F Patents (Class 585/749)
  • Patent number: 7488859
    Abstract: A method for producing adamantane includes isomerizing exo-tetrahydrodicyclopentadiene into adamantane in an acidic chloroaluminate ionic liquid composed of aluminum(III) trichloride and a quaternary ammonium halide having a quaternary ammonium cation selected from a group consisting of tetraalkylammonium, dialkylpyridinium, and trialkylimidazolium.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: February 10, 2009
    Assignee: CPC Corporation, Taiwan
    Inventors: Ming-Yu Huang, Jann-Chen Lin, Kun-Hai Lin, Jung-Chung Wu
  • Patent number: 6855857
    Abstract: A process for the production of triptane, said process comprising: isomerising a hydrocarbon feedstock by containing said feedstock with an isomerisation catalyst at a reaction temperature of ?50 to 25° C., and a contact time of 0.01 to 150 hours, such that the triptane selectivety of the isomerisation reaction is at least 5% as a proportion of said hydrocarbon feedstock.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: February 15, 2005
    Assignee: BP Oil International Limited
    Inventors: Willem Marco Boesveld, Paul Greenough
  • Patent number: 6320089
    Abstract: An improved catalyst is disclosed for the conversion of hydrocarbons. The catalyst comprises an alumina support, a Friedel-Crafts metal halide, and a platinum-group metal component, wherein the support comprises primarily eta alumina and a small amount of gamma alumina and has a defined pore-size and acidity characteristics. An isomerization process also is disclosed which is particularly effective for the conversion of C4-C7 alkanes.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: November 20, 2001
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6191333
    Abstract: This invention pertains to the use of a catalyst that contains at least one dioctahedral phyllosilicate 2:1, which is preferably synthesized in a fluoride medium in the presence of HF acid and/or another source of fluoride anions, whose reticulate distance is equal to at least 20×10−10 m (2 nm) and which includes pillars that are based on at least one oxide from the elements of groups IVB, VB, VIB, VIII, IB, IIB, IIA, IVA, or any combination of these oxides, and preferably selected from the group composed of SiO2, Al2O3, TiO2, ZrO2, and V2O5, or any combination of the latter and at least one element from group VIII, in a process for isomerization of a feedstock that contains mainly normal paraffins that carry 5 to 10 carbon atoms per molecule.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: February 20, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Jocelyne Brendle, Ronan Le Dred, Jacques Baron, Daniel Saehr
  • Patent number: 6121186
    Abstract: The invention concerns a catalyst composed of at least one halogen, at least one metal from group VIII and a formed support of gamma alumina and optionally eta alumina, the catalyst being characterized in that the smallest average dimension of said support is in the range 0.8 mm to 2 mm and in that the halogen content is in the range 4.5% to 15% by weight. The invention also concerns the preparation of said catalyst, preferably with chlorination (in the case where the halogen is chlorine) in the presence of CCl.sub.4 or CHCl.sub.3. The invention also concerns the use of the catalyst for the isomerisation of normal C.sub.4 -C.sub.6 paraffins.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: September 19, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Herve Cauffriez, Christine Travers
  • Patent number: 6110859
    Abstract: A catalyst system comprising a first solid material comprising activated carbon and at least one carburized transition metal; and a second solid material comprising at least one halogen component and alumina, and a method of preparing such catalyst system which comprises mixing a first solid material comprising activated carbon and at least one carburized transition metal and a second solid material comprising at least one halogen component and alumina are disclosed. The thus-obtained catalyst system is employed as a catalyst in the isomerization of a hydrocarbon feedstock comprising saturated hydrocarbons.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: August 29, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6090992
    Abstract: A catalyst system comprising alumina, at least one carburized transition metal, and at least one halogen component, and a method of preparing such catalyst system which comprises incorporating at least one transition metal compound into alumina thereby forming a transition metal-alumina compound; carburizing the transition metal-alumina compound thereby forming a carburized transition metal-alumina compound; and incorporating at least one halogen component into the carburized transition metal-alumina compound, are disclosed. The thus-obtained catalyst system is employed as a catalyst in the isomerization of a hydrocarbon feedstock comprising saturated hydrocarbons.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: July 18, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5290426
