it to a 700.degree. F.- low boiling fraction, the latter being blended with the 700.degree. F.- fraction and the diesel additive is recovered therefrom.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: September 29, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Bruce R. Cook, Paul J. Berlowitz, Robert J. Wittenbrink
  • Patent number: 5770783
    Abstract: A process to isomerize at least one normal or mono-methyl-branched alkane containing from about 6 to about 8 carbon atoms to form at least one multi-methyl-branched alkane has been developed. The normal or mono-methyl-branched alkane is introduced to a reaction and adsorption zone operating under conditions effective to isomerize the normal or mono-methyl-branched alkane and containing a catalyst effective to isomerize the normal or mono-methyl-branched alkane and an adsorbent effective to selectively adsorb normal and mono-methyl-branched alkanes relative to multi-methyl-branched alkanes. Hydrogen and a desorbent comprising at least one alkane having from about 4 to about 8 carbon atoms is introduced to a first portion of the reaction and adsorption zone and an effluent containing at least one multi-methyl-branched alkane is withdrawn from a second portion of the reaction and adsorption zone.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: June 23, 1998
    Assignee: UOP LLC
    Inventors: Herman A. Zinnen, Charles P. McGonegal
  • Patent number: 5763731
    Abstract: Naphthenic rings in naphthenic ring-containing compounds in a feedstream are selectively opened wherein at least about 50 wt. % of the ring compounds in the feedstream are characterized as containing at least one C.sub.6 ring having at least one substituent containing 3 or more carbon atoms. The naphthenic rings are opened without significant dealkylation of any pendant substituents on the ring. The feedstream, containing such compounds, is contacted with a supported catalyst containing a metal selected from Ir, Ru, or a mixture thereof, which catalyst when reacted with a feed comprised of 20 wt. % n-butylcyclohexane in heptane diluent will result in: a) at least a 10% yield of C.sub.10 paraffin yield/%C.sub.10 ring disappearance.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: June 9, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Gary B. McVicker, Michele S. Touvelle, Carl W. Hudson, David E. W. Vaughan, Michel Daage, Sylvain Hantzer, Darryl P. Klein, Edward S. Ellis, Bruce R. Cook, Owen C. Feeley, Joseph E. Baumgartner
  • Patent number: 5756420
    Abstract: Hydroconversion of paraffin containing hydrocarbon feeds is effected over a supported Group VIII and Group VI metal containing catalyst also containing a hydrocracking suppressant such as a Group IB metal, wherein the catalyst is preferably prepared by fixing the Group IB metal on to the support prior to incorporating the Group VI metal on to the support.
    Type: Grant
    Filed: November 5, 1996
    Date of Patent: May 26, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert J. Wittenbrink, Daniel F. Ryan, William C. Baird, Jr., Kenneth L. Riley, Jack W. Johnson
  • Patent number: 5744684
    Abstract: A process for isomerizing a mixture of alkanes containing pentanes and at least one alkane having from 6 to about 8 carbon atoms and no more than one methyl branch has been developed.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: April 28, 1998
    Assignee: UOP
    Inventors: Herman A. Zinnen, Charles P. McGonegal, Hemant W. Dandekar, Gregory A. Funk, Ralph D. Gillespie
  • Patent number: 5705730
    Abstract: A process for the isomerization of hydrocarbons using a chloride promoted catalyst wherein an adsorption zone arrangement operates to maintain chloride compounds in the reaction zone and to prevent contamination of product streams with chloride compounds removes normal paraffins from the desorbent stream to extend the capacity and life of a clinoptilolite molecular sieve. The invention preferably uses isoparaffins recovered from the isomerization zone as a desorbent. A gaseous fraction of the isomerization zone effluent can be recovered to provide a desorbent containing a low concentration of normal paraffins.
    Type: Grant
    Filed: November 20, 1996
    Date of Patent: January 6, 1998
    Assignee: UOP
    Inventors: Andrew S. Zarchy, Lawrence Tucker Kass
  • Patent number: 5689031
    Abstract: Clean distillate useful as a diesel fuel or diesel blending stock is produced from Fischer-Tropsch wax by separating wax into heavier and lighter fractions; further separating the lighter fraction and hydroisomerizing the heavier fraction and that portion of the light fraction below about 500.degree. F. The isomerized product is blended with the untreated portion of the lighter fraction.
    Type: Grant
    Filed: October 17, 1995
    Date of Patent: November 18, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Paul Joseph Berlowitz, Bruce Randall Cook, Robert J. Wittenbrink
  • Patent number: 5660714
    Abstract: Nickel-copper catalysts supported on an acidic carrier, preferably containing a binder, are used to hydroisomerize paraffins, particularly Fischer-Tropsch paraffins, boiling at 350.degree. F.+ into lighter, more valuable products.
