Agent Contains N, Carbonyl, Or Dihydroxy Moiety Patents (Class 585/808)
  • Patent number: 8809611
    Abstract: A method for removal and recovery of an organic amine from a hydrocarbon stream containing the amine, including: i) mixing the hydrocarbon stream containing the amine with an aqueous inorganic acid in a volumetric ratio of hydrocarbon stream:aqueous inorganic acid of greater than 1:1-5:1, preferably 1.5:1-4:1, more preferably 3:1, ii) phase separating of hydrocarbon and aqueous phase; iii) removing the hydrocarbon phase and optionally further purifying thereof, iv) optionally recycling at least a part of the hydrocarbon phase obtained in step (iii) into mixing step (i), v) mixing the aqueous phase obtained in step (iii) with an aqueous alkaline solution, vi) phase separating of an aqueous phase and an organic phase formed, vii) removing the organic phase obtained in step (vi) and optionally further purifying thereof.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 19, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Fuad M. Mosa, Shahid Majeed Azam, Sultan Eid Al-Otaibi
  • Patent number: 8536397
    Abstract: A process for the separation of the aromatic compounds benzene, toluene and xylene from an aromatics-containing reformate gasoline and pyrolysis gasoline or a coke-oven light oil or an aromatics-containing refinery stream, in which the aromatics are separated by an extractive distillation uses a novel solvent combination made up of the compounds n,n?-diformyl piperazine or 2,2?-bis-(cyanoethyl)ether in a combination with n-formyl morpholine as a second solvent for extractive distillation so that the solvent combination obtained shows a higher selectivity with regard to the aromatics to be extracted so that a lower solvent load is required. The aromatics-containing feed mixture is first submitted to a pre-distillation so that the obtained fraction has a narrow boiling point range. This fraction is then submitted to an extractive distillation in a first column, in which an aromatics-lean head product of predominantly paraffinic hydrocarbons is obtained as well as an aromatics-enriched bottom product.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: September 17, 2013
    Assignee: UHDE GmbH
    Inventors: Oliver Noll, Helmut Gehrke, Christian Luebbecke, Baerbel Kolbe
  • Patent number: 8362313
    Abstract: In various embodiments, the present disclosure describes processes and systems for recovery of styrene from a styrene-rich feedstock. The processes and systems maintain performance of an extractive solvent used in the styrene recovery. In general, the processes include introducing a styrene-rich feedstock to an extractive distillation column, removing a styrene-rich stream from the extractive distillation column, introducing the styrene-rich stream to a solvent recovery column, removing a styrene-lean stream from the solvent recovery column, separating and treating a portion of the styrene-lean stream to form a treated extractive solvent and recycling the treated extractive solvent. In some embodiments, the treating process also includes steam stripping. Styrene-recovery systems including an extractive distillation column, a solvent recovery column, a solvent treatment apparatus having at least one equilibrium stage and a continuous circulation loop connecting these components are also disclosed herein.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: January 29, 2013
    Assignee: GTC Technology, LP
    Inventors: Zhong Yi Ding, Weihua Jin, Andrei Cimpeanu, Amy Sealey
  • Publication number: 20090105514
    Abstract: Extractive distillation processes whereby water-soluble extractive distillation (ED) solvents are regenerated and recovered employ improved operations of the extractive distillation column (EDC) so that polar hydrocarbons are recovered and purified from mixtures containing polar and less polar hydrocarbons and measurable amounts of hydrocarbons that are heavier than intended feedstock and/or polymers that are generated in the ED process. The improved process can effectively remove and recover the heavy hydrocarbons and/or remove polymer contaminants from the solvent in a closed solvent circulating loop through mild operating conditions with no additional process energy being expended. With the improved process, the overhead reflux of the EDC may be eliminated to further reduce energy consumption and to enhance the loading and performance within the upper portion of the EDC, especially when two liquid phases exists therein.