    Abstract: A novel, high porosity, high surface area catalyst is disclosed which is useful in wax isomerization processes, especially for the production of high viscosity index, low pour point lubricating oil base stocks or blending stocks. The catalyst contains a catalytically active metal component selected from the group consisting of Group VIB and Group VIII metals, and mixtures thereof, preferably Group VIII metals, and mixtures thereof, more preferably noble Group VIII metals and mixtures thereof, most preferably platinum which catalytically active metal component is present in the range of about 0.01 to 5.0 wt %, and a fluorine content in the range of about 0.01 to about 10.0. The catalyst employs a refractory metal oxide support material, one preferably predominantly (i.e., at least 50 wt %) alumina, most preferably completely alumina, e.g., gamma or eta alumina. The finished catalyst has a porosity, expressed in terms of pore volume, of at least about 0.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: March 1, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, David H. Dumfries, Arthur H. Neal, Kenneth L. Riley
  • Patent number: 5212128
    Abstract: The isomerization activity of hydroisomerization catalyst is recovered by subjecting the catalyst to a wash using light aromatic solvents at elevated temperature, e.g. toluene at 300.degree. C. This hot aromatic solvent wash may be preceded by a hot hydrogen containing gas strip. Catalyst activity can be maintained by the continuous or periodic addition of light aromatic solvent or light aromatic containing materials to the feeds sent to the isomerization catalyst.
    Type: Grant
    Filed: November 29, 1991
    Date of Patent: May 18, 1993
    Assignee: Exxon Research & Engineering Company
    Inventors: James J. Schorfheide, Biddanda U. Achia
  • Patent number: 5110778
    Abstract: Boron, aluminum and gallium C.sub.1 -C.sub.18 perfluoroalkane-sulfonates (CF.sub.3 (CF.sub.2).sub.n SO.sub.3).sub.3 M (M=B, A1, Ga; n=0-17) as well as perfluororesin sulfonates such as Nafionates are new, highly effective Friedel-Crafts catalysts. In contrast to volatile aluminum and boron trihalides, the Group III-B perfluoroalkanesulfonates are generally of low or no volatility and, except for boron triflate and some of its homologs, only sparingly soluble incommon organic solvents. This allows their use as solid or supported Friedel-Crafts catalysts of wide utility and scope in continuous heterogenous catalytic processes. At the same time, boron triflate and related lower perfluoroalkanesulfonates are particularly efficient soluble catalysts in solution reactions.
    Type: Grant
    Filed: October 23, 1987
    Date of Patent: May 5, 1992
    Inventor: George A. Olah
  • Patent number: 5059299
    Abstract: Slack waxes and synthetic wax are isomerized and processed into high viscosity index and very low pour point lube base stock oils and blending stocks by the process comprising the steps of hydrotreating the wax, if necessary, to remove heteroatom and polynuclear aromatic compounds and/or deoiling the wax, if necessary, to an oil content between about 5-20% oil, isomerizing the wax over a Group VI-Group VIII on halogenated refractory metal oxide support catalyst, said isomerization being conducted to a level of conversion such that .about.40% and less unconverted wax remains in the 330.degree. C..sup.+, preferably the 370.degree. C..sup.+ fraction sent to the dewaxer. The total isomerate from the isomerization unit is fractionated into a lube oil fraction boiling at 330.degree. C..sup.+, preferably 370.degree.p9 C..sup.+. This oil fraction is solvent dewaxed preferably using MEK/MIBK at 20/80 ratio and unconverted wax is recycled to the isomerization unit.
    Type: Grant
    Filed: May 11, 1990
    Date of Patent: October 22, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, James D. Bell, Theodore H. West, William A. Wachter, Biddanda U. Achia
  • Patent number: 4992159
    Abstract: Waxy distillates, or raffinates containing from as little as 10% wax but more typically about 30% wax or more are upgraded by a process comprising the steps of hydrotreating the waxy oil under conditions which convert less than 20% of the feed into products boiling lower than the feed to reduce the sulfur and nitrogen content of the oil followed by hydroisomerizing the hydrotreated waxy oil to reduce the wax content and increase the viscosity index. This oil having a waxy content of less than 30%, preferably less than 25%, can now be more easily dewaxed using conventional solvent dewaxing procedures. The advantage of the present process resides in the increased yield and/or stability of oil as compared to other upgrading, dewaxing processes which convert wax to light products. The isomerization catalyst is preferably a low fluorine content catalyst, more preferably a noble metal on 0.1 to less than 2 wt % fluorine on alumina catalyst, most preferably a noble Group VIII metal (e.g.