    Type: Grant
    Filed: June 25, 1996
    Date of Patent: August 26, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert Jay Wittenbrink, Stephen Mark Davis, Kenneth Lloyd Riley
  • Patent number: 5530173
    Abstract: A process for isomerizing a mixture of alkanes containing pentanes and at least one alkane having from 6 to about 8 carbon atoms and no more than one methyl branch has been developed.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: June 25, 1996
    Inventors: Gregory A. Funk, Hemant W. Dandekar
  • Patent number: 5516963
    Abstract: An adsorption arrangement in combination with a catalytic hydrocarbon conversion process suspends non-hydrocarbon materials that act to enhance the operation of the conversion zone by using an adsorption zone arrangement to keep the compounds in recirculation about the reaction zone. The process of this invention is particularly useful for the isomerization of hydrocarbons wherein the adsorption zone arrangement operates to maintain chloride compounds in the reaction zone and to prevent contamination of product streams with the chloride compounds. This invention can be used in combination with traditional adsorptive methods of removing contaminant from feedstreams that enter reaction zones. The invention is also useful for sulfided catalysts where it is desirable to maintain sulfur within the reaction zone and keep sulfur contamination from entering product streams.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: May 14, 1996
    Assignee: UOP
    Inventors: Andrew S. Zarchy, Chien C. Chao
  • Patent number: 5498810
    Abstract: A process combination is disclosed to selectively upgrade naphtha to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy naphtha and isobutane; isobutane and isopentane in the product are obtained in superequilibrium concentrations. The heavy naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: March 12, 1996
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler, Robert J. Schmidt
  • Patent number: 5463155
    Abstract: A process combination is disclosed to selectively upgrade naphtha to obtain an isoparaffin-rich product for blending into gasoline. A naphtha feedstock is subjected to ring cleavage to convert naphthenes to paraffins using a nonacidic catalyst followed by isomerization of paraffins to obtain an increased proportion of isoparaffins.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: October 31, 1995
    Assignee: UOP
    Inventors: Leonid B. Galperin, Jeffery C. Bricker, Jennifer S. Holmgren
  • Patent number: 5453552
    Abstract: An advantageous integration of benzene saturation for a light paraffin containing feedstock in a light paraffin isomerization and adsorption system maintains isomerization conversion while reducing benzene levels. The process improves the efficiency of the isomerization and saturation zones by saturating benzene from a light paraffin containing stream and adsorbing normal hydrocarbons from the saturation zone effluent stream together with normal hydrocarbons from an isomerization zone effluent. The isomerization zone effluent comprises converted hydrocarbons from a light paraffin containing feedstream having a relatively low benzene concentration.
    Type: Grant
    Filed: August 20, 1993
    Date of Patent: September 26, 1995
    Assignee: UOP
    Inventors: Lynn H. Rice, Robert S. Haizmann, Mark S. Turowicz
  • Patent number: 5446230
    Abstract: A catalyst is provided based on chlorinated eta alumina incorporating platinum and germanium and tin, as well as chlorine. This catalyst can be used in a process for the isomerization of a charge rich in normal C.sub.4 -C.sub.6 -paraffins, without hydrogen recycling.
    Type: Grant
    Filed: August 10, 1992
    Date of Patent: August 29, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Christine Travers, Germain Martino
  • Patent number: 5382731
    Abstract: There is provided a process for ring opening of aromatics or cycloaliphatics, as well as isomerization of aliphatics. The feedstream to this process comprises hydrocarbons having 6 carbon atoms. The process involves the use of a recycle stream containing a source of chlorine, such as carbon tetrachloride, and this process involves the use of at least two reactors connected in series. The first reactor comprises a ring opening catalyst and is operated under conditions which particularly promote ring opening. The catalyst in this first reactor may comprise zirconia modified with tungstate and platinum. A second, downstream reactor is operated under conditions to promote isomerization of aliphatics. The catalyst in the second reactor may comprise alumina, platinum and a chloride component. The catalysts in both the first and second reactors are chlorine resistant.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: January 17, 1995
    Assignee: Mobil Oil Corp.
    Inventors: Clarence D. Chang, Roy D. Bastian, Scott Han, Jose G. Santiesteban
  • Patent number: 5349114
    Abstract: A process for shape selective hydrocarbon conversion involves contacting a hydrocarbon feedsteam under conversion conditions with a modified catalytic molecular sieve which has been modified by being pre-selectivated with a first silicon source, then steamed. The feedstream may also contain a second silicon source which is a high efficiency para-xylene selectivating agent. The method for modifying the molecular sieve is also described.
    Type: Grant
    Filed: April 5, 1993
    Date of Patent: September 20, 1994
    Assignee: Mobil Oil Corp.