    Type: Application
    Filed: December 12, 2008
    Publication date: April 23, 2009
    Inventors: Fu-Ming Lee, Tzong-Bin Lin, Jyh-Haur Hwang, Hung-Chung Shen, Kuang-Yeu Wu, Tsung-Min Chiu, Zong-Ying Chen, Tung-Hsiung Kuo, Yu-Ming Wu
  • Patent number: 6960279
    Abstract: Disclosed is the observation that 7-aryl-quinone methides and 4-tert-butylcatechol, when used in combination in a vinyl aromatic monomer to inhibit polymerization,do not inhibit polymerization to the same extend as each would if used separately. Stated another way, a phenomenon has been observed that when these two compounds are used together, they can, to a large extent, render each other unable to inhibit polymerization in a vinyl aromatic monomer. Also disclosed are methods of preventing adverse results of this interaction when undesired and a method of using this interaction to prepare a reactive vinyl aromatic monomer having a concentration of 4-tert-butylcatechol that would otherwise inhibit polymerization. The invention is disclosed to be useful with the production and storage of any vinyl aromatic monomer and is disclosed to be particularly useful with the production and storage of styrene monomer.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: November 1, 2005
    Assignee: Fina Technology, Inc.
    Inventor: James T. Merrill
  • Patent number: 6664433
    Abstract: This invention provides a process for purifying to a high degree of purity aromatic hydrocarbons containing impurities which are difficult to separate by distillation such as sulfur compounds and nitrogen compounds. The process of this invention for purifying aromatic hydrocarbons comprises treating crude aromatic hydrocarbons with a formaldehyde or with a formaldehyde and a phenol in the presence of an acid catalyst to form oligomers, distilling or evaporating the reaction mixture thereby separating the unreacted aromatic hydrocarbons from the oligomers, and crystallizing or washing with an organic solvent the separated aromatic hydrocarbons. In case the target hydrocarbon is naphthalene, it is possible to prepare naphthalene which has a purity of 99.9999 wt % or more, emits little odor, and can be readily flavored by perfumes. Naphthalene of this quality is used to prepare an insecticide of excellent fragrance.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: December 16, 2003
    Assignee: Nippon Steel Chemical Co., Ltd.
    Inventors: Toshihide Senzaki, Takahiro Imamura, Takeshi Takayama, Katsuhide Noguchi
  • Patent number: 6395953
    Abstract: Processes for producing a purified conjugated diene comprise feeding a petroleum fraction containing the conjugated diene to an extractive distillation column, feeding an extraction solvent to the extractive distillation column, and extractive-distilling the conjugated diene from the petroleum fraction containing the conjugated diene in the extractive distillation column. The extraction solvent comprises an amide compound, and a heterocyclic aldehyde, aromatic nitro compound or aromatic aldehyde is contained in the extraction solvent within a range of 0.01 to 10 wt. % based on the weight of the extractive solvent. An oxygen concentration in a gas phase of a distillate discharged from the top of the extraction distillation column is controlled to 10 ppm or lower.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: May 28, 2002
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Takaki Koga, Nobumasa Shimomura, Masanobu Kanauchi
  • Patent number: 6392115
    Abstract: A process for separating a first hydrocarbon, selected from the group consisting of aromatic hydrocarbons, cycloalkanes, cycloalkenes, cycloalkadienes and combinations thereof, from a close-boiling second hydrocarbon, selected from the group consisting of alkanes, alkenes, and alkadienes and combinations thereof, by extractive distillation of a hydrocarbon-containing fluid containing such hydrocarbons by using a solvent containing a 3-alkyl-substituted-2-oxazolidinone. Such aromatic hydrocarbons contain in the range of from about 6 to about 10 carbon atoms per molecule. Such cycloalkanes, cycloalkenes, cycloalkadienes, and close-boiling second hydrocarbon contain in the range of from about 4 to about 10 carbon atoms per molecule.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: May 21, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Khaled A. M. Gasem, Robert L. Robinson, Jr., Christopher J. Schult, Barbara A. Todd
  • Patent number: 6100439
    Abstract: Methods and compositions for improving the extraction of phenols from crude styrene using an aqueous caustic solution are disclosed. It has been discovered that aromatic or alkylammonium tailed multi-polyether headed surfactants and/or quaternary polyamines will improve this extraction, particularly in propylene oxide styrene monomer systems.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: August 8, 2000
    Assignee: BetzDearborn Inc.