    Type: Grant
    Filed: December 16, 1988
    Date of Patent: February 12, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, David L. Brown
  • Patent number: 4943672
    Abstract: Fischer-Tropsch wax is converted to a lubricating oil having a high viscosity index and a low pour point by first hydrotreating the wax under relatively severe conditions and thereafter hydroisomerizing the hydrotreated wax in the presence of hydrogen on a particular fluorided Group VIII metal-on-alumina catalyst. The hydroisomerate is then dewaxed to produce a premium lubricating oil base stock.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: July 24, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Glen P. Hamner, deceased, Heather A. Boucher, William A. Wachter
  • Patent number: 4937399
    Abstract: The present invention is directed to a process for the catalytic isomerization of waxes to liquid products, particularly to the production of high yields of liquid products boiling in the 370.degree. C..sup.+ range suitable for use as lube oil base stocks or blending stocks, said process employing as the catalyst a material made by depositing a hydrogenation metal component on a refractory metal oxide base, preferably alumina, fluoriding said metal loaded base using aqueous HF and subsequently crushing the fluorided metal loaded base to produce a sized material of 1/32 inch and less its largest cross-sectional dimension. Alternately the catalyst can be made by depositing a hydrogenation metal component on a refractory metal oxide base of 1/32 inch and less across its largest cross-sectional dimension and subsequently fluoriding said sized material using aqueous HF. In either case the catalyst is activated before being used by heating in a hydrogen atmosphere to from 350.degree. C. to 500.degree. C.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: June 26, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: William A. Wachter, Ian A. Cody, Glen P. Hamner, deceased, Biddanda U. Achia
  • Patent number: 4929795
    Abstract: A process is disclosed for the production of lube oil base stocks or blending stocks by the isomerization of waxes over isomerization catalysts containing a hydrogenating metal component on a fluorided alumina or material containing alumina.The present invention is also directed to a wax isomerization process which process employs a catalyst prepared by a process involving depositing a hydrogenation metal on alumina or material containing alumina support, calcining said metal loaded support and fluoriding said metal loaded support.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: May 29, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Glen P. Hamner, deceased, James T. Schorfheide
  • Patent number: 4923588
    Abstract: Waxes, for example waxes obtained from dewaxing hydrocarbon oils, called slack waxes, and synthetic waxes such as those obtained by Fischer-Tropsch processes, are isomerized into oils boiling in the lube oil boiling range, e.g., 370.degree. C.+, by contacting the wax under isomerization conditions and in the presence of hydrogen with an isomerization catalyst comprising a noble Group VIII metal on a small particle size refractory metal oxide support having a low total fluoride content catalyst wherein the total fluoride content is in the range of 0.1 to up to but less than 2 wt % fluoride and the support has a particle diameter of less than 1/16 inch. The small particle size refractory metal oxide support is preferably alumina or material containing alumina, preferably predominantly (i.e., >50%) alumina, more preferably an alumina such as gamma or eta. The most preferred alumina is 1/20 inch alumina trilobes. Noble metal content ranges from 0.1 to 2.0 wt %.
    Type: Grant
    Filed: December 16, 1988
    Date of Patent: May 8, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, David L. Brown
  • Patent number: 4919786
    Abstract: A process for selectively producing middle distillate fuel products from paraffin waxes such as slack wax and Fischer-Tropsch wax by hydroisomerizing the wax to convert 60-95 weight percent per pass of the 700.degree. F..sup.+ fraction contained in said wax. The catalyst employed is a fluorided Group VIII metal-on-alumina catalyst where the fluoride within the catalyst is present predominately as aluminum fluoride hydroxide hydrate. The preferred Group VIII metal is platinum.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: April 24, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Glen P. Hamner, deceased, Willard H. Sawyer, Heather A. Boucher
  • Patent number: 4644090
    Abstract: A fluoride-containing platinum on alumina support isomerization catalyst useful for the isomerization of pentane to isopentane can be prepared by a several step treatment of substantially deactivated chloride-containing platinum on alumina support isomerization catalyst. The conversion steps include washing the chloride-containing catalyst to remove substantially all chloride ions, fluorinating the washed material with an aqueous fluorinating agent, then drying the fluorinated catalyst. Isomerization process employing the catalyst thus prepared is also provided.