    Inventors: Rudolph M. Lago, David O. Marler, Sharon B. McCullen
  • Patent number: 5336834
    Abstract: An adsorption arrangement in combination with a catalytic hydrocarbon conversion process suspends non-hydrocarbon materials that act to enhance the operation of the conversion zone by using an adsorption zone arrangement to keep the compounds in recirculation about the reaction zone. The process of this invention is particularly useful for the isomerization of hydrocarbons wherein the adsorption zone arrangement operates to maintain chloride compounds in the reaction zone and to prevent contamination of product streams with the chloride compounds. This invention can be used in combination with traditional adsorptive methods of removing contaminant from feedstreams that enter reaction zones. The invention is also useful for sulfided catalysts where it is desirable to maintain sulfur within the reaction zone and keep sulfur contamination from entering product streams.
    Type: Grant
    Filed: May 20, 1993
    Date of Patent: August 9, 1994
    Assignee: UOP
    Inventors: Andrew S. Zarchy, Chien C. Chao
  • Patent number: 5334792
    Abstract: There is provided a process for ring opening of aromatics and cycloaliphatics, as well as isomerization of aliphatics. The feedstream to this process comprises hydrocarbons having 6 carbon atoms. The process involves the use of at least two reactors connected in series. The first reactor contains a zeolite catalyst and is operated under conditions which particularly promote ring opening. The catalyst in this first reactor may comprise zeolite Beta and platinum. A downstream reactor is operated under conditions to promote isomerization of aliphatics. The catalyst in the second reactor may comprise alumina, platinum and a chloride component.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: August 2, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Kenneth J. Del Rossi, David J. Dovedytis, David J. Esteves, Mohsen N. Harandi, Albin Huss, Jr.
  • Patent number: 5306860
    Abstract: For Hydroisomerizering charges emanating from the Fischer-Tropsch process:a) hydrogen is reacted with the charge in contact with a catalyst 1 in a first reaction zone, the catalyst 1 comprising at least one alumina-based matrix and at least one hydro-dehydrogenation component andb) the effluent from the first reaction zone is put into contact with a catalyst 2 in a second reaction zone, the catalyst 2 comprising:20 to 97% by weight of at least one matrix,3 to 80% by weight of at least one Y zeolite in hydrogen form, the zeolite being characterized by an SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio of over 4.5; a sodium content of less than 1% by weight determined at 1100.degree. C. under calcining conditions; an a.sub.o crystal parameter of the elemental mesh of less than 24.70.times.10.sup.-10 m; and a specific surface area determined by the BET method of over 400 m.sup.2.g.sup.-1, andat least one hydro-dehydrogenation component.
    Type: Grant
    Filed: May 21, 1992
    Date of Patent: April 26, 1994
    Assignee: Institut Francais du Petrole
    Inventors: Pierre-Henri Bigeard, Alain Billon, Pierre Dufresne, Samuel Mignard
  • Patent number: 5294328
    Abstract: A process combination is disclosed to reduce the aromatics content of a key component of gasoline blends. Paraffins contained in catalytic reformates are conserved and upgraded by separation and isomerization, reducing the reforming severity required to achieve a given product octane with concomitant reduction in paraffin aromatization and cracking. Light reformate may be separated and isomerized, and heavier paraffins are separated from the reformate by solvent extraction or adsorption; the recovered heavy paraffins are isomerized, optionally at a substoichiometric hydrogen ratio. A gasoline component having a reduced aromatics content relative to reformate of the same octane number is blended from the net products of the separation and isomerization steps.
    Type: Grant
    Filed: July 31, 1992
    Date of Patent: March 15, 1994
    Assignee: UOP
    Inventors: Robert J. Schmidt, Paula L. Bogdan, J. W. Adriaan Sachtler, Srikantiah Raghuram
  • Patent number: 5290426
    Abstract: A novel, high porosity, high surface area catalyst is disclosed which is useful in wax isomerization processes, especially for the production of high viscosity index, low pour point lubricating oil base stocks or blending stocks. The catalyst contains a catalytically active metal component selected from the group consisting of Group VIB and Group VIII metals, and mixtures thereof, preferably Group VIII metals, and mixtures thereof, more preferably noble Group VIII metals and mixtures thereof, most preferably platinum which catalytically active metal component is present in the range of about 0.01 to 5.0 wt %, and a fluorine content in the range of about 0.01 to about 10.0. The catalyst employs a refractory metal oxide support material, one preferably predominantly (i.e., at least 50 wt %) alumina, most preferably completely alumina, e.g., gamma or eta alumina. The finished catalyst has a porosity, expressed in terms of pore volume, of at least about 0.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: March 1, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, David H. Dumfries, Arthur H. Neal, Kenneth L. Riley
  • Patent number: 5282958
    Abstract: A process is disclosed for dewaxing a hydrocarbon feed to produce a dewaxed lube oil. The feed includes straight chain and slightly branched chain paraffins having 10 or more carbon atoms. In the process the feed is contacted under isomerization conditions with an intermediate pore size molecular sieve having a crystallite size of no more than about 0.5.mu. and pores with a minimum diameter of at least 4.8.ANG. and with a maximum diameter of 7.1.ANG. or less. The catalyst has sufficient acidity so that 0.5 g thereof when positioned in a tube reactor converts at least 50% of hexadecane at 370.degree. C., a pressure of 1200 psig, a hydrogen flow of 160 ml/min, and a feed rate of 1 ml/hr. It also exhibits 40 or greater isomerization selectivity when used under conditions leading to 96% conversion of hexadecane to other chemicals. The catalyst includes at least one Group VIII metal. The contacting is carried out at a pressure from about 15 psig to about 3000 psig.