    Inventor: Paul R. Hart
  • Patent number: 5972172
    Abstract: 1,2,4-Trimethylbenzene is difficult to separate from 1,2,3-trimethylbenzene by conventional distillation or rectification because of the proximity of their boiling points. 1,2,4-trimethylbenzene can be readily separated from 1,2,3-trimethylbenzene by extractive distillation. Effective agents are 3-nitrotoluene, m-cresol and sulfolane.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: October 26, 1999
    Inventor: Lloyd Berg
  • Patent number: 5877385
    Abstract: Disclosed is a process for recovering styrene from a feedstock containing at least styrene, ethylbenzene, and one or more aromatic or non-aromatic hydrocarbon compounds which includes separating said feedstock into a first stream relatively more concentrated in styrene than said feedstock and a second stream relatively more concentrated in ethylbenzene than said feedstock, recovering styrene from said first stream to produce a styrene product stream, dehydrogenating the ethylbenzene of said second stream to produce additional styrene, and recovering said additional styrene. The feedstock may be separated into said first and second streams by a process selected from the class consisting of extractive distillation, azeotropic distillation, distillation, liquid-liquid extraction, chemical complex formation, membrane separation, and combinations thereof, and the additional styrene may be recovered by recycling it into said feedstock.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: March 2, 1999
    Assignee: HFM International, Inc.
    Inventors: Fu-Ming Lee, Stephen G. Norwood, Joseph C. Gentry
  • Patent number: 5865958
    Abstract: Cyclohexene is separated from a mixture of cyclohexene and at least one of cyclohexane and benzene by subjecting the mixture to extractive distillation in the presence of an extraction solvent the formula: ##STR1## wherein R.sup.1 and R.sup.2 each is a C.sub.1-10 alkyl group or hydrogen, and n is an integer of from 2-4, thereby preparing a fraction rich in cyclohexene.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: February 2, 1999
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yu Kanda, Toshio Uchibori, Takeshi Ishikawa, Akio Tsuboi
  • Patent number: 5849982
    Abstract: An extractive distillation process for separating at least one substituted unsaturated aromatic from a pyrolysis gasoline mixture, containing said aromatic and at least one close-boiling aromatic or non-aromatic hydrocarbon, employing a two part extractive solvent, the first part selected from propylene carbonate, sulfolane (tetramethylene sulfone), methyl carbitol, 1-methyl-2-pyrrolidinone, 2-pyrrolidinone and mixtures thereof, and the second portion consisting of water.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: December 15, 1998
    Assignee: HFM International, Inc.
    Inventors: Fu-Ming Lee, Joseph C. Gentry, Randi Wright Wytcherley
  • Patent number: 5723026
    Abstract: The production of high purity benzene and high purity toluene is obtained by utilizing the initial gas separating column for the treatment of the aromatic containing starting material as a separating column for separating a benzene rich from a toluene rich component. The benzene rich component is subject directly to distillation while the toluene is subject to predistillation to separate high boiling components and only then to extractive distillation is distilled to separate the high purity benzene from the high purity toluene.
    Type: Grant
    Filed: August 18, 1995
    Date of Patent: March 3, 1998
    Assignee: Krupp Koppers GmbH
    Inventors: Martin Leisse, Hans-Jurgen Vollmer, Uwe Ranke
  • Patent number: 5458741
    Abstract: Benzene is difficult to separate from cyclohexane or cyclohexene by conventional distillation or rectification because of the close proximity of their boiling points. Benzene can be readily separated from cyclohexane or cyclohexene by using extractive distillation. Effective agents are: for benzene from cyclohexane, methyl acetoacetate; for benzene from cyclohexene, ethyl acetoacetate.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: October 17, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5453167
    Abstract: p-Xylene cannot be separated from m-xylene by distillation or rectification because of the proximity of their boiling points. p-Xylene can be separated from m-xylene by means of extractive distillation. Effective agents are 3-ethylphenol and isopropyl palmitate. Effective agents for separating mixtures of p-xylene, m-xylene and o-xylene are 2-butoxyethyl acetate and 1,1,1-trichloroethane.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: September 26, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5441608
    Abstract: p-Xylene cannot be separated from m-xylene by distillation or rectification because of the proximity of their boiling points. p-Xylene can be separated from m-xylene by means of extractive distillation. Effective agents are 3-ethylphenol and 1,1,2-trichloroethane. Effective agents for separating mixtures of p-xylene, m-xylene and o-xylene are 2-butoxyethyl acetate and 1,1,1-trichloroethane.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: August 15, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5425855
    Abstract: Ethyl benzene is difficult to separate from p-xylene by conventional distillation or rectification because of the closeness of their boiling points. Ethyl benzene can be readily separated from p-xylene by extractive distillation. An effective agent is 5-methyl-2-hexanone, also called methyl isoamyl ketone.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: June 20, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5399244
    Abstract: Benzene and other aromatics are separated from a stream of mixed hydrocarbons containing both aromatics and non-aromatics by extractive distillation with a solvent system containing dimethyl sulfoxide and optionally a co-solvent, preferably water, followed by distillation stripping of the aromatics from the enriched solvent system, and recycle of the lean solvent system to the extractive distillation step.