    Type: Grant
    Filed: March 6, 1986
    Date of Patent: February 17, 1987
    Assignee: Phillips Petroleum Company
    Inventor: Marvin M. Johnson
  • Patent number: 4612293
    Abstract: A fluoride-containing platinum on alumina support isomerization catalyst useful for the isomerization of pentane to isopentane can be prepared by a several step treatment of substantially deactivated chloride-containing platinum on alumina support isomerization catalyst. The conversion steps include washing the chloride-containing catalyst to remove substantially all chloride ions, fluorinating the washed material with an aqueous florinating agent, then drying the fluorinated catalyst. Isomerization process employing the catalyst thus prepared is also provided.
    Type: Grant
    Filed: September 27, 1985
    Date of Patent: September 16, 1986
    Assignee: Phillips Petroleum Company
    Inventor: Marvin M. Johnson
  • Patent number: 4547474
    Abstract: The present invention relates to supported superacidic catalysts comprising C.sub.4 -C.sub.18, preferentially C.sub.6 to C.sub.12, perfluorinated alkanesulfonic acid absorbed on suitable supports, such as fluorinated alumina, alumina silica and other chalcides having bonded thereto subsequently a Lewis acid compound selected from the higher valency fluorides of the elements of Groups IIA, IIIA, IVB, VA or VIB of the Periodic Table. The invention includes a process for catalytic transformation of hydrocarbons.
    Type: Grant
    Filed: January 3, 1984
    Date of Patent: October 15, 1985
    Assignee: Atochem
    Inventor: George A. Olah
  • Patent number: 4424387
    Abstract: A process is described for paraffin isomerization under strong acid conditions in which an adamantyl carboxylic acid or sulfonic acid is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: March 15, 1983
    Date of Patent: January 3, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventor: George M. Kramer
  • Patent number: 4357483
    Abstract: A process is described for paraffin isomerization under strong acid conditions in which in aminoalkyladamantane is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: August 31, 1981
    Date of Patent: November 2, 1982
    Assignee: Exxon Research and Engineering Co.
    Inventor: George M. Kramer
  • Patent number: 4357484
    Abstract: A process is described for non-cyclic paraffin isomerization under strong acid conditions in which an adamantane hydrocarbon is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: August 31, 1981
    Date of Patent: November 2, 1982
    Assignee: Exxon Research and Engineering Co.
    Inventor: George M. Kramer
  • Patent number: 4304724
    Abstract: The present invention provides a process for making anthraquinone by the cyclization reaction of orthobenzoylbenzoic acid. The process uses as a catalyst a cation-exchange resin formed from a polymer with a polytetrafluoroethylene backbone and sulfonic-acid sidechains.
    Type: Grant
    Filed: December 22, 1980
    Date of Patent: December 8, 1981
    Assignee: The Dow Chemical Company
    Inventor: Michael O. Nutt
  • Patent number: 4201730
    Abstract: A process and a catalyst composition to effect hydrocarbon transformations comprising contacting a hydrocarbon charge with a catalyst comprising a fluorinated graphite having a fluorine to carbon atomic ratio of from about 0.1 to 1 and having bonded thereto from about 5 to 50 percent by weight of the total weight of the catalyst of at least one Lewis acid compound selected from halides of the elements of Group IIA, IIIA, IVB, V or VIB of the Periodic Table. In addition, the catalysts may also have bonded thereto a minor portion of a Bronsted acid and/or a metal of Group IVB or VIII of the Periodic Table.
    Type: Grant
    Filed: February 16, 1978
    Date of Patent: May 6, 1980
    Assignee: Produits Chimiques Ugine Kuhlmann
    Inventor: George A. Olah
  • Patent number: RE33080
    Abstract: A process is described for non-cyclic paraffin isomerization under strong acid conditions in which an adamantane hydrocarbon is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: August 14, 1986
    Date of Patent: October 3, 1989
    Assignee: Exxon Research and Engineering Company
    Inventor: George M. Kramer