    Type: Grant
    Filed: July 20, 1990
    Date of Patent: February 1, 1994
    Assignee: Chevron Research and Technology Company
    Inventors: Donald S. Santilli, Mohammad M. Habib, Thomas V. Harris, Stacey I. Zones
  • Patent number: 5233120
    Abstract: The isomerization of C.sub.5 /C.sub.6 n-paraffins to isoparaffins, comprises:a stage (1) of deisopentanizing a charge constituted by a light naphtha,a stage (2) of isomerizing the deisopentanization residue, an adsorption stage (3) carried out by passing the isomerization effluent onto an adsorbent retaining the n-paraffins and alternating with the adsorption stage (3), a desorption stage (4) carried out by lowering the pressure and stripping by means of an isopentane-rich gas flow from the deisopentanization stage.The isomerate freed from the n-paraffins in stage (3) is a product having a high octane number.
    Type: Grant
    Filed: July 17, 1992
    Date of Patent: August 3, 1993
    Assignee: Institut Francais du Petrole
    Inventors: Ari Minkkinen, Larry Mank, Sophie Jullian
  • Patent number: 5135639
    Abstract: A process combination is disclosed to reduce the aromatics content of a key component of gasoline blends. Paraffins contained in catalytic reformates are conserved and upgraded by separation and isomerization, reducing the reforming severity required to achieve a given product octane with concomitant reduction in paraffin aromatization and cracking. Light reformate may be separated and isomerized, and heavier paraffins are separated from the reformate by solvent extraction or adsorption and isomerized. A gasoline component having a reduced aromatics content relative to reformate of the same octane number is blended from the net products of the separation and isomerization steps.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: August 4, 1992
    Assignee: UOP
    Inventors: Robert J. Schmidt, Srikantiah Raghuram
  • Patent number: 5110445
    Abstract: Hydrocarbon lubricants having a high viscosity index (V.I.) and low pour point are produced by hydroisomerizing a waxy lube feed such as slack wax or a waxy gas oil over zeolite beta after which aromatic components are removed by extraction, e.g. with furfural. The raffinate is then dewaxed, preferably by solvent dewaxing to target pour point with a final hydrofinishing step. The hydroisomerization coupled with the aromatics extraction and dewaxing increases the range of crudes that can be processed into high V.I. lubes while maintaining equivalent product qualities. Hydrogen consumption in the process is relatively low.
    Type: Grant
    Filed: June 28, 1990
    Date of Patent: May 5, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Nai Y. Chen, Randall D. Partridge
  • Patent number: 5091074
    Abstract: A process for producing gasoline components from a hydrocarbonaceous feed containing hydrocarbons comprising at least 4 carbon atoms is disclosed. The process comprises the following steps:a) separating feed into a heavy fraction containing hydrocarbons comprising at least 7 carbon atoms, an intermediate fraction containing mainly hydrocarbons comprising 6 or 7 carbon atoms, and a light fraction containing hydrocarbons comprising at most 6 carbon atoms,b) isomerizing at least part of the light fraction,c) combining effluent of step b) with the intermediate fraction, separating off a stream containing normal hydrocarbons and a stream containing branched hydrocarbons, andd) passing at least part of the stream containing normal hydrocarbons to isomerization step b).