    Type: Grant
    Filed: December 6, 1993
    Date of Patent: March 21, 1995
    Assignee: Glitsch, Inc.
    Inventors: Joseph C. Gentry, Lloyd Berg, John C. McIntyre, Randa W. Wytcherley
  • Patent number: 5397441
    Abstract: Ethyl benzene is difficult to separate from o-xylene by conventional distillation or rectification because of the closeness of their boiling points. Ethyl benzene can be readily separated from o-xylene by extractive distillation. Effective agents are phenol, cresols, nitrotoluenes and cyclododecanol.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: March 14, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5238540
    Abstract: The method of obtaining a pure aromatic hydrocarbon from a hydrocarbon starting mixture includes extractively distilling the hydrocarbon starting mixture with a selective solvent; feeding the sump product of the extractive distillation through a first and second auxiliary boilers connected in series to form a cooled sump product at a temperature from 105.degree. to 120.degree. C.
    Type: Grant
    Filed: September 26, 1991
    Date of Patent: August 24, 1993
    Assignee: Krupp Koppers GmbH
    Inventors: Luzian Skatulla, Hans-Christoph Schneider, Hans-Jurgen Vollmer
  • Patent number: 5234553
    Abstract: Process for obtaining a pure hydrocarbon from a starting material containing the hydrocarbon including performing an extractive distillation of the starting material containing the hydrocarbon in an extractive distillation column using a solvent comprising an N-substituted morpholine having substituents with no more than seven carbon atoms; feeding the sump product of the extractive distillation column into a distillation separator column at an entry point in a center portion of the distillation separator column; distilling off the hydrocarbon from the top of the distillation separator column but advantageously returning a minor portion of it as a reflux; drawing off solvent from the sump of the distillation separator column; feeding the solvent drawn off from the sump of the distillation separator column into an evaporator to form a vapor in the evaporator at the pressure, p.sub.2, the pressure p.sub.2 in the evaporator being lower than the pressure p.sub.
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: August 10, 1993
    Assignee: Krupp Koppers GmbH
    Inventors: Martin Kaiping, Udo Klaumunzner, Hans-Christoph Schneider, Hans-Jurgen Vollmer
  • Patent number: 5215629
    Abstract: A process for separating an aromatic from a mixture containing also nonaroma includes distilling off the nonaromatics from the top of the extractive distillation column as a top product, drawing the aromatic and selective solvent from the extractive distillation column and subsequently separating the selective solvent from the aromatic in a separator column. The extractive distillation column is provided with a separate top product distillation column for recovery of a selective solvent residue from the separated nonaromatics. The entry hydrocarbon mixture is heated prior to admission to the extractive distillation column by an indirect heat exchange with selective solvent drawn from the separator column and heated to a temperature of from 130.degree. to 150.degree. C.The heated entry hydrocarbon mixture is depressurized to form a liquid phase and a vapor phase and these phases are separately fed into the extractive distillation column, the vapor phase entry point being below the liquid phase entry point.