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: February 25, 1992
    Assignee: Shell Oil Company
    Inventors: Ian E. Maxwell, Gerrit J. Den Otter
  • Patent number: 5082987
    Abstract: Method and apparatus are described whereby a caustic-treated hydrocarbon feed mixture having a contaminating concentration of water and sulfur compounds is treated by separating the hydrocarbon feed into a first stream and a second stream. The first stream is contacted with an adsorbent material to produce a reactor feed stream having a significant reduction in the concentration of the contaminating water and sulfur compounds. The reactor feed stream is thereafter contacted in the presence of hydrogen under suitable isomerization conditions with an isomerization catalyst to produce an isomerate product.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: January 21, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Michael E. Olbrich, Rebecca L. Jones, Roger W. Fenstermaker
  • Patent number: 5059299
    Abstract: Slack waxes and synthetic wax are isomerized and processed into high viscosity index and very low pour point lube base stock oils and blending stocks by the process comprising the steps of hydrotreating the wax, if necessary, to remove heteroatom and polynuclear aromatic compounds and/or deoiling the wax, if necessary, to an oil content between about 5-20% oil, isomerizing the wax over a Group VI-Group VIII on halogenated refractory metal oxide support catalyst, said isomerization being conducted to a level of conversion such that .about.40% and less unconverted wax remains in the 330.degree. C..sup.+, preferably the 370.degree. C..sup.+ fraction sent to the dewaxer. The total isomerate from the isomerization unit is fractionated into a lube oil fraction boiling at 330.degree. C..sup.+, preferably 370.degree.p9 C..sup.+. This oil fraction is solvent dewaxed preferably using MEK/MIBK at 20/80 ratio and unconverted wax is recycled to the isomerization unit.
    Type: Grant
    Filed: May 11, 1990
    Date of Patent: October 22, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, James D. Bell, Theodore H. West, William A. Wachter, Biddanda U. Achia
  • Patent number: 5043525
    Abstract: A combination isomerization and liquid phase adsorptive separation process is given increased efficiency and cost effectiveness while also improving the product quality by eliminating the columns for the separation of desorbent material from extract and raffinate streams. In this arrangement a C.sub.5 + naphtha stream is split into a heavy hydrocarbon stream comprising normal hexane and higher boiling hydrocarbons and an isomerization zone feedstream comprising isohexane and lower boiling hydrocarbons. The heavy hydrocarbon stream goes directly to a deisohexanizer column. The isomerization zone feedstream is combined with an excess desorbent stream and the extract stream from an adsorptive separation section to form a combined feed. Hydrocarbons in the combined feed are isomerized and after stabilization pass directly into the adsorption section.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: August 27, 1991
    Assignee: UOP
    Inventors: Robert S. Haizmann, Frederick M. Hibbs, Srikantiah Raghuram
  • Patent number: 5026950
    Abstract: A combined process for hydrotreating and isomerizing a C.sub.4 -C.sub.7 feedstock is simplified and made more efficient by the use of a common hydrogen source and low hydrogen to hydrocarbon ratio in both the hydrotreating and isomerization steps of the invention. The method supplies hydrogen to a combined hydrotreatment and isomerization process for the isomerization of a feed stream comprising C.sub.4 -C.sub.7 hydrocarbons. The hydrocarbon feed stream contains sulfur and oxygen contaminants and is combined with a hydrogen-containing stream in an amount that produces a maximum hydrogen to hydrocarbon ratio of 0.9 stdm.sup.3 m.sup.3 (50 SCFB). The hydrotreater feed is contacted in a hydrotreater reactor with a catalyst comprising a Group VIB metal and a Group VIII metal on an alumina support.
    Type: Grant
    Filed: May 29, 1990
    Date of Patent: June 25, 1991
    Assignee: UOP
    Inventors: Robert J. Schmidt, Robert S. Haizmann
  • Patent number: 5003118
    Abstract: The benzene content in a gasoline pool is reduced by a process that hydrogenates a benzene-containing isomerization zone feedstream. In addition to reducing the benzene concentration, the hydrogenation zone is also used to heat the isomerization zone feed and thereby eliminate the need for an isomerization zone heater. The process employs mild saturation conditions which eliminates hydrocracking and prevents the loss of isoparaffin yield. Additional cyclic hydrocarbons produced by the saturation of benzene can be processed in the isomerization zone for ring opening to increase the available paraffinic feedstock or the isomerization zone can be operated to pass the cyclic hydrocarbons through to a product recovery section.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: March 26, 1991
    Assignee: UOP
    Inventors: Chi-Chu D. Low, Visnja A. Gembicki, Robert S. Haizmann
  • Patent number: 4982048
    Abstract: This invention relates to a process for increasing the octane of a refinery gasoline pool by segregating components of a feed stream to increase the value of select components by isomerization and to prevent isomerization of other components already having a high octane value. The preferred feed stream of this process comprises di-branched paraffins, mono-methyl-branched paraffins and normal paraffins. Two or more different separatory sieves are used prior to isomerization. A first separatory shape-selective molecular sieve has a pore size of 4.5.times.4.5A or smaller to adsorb normal paraffins. A second separatory shape-selective molecular sieve has a pore size of 5.5.times.5.5 to 4.5.times.4.5A but excluding 4.5.times.4.5A. These sieves may be situated in a series flow arrangement. Normal paraffins are adsorbed by the first sieve. Mono-methyl-branched paraffins are adsorbed by the second sieve.