    Type: Grant
    Filed: December 5, 1991
    Date of Patent: June 1, 1993
    Assignee: Krupp Koppers GmbH
    Inventors: Luzian Skatulla, Hans-Christoph Schneider, Hans-Jurgen Vollmer
  • Patent number: 5202520
    Abstract: A method is provided for the recovery of aromatic hydrocarbons from the extract phase of aromatic-selective solvent extraction process which involves withdrawing a vapor side-cut fraction containing aromatic hydrocarbons and solvent from a stripping zone and passing the side-cut fraction to a rectification zone which can be refluxed with an aqueous condensate. The benefits of the invention are that the introduction of the rectification zone bottoms to the bottom of the stripping section provides an aromatic product comprising less than 100 wt. ppm. solvent, provides improved stripping over prior schemes, and reduces the flowrate of stripping medium throughout the stripping zone which results in energy saving.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: April 13, 1993
    Assignee: UOP
    Inventor: Paulino Forte
  • Patent number: 5180474
    Abstract: A method of separation of aromates from hydrocarbon mixtures by extractive distillation with a selective solvent, includes introducing a hydrocarbon mixture into the extractive distillation column, distillating out non-aromate components of the introduced hydrocarbon mixture from a head of the extractive distillation column, withdrawing aromates together with a used solvent from a sump of the extractive distillation column and supplying to a driving-out column, separating the aromates from the solvent in the driving-out column, withdrawing the aromates as a head product and the solvent as a sump product from the driving-out column, reintroducing the withdrawn solvent into the extractive distillation column, the withdrawing of the solvent from the driving-out column including withdrawing only part of the solvent with a high temperature required for the complete aromate driving-out from the sump of the driving-out column, while a rest of the solvent with a certain aromate content and a lower temperature is with
    Type: Grant
    Filed: January 27, 1992
    Date of Patent: January 19, 1993
    Assignee: Krupp Koppers GmbH
    Inventors: Luzian Skatulla, Hans-Jurgen Vollmer, Hans-Christoph Schneider
  • Patent number: 5135617
    Abstract: Aromatic hydrocarbons containing 6-10 carbon atoms per molecule are separated from close-boiling olefinic hydrocarbons by extractive distillation employing N-(.beta.-hydroxyethyl)-2-pyrrolidone and/or cyclohexanol as solvent.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: August 4, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Ronald E. Brown, Michael S. Matson
  • Patent number: 5107055
    Abstract: A simultaneous recovery of pure benzene and pure toluene is performed by extractive distillation with N-formylmorpholine and/or other N-substituted morpholines whose substituents contain not more than seven C-atoms as a solvent. From the entry product by predistillation, a benzene fraction boiling in the region between 75.degree. and 85.degree. C. and a toluene fraction boiling in the region between 99.degree. and 111.degree. C. is separated. The benzene fraction is supplied in the lower part, and the toluene fraction is supplied in the upper part of the extractive distillation column separated by a chimney plate into two parts.
    Type: Grant
    Filed: December 5, 1990
    Date of Patent: April 21, 1992
    Assignee: Krupp Koppers GmbH
    Inventors: Udo Klaumunzner, Hans-Jurgen Vollmer
  • Patent number: 5073669
    Abstract: Methods are provided for the recovery of aromatic hydrocarbons from the extract phase of aromatic-selective solvent extraction processes which involve withdrawing a vapor side-cut fraction containing aromatic hydrocarbons and solvents from a stripping zone and passing the side-cut fraction to a rectification zone which can be refluxed with aromatic hydrocarbons or aqueous condensate.
    Type: Grant
    Filed: March 9, 1989
    Date of Patent: December 17, 1991
    Assignee: UOP
    Inventor: Paulino Forte
  • Patent number: 4997547
    Abstract: In the method for the production of an aromate concentrate suitable for use as blending component for gasifier fuel, feed hydrocarbon mixtures having boiling ranges substantially between 40.degree. and 170.degree. C., are subjected, without any previous separation into individual fractions, to an extractive distillation employing N-substituted morpholine, substituents of which display no more than seven C-atoms, as selective solvent. Herewith, the lower boiling non-aromates with a boiling range up to about 105.degree. C., practically completely, and most of the higher boiling non-aromates with a boiling range between about 105.degree. and 160.degree. C., are recovered as raffinate, whereas the aromates, which are to be employed in whole or in part as blending component, come down in the extract of the extractive distillation.
    Type: Grant
    Filed: February 21, 1989
    Date of Patent: March 5, 1991
    Assignee: Krupp Koppers GmbH
    Inventors: Gerd Emmrich, Bernhard Firnhaber, Martin Schulze
  • Patent number: 4959128
    Abstract: Ethyl benzene cannot be easily removed from styrene by distillation because of the closeness of their boiling points. Ethyl benzene can be readily separated from styrene by means of extractive distillation using certain nitrogenous organic compounds. Typical effective agents are adiponitrile, methyl glutaronitrile and nitrobenzene.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: September 25, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4933499
    Abstract: The invention relates to a process for the purification of alkenyl aromatic compounds which contain benzaldehyde as an impurity. This process comprises steps for contacting a benaldehyde-containing alkenyl aromatic compound with a bisulphite treating agent, and separating the resulting benzaldehyde-bisulphite addition product from the alkenyl aromatic compound. In certain preferred embodiments, the treating agent is a modified anion-exchange resin containing bound bisulphite ions. Optionally, the process then further comprises a step for recovering the benzaldehyde from the resin addition product by contact with an aqueous sodium carbonate solution or by steam distillation.