    Type: Grant
    Filed: February 24, 1989
    Date of Patent: January 1, 1991
    Assignee: Shell Oil Company
    Inventors: Stephen C. Stem, Wayne E. Evans
  • Patent number: 4956521
    Abstract: This invention relates to processes for separating by adsorption lower octane normal and mono-methyl paraffins from hydrocarbon feeds containing normal, mono-methyl and more highly branched paraffin fractions and isomerizing the normal and mono-methyl paraffins to produce higher octane isopentane and more highly branched paraffins. Adsorbents capable of adsorbing both normal and mono-methyl paraffins are used either alone or in combination with adsorbents capable of adsorbing normal paraffins but not mono-methyl paraffins. Isopentane, although adsorbed along with the mono-methyl paraffins, is preferentially eluted from the adsorber and recovered as an adsorption effluent.
    Type: Grant
    Filed: October 6, 1988
    Date of Patent: September 11, 1990
    Assignee: UOP
    Inventor: Warren K. Volles
  • Patent number: 4943672
    Abstract: Fischer-Tropsch wax is converted to a lubricating oil having a high viscosity index and a low pour point by first hydrotreating the wax under relatively severe conditions and thereafter hydroisomerizing the hydrotreated wax in the presence of hydrogen on a particular fluorided Group VIII metal-on-alumina catalyst. The hydroisomerate is then dewaxed to produce a premium lubricating oil base stock.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: July 24, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Glen P. Hamner, deceased, Heather A. Boucher, William A. Wachter
  • Patent number: 4929794
    Abstract: A combined process for hydrotreating and isomerizing a C.sub.4 -C.sub.7 feedstock is simplified and made more efficient by the use of a common hydrogen source and low hydrogen to hydrocarbon ratio in both the hydrotreating and isomerization steps of the invention. The method supplies hydrogen to a combined hydrotreatment and isomerization process for the isomerization of a feed stream comprising C.sub.4 -C.sub.7 hydrocarbons. The hydrocarbon feed stream contains sulfur and oxygen contaminants and is combined with a hydrogen-containing stream in an amount that produces a maximum hydrogen to hydrocarbon ratio of 0.9 stdm.sup.3 /m.sup.3 (50 SCFB). The hydrotreater feed is contacted in a hydrotreater reactor with a catalyst comprising a Group VIB metal and a Group VII metal on an alumina support.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: May 29, 1990
    Assignee: UOP
    Inventors: Robert J. Schmidt, Robert S. Haizmann
  • Patent number: 4929799
    Abstract: Processing and apparatus are provided for upgrading the octane of a mixed hydrocarbon gasoline feedstock by an integrated adsorption-isomerization process which catalytically isomerizes normal paraffinic hydrocarbons and concentrates non-normals in a product stream, in both the reactor-lead and adsorber-lead configuration.The process includes passing an adsorber feed stream comprising hydrogen as well as hydrocarbons to an adsorbent bed to adsorb normal hydrocarbons. The hydrogen is preferably obtained from a hot hydrogen-containing process stream which is not cooled or separated into component parts prior to forming the adsorber feed. In some embodiments, the hot-hydrogen containing stream comes from reactor effluent and in others from desorption effluent.According to the invention, the only hydrogen which will require cooling and separation from a hydrocarbon component is that which is recycled for desorption. The invention provides improved energy efficiency and can reduce equipment size and complexity.
    Type: Grant
    Filed: February 16, 1989
    Date of Patent: May 29, 1990
    Assignee: UOP
    Inventors: Thomas C. Holcombe, Thomas C. Sager, Warren K. Volles, Andrew S. Zarchy
  • Patent number: 4923588
    Abstract: Waxes, for example waxes obtained from dewaxing hydrocarbon oils, called slack waxes, and synthetic waxes such as those obtained by Fischer-Tropsch processes, are isomerized into oils boiling in the lube oil boiling range, e.g., 370.degree. C.+, by contacting the wax under isomerization conditions and in the presence of hydrogen with an isomerization catalyst comprising a noble Group VIII metal on a small particle size refractory metal oxide support having a low total fluoride content catalyst wherein the total fluoride content is in the range of 0.1 to up to but less than 2 wt % fluoride and the support has a particle diameter of less than 1/16 inch. The small particle size refractory metal oxide support is preferably alumina or material containing alumina, preferably predominantly (i.e., >50%) alumina, more preferably an alumina such as gamma or eta. The most preferred alumina is 1/20 inch alumina trilobes. Noble metal content ranges from 0.1 to 2.0 wt %.