    Type: Grant
    Filed: February 27, 1989
    Date of Patent: June 12, 1990
    Assignee: Shell Oil Company
    Inventors: Paul A. M. Grotenhuis, Brian L. Goodall
  • Patent number: 4925535
    Abstract: The process for production of an aromate concentrate for use as a blending component for gasification fuel includes subjecting another feed hydrocarbon mixture to an extractive distillation using N-substituted morpholines as selective solvent in a extractive distillation column. Low-boiling non-aromates with a boiling range up to about 105.degree. C. practically completely and higher-boiling non-aromates with a boiling range between about 105.degree. and 160.degree. C. to a substantial extent are discharged as a raffinate from the top of the extractive distillation column. The extract bottoms from the extractive distillation are fed to a solvent stripping column where the solvent is at least partially recovered from other hydrocarbons. To eliminate condensation and polymerization products due to components with a boiling point over 170.degree. C.
    Type: Grant
    Filed: August 8, 1988
    Date of Patent: May 15, 1990
    Assignee: Krupp Koppers GmbH
    Inventors: Gerhard Preusser, Gerd Emmrich, Martin Schulze
  • Patent number: 4904346
    Abstract: Meta and para-diisopropyl benzenes cannot be easily separated from each other by distillation because of the closeness of their vapor pressures. m-Diisopropyl benzene can be readily removed from p-diisopropyl benzene by extractive distillation using certain high boiling organic compounds. Effective extractive agents are diphenyl ether, dimethyl adipate, diisononyl adipate, tributyl phosphate and ethylene glycol phenyl ether.
    Type: Grant
    Filed: September 15, 1989
    Date of Patent: February 27, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4836896
    Abstract: Meta- and para-diisopropylbenzenes cannot be easily separated from each other by distillation because of the closeness of their vapor pressures. m-Diisopropylbenzene can be readily removed from p-diispropylbenzene by azeotropic distillation using acetophenone. The acetophenone - m-diisopropylbenzene azeotrope can be separated by solvent extraction with propylene glycol to remove the acetophenone and the propylene glycol - acetophenone mixture is readily separated from each other by rectification.
    Type: Grant
    Filed: January 9, 1989
    Date of Patent: June 6, 1989
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4776927
    Abstract: A process is disclosed for the separation of aromates from hydrocarbon mixtures of optional aromate content through extractive distillation using N-substituted morpholine displaying substituents having no more than 7 C-atoms as selective solvent. Part of the solvent is delivered to the uppermost plate of the extractive distillation column and the remainder of the solvent, preferably amounting to between 10 and 40% by weight, is introduced into the extractive distillation column in at least two partial streams onto plates above the inlet for the hydrocarbon mixture. The temperature of the respective solvent partial streams is adjusted to neither exceed the temperature of the corresponding delivery plates nor fall below this temperature by more than 10.degree. C.
    Type: Grant
    Filed: January 27, 1987
    Date of Patent: October 11, 1988
    Assignee: Krupp=Koppers GmbH
    Inventors: Gerd Emmrich, Gerhard Preusser
  • Patent number: 4676875
    Abstract: m-Xylene is difficult to separate from o-xylene by conventional rectification or distillation because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is dimethylformamide; dimethylformamide and 1,4-butanediol; dimethylformamide, adiponitrile and dihexyl phthalate.
    Type: Grant
    Filed: January 6, 1986
    Date of Patent: June 30, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4664783
    Abstract: A method is disclosed for the separation of aromates from hydrocarbon mixtures employed as entry products, by means of extractive distillation, employing as selective solvent N-substituted morpholine, the substitutions of which display no more than 7 C atoms. The raffinate produced as top product of the extractive distillation is subjected to a distillation, whereby the produced sump product with a solvent content between 20-75% by weight and a temperature between 20.degree.-70.degree. C., is led into a separation container and there separated into a heavy and a light phase. The heavy phase is then recycled into the extractive distillation column, whereas the light phase is recycled into the raffinate distillation column.