    Type: Grant
    Filed: December 16, 1988
    Date of Patent: May 8, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, David L. Brown
  • Patent number: 4919786
    Abstract: A process for selectively producing middle distillate fuel products from paraffin waxes such as slack wax and Fischer-Tropsch wax by hydroisomerizing the wax to convert 60-95 weight percent per pass of the 700.degree. F..sup.+ fraction contained in said wax. The catalyst employed is a fluorided Group VIII metal-on-alumina catalyst where the fluoride within the catalyst is present predominately as aluminum fluoride hydroxide hydrate. The preferred Group VIII metal is platinum.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: April 24, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Glen P. Hamner, deceased, Willard H. Sawyer, Heather A. Boucher
  • Patent number: 4886935
    Abstract: A hydrocarbon-containing feedstock is desulfurized so as to contain less than 5, and preferably less than 2 ppmw of sulfur, in the first stage of a two-stage process. In the second stage, the feedstock is contacted with an isomerization catalyst useful for promoting n-paraffin isomerization reactions. A dual-function catalyst containing both Group VIII and Group IB metals and effective for simultaneously absorbing sulfur and isomerizing a hydrocarbon feedstock may be employed in the first stage. Alternatively, the dual-function catalyst may be employed in both the first and second stages. Alternatively still, the dual-function catalyst may be used to treat a feedstock containing n-paraffins in a single stage isomerization process.
    Type: Grant
    Filed: August 31, 1988
    Date of Patent: December 12, 1989
    Assignee: Union Oil Company of California
    Inventors: Peter Kokayeff, Suheil F. Abdo
  • Patent number: 4855529
    Abstract: This invention relates to a process for increasing the octane of a refinery gasoline pool by segregating components which are increased in value by isomerization from those which are diminished in octane value by isomerization. The preferred feed stream of this process comprises di-branched paraffins, mono-methyl-branched paraffins and normal paraffins from which mono-methyl-branched and normal paraffins are selectively captured by a shape-selective molecular sieve. The preferred separatory shape-selective molecular sieve has a pore size of 5.5.times.5.5 to 4.5.times.4.5A but excluding 4.5.times.4.5A. Mono-methyl-branched paraffins and normal paraffins are removed from the shape-selective molecular sieve and isomerized in an isomerization zone to form di-methyl branched paraffins. An isomerization zone effluent stream is produced comprising unisomerized normal paraffins, mono-methyl-branched paraffins and di-branched paraffins.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: August 8, 1989
    Assignee: Shell Oil Company
    Inventors: Stephen C. Stem, Wayne E. Evans
  • Patent number: 4834866
    Abstract: A process for splitting a feed containing C.sub.6 cycloparaffins, C.sub.6 normal paraffins, and higher boiling hydrocarbons uses an isomerization zone to open the rings of cyclic hydrocarbons and a single fractionation zone to separate the feed and the isomerization product into a C.sub.7 plus stream that can be used as a feed stream to a reformer and an isoparaffin stream consisting of C.sub.6 and lighter hydrocarbons that is deficient in cyclic hydrocarbons. The process uses a chlorided platinum-alumina catalyst to open rings and isomerize C.sub.6 hydrocarbons. Additional feed streams of normal C.sub.5 paraffins may be added to the process ahead of the isomerization zone to increase the yield of isoparaffin from the isomerization zone. This process offers a simple flow scheme that yields a high volume of high octane isomerate while reducing the quantity of C.sub.6 cyclic hydrocarbons in a reformer feed. Converting the C.sub.
    Type: Grant
    Filed: March 31, 1988
    Date of Patent: May 30, 1989
    Assignee: UOP
    Inventor: Robert J. Schmidt
  • Patent number: 4832819
    Abstract: A process for producing a pumpable syncrude from a Fischer-Tropsch wax by fractionating the wax into relatively low boiling fraction containing oxygenate compounds and a relatively high boiling fraction which is substantially free of oxygenate compounds and thereafter isomerizing/hydrocracking the low boiling fraction in the presence of hydrogen and a fluorided Group VIII metal-on-alumina catalyst. The preferred Group VIII metal is platinum.The pumpable syncrude is thereafter fractionated to produce a low boiling fraction which is thereafter isomerized/hydrocracked in the presence of hydrogen and a fluorided Group VIII metal-on-alumina catalyst to produce upgraded middle distillate fuel products. The preferred catalyst for middle distillate production is a fluorided platinum-on-alumina catalyst where a major portion of the fluoride within the catalyst is present as aluminum fluoride hydroxide hydrate.
    Type: Grant
    Filed: December 18, 1987
    Date of Patent: May 23, 1989
    Assignee: Exxon Research and Engineering Company
    Inventor: Glen P. Hamner
  • Patent number: 4831208
    Abstract: The present invention relates to a chemical process involving a processing step which is sensitive to the presence of at least one component contained within the stream to be processed and to an economical and efficient method of temporarily removing such deleterious component from the stream so as to have the deleterious component by-pass the step which is sensitive to this component using an adsorbent for such removal wherein the adsorbent is regenerated by the product effluent stream leaving the sensitive processing step.