    Type: Grant
    Filed: March 5, 1985
    Date of Patent: May 12, 1987
    Assignee: Krupp-Koppers GmbH
    Inventors: Gerhard Preusser, Martin Schulze
  • Patent number: 4586986
    Abstract: Disclosed is a method for recovering pure aromatic substances from a mixture of hydrocarbons containing both aromatic and non-aromatic fractions. The input mixture is fed through an extractive stage provided with a preliminary distillation column. In the preliminary stage the aromatics-containing product is treated at a pressure up to 20 bar and a temperature up to 300.degree. C. The pressure is adjusted to a value at which the operational temperature of the preliminary stage is higher than the pressure and temperature in the extractive stage and the heat of the vapors discharged from the preliminary stage is used for heating the extractive stage.
    Type: Grant
    Filed: September 18, 1984
    Date of Patent: May 6, 1986
    Assignee: Krupp-Koppers GmbH
    Inventors: Gerhard Preusser, Martin Schulze, Gerd Emmrich, Hans-Christoph Schneider
  • Patent number: 4421607
    Abstract: A process of extractive distillation for separating components easily soluble in a polar solvent from at least two hydrocarbon mixtures having different contents of the easily soluble components by extractive distillation using said polar solvent, which comprises feeding a hydrocarbon mixture containing a larger amount of the easily soluble components, as a gas, into the middle or lower portion of an extractive distillation column, feeding a hydrocarbon mixture containing a smaller amount of the easily soluble components, as a liquid, to the upper portion of the extractive distillation column, and subjecting them to extractive distillation.
    Type: Grant
    Filed: February 1, 1983
    Date of Patent: December 20, 1983
    Assignee: Nippon Zeon Co. Ltd.
    Inventor: Shunichiro Ogura
  • Patent number: 4371428
    Abstract: Vinyltoluene is separated from close-boiling, olefinically unsaturated alkylaromatic compounds by extractive distillation. For example, vinyltoluene is separated from cis-.beta.-methylstyrene, and from .alpha.-methylstyrene by extractive distillation using .gamma.-butyrolactone as the extracting agent.
    Type: Grant
    Filed: November 24, 1980
    Date of Patent: February 1, 1983
    Assignee: Gulf Research & Development Company
    Inventors: John C. Montagna, Robert D. Galli, John Freel
  • Patent number: 4341600
    Abstract: A process for distilling vinyltoluene comprising subjecting vinyltoluene to distillation conditions in the presence of a synergistic polymerization inhibiting mixture of N-nitrosodiphenylamine (NDPA) and dinitro-para-cresol (DNPC). Preferably from about 100 to about 300 ppm by weight NDPA and about 300 to about 700 ppm by weight DNPC are dissolved in the crude vinyltoluene and the resulting solution is vacuum distilled.
    Type: Grant
    Filed: April 6, 1981
    Date of Patent: July 27, 1982
    Assignee: Cosden Technology, Inc.
    Inventor: James M. Watson
  • Patent number: 4316796
    Abstract: Dienic and/or aromatic hydrocarbons are separated from hydrocarbon fractions employing known liquid-liquid extraction and/or extractive distillation procedures and at least one sulfonamide solvent conforming to the general formula ##STR1## wherein R', R" and 4'" can be linear or branched, saturated or unsaturated, aliphatic groups possessing from 1 to 18 carbon atoms, wherein two or three of groups R', R" and R'" can be identical, wherein one of the groups R" and R'" can be replaced with a hydrogen atom, and wherein at least one of groups R', R" and R'" is unsaturated.
    Type: Grant
    Filed: September 12, 1980
    Date of Patent: February 23, 1982
    Assignees: Compagnie Francaise de Raffinage, Agence Nationale de Valorisation de la Recherche (ANVAR)
    Inventors: Martial Atlani, Roben Loutaty, Claude Wakselman, Charles Yacono
  • Patent number: 4306945
    Abstract: A method for the removal of aromatic hydrocarbon from mixtures containing non-aromatic hydrocarbon by liquid-liquid extraction and extractive distillation is described. Isoenthalpic expansion of the rectification column bottom solvent stream and addition of water to the selective solvent can be used to reduce heat consumption.