    Type: Grant
    Filed: November 17, 1987
    Date of Patent: May 16, 1989
    Assignee: UOP
    Inventor: Andrew S. Zarchy
  • Patent number: 4831207
    Abstract: The present invention relates to a chemical process involving a processing step which is sensitive to the presence of at least one component contained within the stream to be processed and to an economical and efficient method of temporarily removing such deleterious component from the stream so as to have the deleterious component by-pass the step which is sensitive to this component using an adsorbent for such removal wherein the adsorbent is regenerated by the product effluent stream leaving the sensitive processing step.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: May 16, 1989
    Assignee: Uop
    Inventors: Luke F. O'Keefe, Warren Volles, Andrew S. Zarchy
  • Patent number: 4831206
    Abstract: The present invention relates to a chemical process involving a processing step which is sensitive to the presence of at least one component contained within the stream to be processed. In particular, the present invention relates to an economical and efficient method of integrating the means for removing the deleterious component with the sensitive processing step by the use of a sorbent which is capable of removing the at least one deleterious component at sorption conditions which enables the stream to be in the vapor phase for subsequent introduction to the sensitive processing step which is also carried out in the vapor phase. Most preferably, the sorption conditions are substantially the same as the conditions within the sensitive processing step.
    Type: Grant
    Filed: March 28, 1988
    Date of Patent: May 16, 1989
    Assignee: UOP
    Inventor: Andrew S. Zarchy
  • Patent number: 4827076
    Abstract: A hydrocarbon-containing feedstock is desulfurized so as to contain less than 5, and preferably less than 2 ppmw of sulfur, in the first stage of a two-stage process. In the second stage, the feedstock is contacted with an isomerization catalyst useful for promoting n-paraffin isomerization reactions. A dual-function catalyst effective for simultaneously desulfurizing and isomerizing a hydrocarbon oil may be employed in the first stage. Alternatively, the dual-function catalyst may be employed in both the first and second stages. Alternatively still, the dual-function catalyst may be used to treat a feedstock containing n-paraffins in a single stage isomerization process.
    Type: Grant
    Filed: July 16, 1987
    Date of Patent: May 2, 1989
    Assignee: Union Oil Company of California
    Inventors: Peter Kokayeff, Suheil F. Abdo
  • Patent number: 4804802
    Abstract: This invention relates to a process for the production of an isomerate gasoline blending component where the octane value of the isomerate is increased relative to prior art processes utilizing single separatory sieves. After respective isomerization of feed streams comprising C.sub.6 or C.sub.6.sup.+ normal paraffins, a multiple separatory sieve is located to selectively adsorb unreacted normal paraffins and mono-methyl-branched paraffins from an isomerate product stream. The preferred first separatory sieve is exemplified by a calcium 5A sieve which can adsorb normal paraffins while allowing mono-methyl-branched paraffins and more higly branched paraffin to pass to a second separatory sieve. The second sieve comprises a shape-selective zeolite having a pore size intermediate 5.5.times.5.5 and 4.5.times.4.
    Type: Grant
    Filed: January 25, 1988
    Date of Patent: February 14, 1989
    Assignee: Shell Oil Company
    Inventors: Wayne E. Evans, Stephen C. Stem
  • Patent number: 4795545
    Abstract: A pretreatment process for removal of contaminants from a light hydrocarbon feedstock is presented. The feedstock is passed to a first adsorption zone containing a molecular sieve and thereafter passed to a second adsorption zone containing activated alumina. The process produces a hydrocarbon feedstock substantially free of sulfur compounds, oxygenates, and water. Such a process finds utility as a feed pretreatment step preceding a catalytic isomerization process.
    Type: Grant
    Filed: September 17, 1987
    Date of Patent: January 3, 1989
    Assignee: UOP Inc.
    Inventor: Robert J. Schmidt
  • Patent number: 4764266
    Abstract: An integrated refining scheme for hydroprocessing high boiling fractions such as gas oil and catalytically cracked cycle oils to produce premium quality distillates, especially jet fuels and naphthas suitable for reforming into high octane gasoline. In addition, unconverted, high boiling fractions suitable for processing by conventional refining techniques into high quality, low pour point lube base stocks are obtained. The integrated hydroprocessing comprises a first stage hydrocracking step employing an aromatic selective hydrocracking catalyst based on a large pore size acidic component such as amorphous alumina or silica alumina or a large pore size zeolite such as zeolite X or zeolite Y. The hydrocracking may be operated either in a naphtha directing mode under conditions of moderate to high severity or under conditions of low to moderate severity to produce a relatively higher proportion of product boiling in the middle distillate range.
    Type: Grant
    Filed: February 26, 1987
    Date of Patent: August 16, 1988
    Assignee: Mobil Oil Corporation
    Inventors: Nai Y. Chen, Rene B. LaPierre, Randall D. Partridge, Stephen S. Wong