    Type: Grant
    Filed: July 10, 1978
    Date of Patent: December 22, 1981
    Assignee: Snamprogetti, S.p.A.
    Inventors: Romolo Montanari, Sergio Antonelli
  • Patent number: 4299667
    Abstract: A process for recovering pure benzene from hydrocarbon mixtures containing the same and non-aromatic compounds which are gaseous and difficultly condensible is described in which the feedstock is fed to an initial distillation column operated at atmospheric or sub-atmospheric pressure. Overhead comprising benzene and non-aromatics is obtained and a portion thereof condensed. The condensible material is in part returned to the distillation column and in part subjected to extractive distillation to recover pure benzene. Those components which did not condense, i.e. the non-condensible and difficultly condensible components and entrained aromatics are fed to a reflux vessel such as a scrubber, stripper, or the like for recovery of any benzene or other valuable components which might be soluble in a selective solvent and used for such recovery. The selective solvent can be the same solvent used for the extractive distillation.
    Type: Grant
    Filed: July 28, 1980
    Date of Patent: November 10, 1981
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Helmut Klein, Kamar P. John
  • Patent number: 4280881
    Abstract: Indene is separated from close boiling, olefinically unsaturated alkylaromatic compounds by extractive distillation. For example, indene is separated from trans-.beta.-methylstyrene, and from 2-, 3- and 4-methylstyrene by extractive distillation using 1-methyl-2-pyrrolidone as the extracting agent.
    Type: Grant
    Filed: July 2, 1980
    Date of Patent: July 28, 1981
    Assignee: Gulf Research & Development Company
    Inventors: John C. Montagna, Robert D. Galli, John Freel
  • Patent number: 4277314
    Abstract: A process for isolating 1,3-butadiene by means of a selective solvent from a C.sub.4 -hydrocarbon mixture which contains 1,3-butadiene, propyne, hydrocarbons which are more soluble than 1,3-butadiene in the selective solvent and hydrocarbons which are less soluble than 1,3-butadiene in the selective solvent, wherein the C.sub.4 -hydrocarbon mixture is separated, using one or more extractive distillation zones, into a distillate containing the less soluble hydrocarbons, a stream of 1,3-butadiene and a stream containing the more soluble hydrocarbons, and the propyne is separated off either by distillation of the C.sub.
    Type: Grant
    Filed: May 18, 1979
    Date of Patent: July 7, 1981
    Assignee: BASF Aktiengesellschaft
    Inventors: Alfred Lindner, Klaus Volkamer, Ulrich Wagner
  • Patent number: 4252615
    Abstract: Disclosed is a process for the distillation of readily polymerizable vinyl aromatic compounds and a new polymerization inhibitor therefor. The process comprises subjecting a vinyl aromatic compound to elevated temperatures in a distillation system in the presence of a new polymerization inhibitor comprising 2,6-dinitro-p-cresol. Also disclosed is a distillation method and apparatus for use with this inhibitor.
    Type: Grant
    Filed: July 18, 1978
    Date of Patent: February 24, 1981
    Assignee: Cosden Technology, Inc.
    Inventor: James M. Watson
  • Patent number: 4237330
    Abstract: A process for isolating butadiene by means of a selective solvent from a C.sub.4 -hydrocarbon mixture which contains butadiene, small amounts of oxygen, hydrocarbons which are more soluble than butadiene in the selective solvent and hydrocarbons which are less soluble than butadiene in the selective solvent, wherein the C.sub.4 -hydrocarbon mixture is separated, by extractive distillation, into a distillate containing the less soluble hydrocarbons, a stream of butadiene and a stream containing the more soluble hydrocarbons, a mixture of oxygen and C.sub.4 -hydrocarbons is separated out of the C.sub.4 -hydrocarbon mixture in a distillation zone upstream of the extractive distillation, and the bottom product is fed to the extractive distillation.
    Type: Grant
    Filed: May 31, 1979
    Date of Patent: December 2, 1980
    Assignee: BASF Aktiengesellschaft
    Inventors: Alfred Lindner, Klaus Volkamer, Ulrich Wagner
  • Patent number: 4201633
    Abstract: A method for separating benzene, toluene, xylenes and higher aromatics from admixtures containing them is disclosed, said method being based on the use of a solvent which is a 5-atom cyclic derivative of urea in which at least one of the nitrogen atoms is bound to an alkyl.Representative of this class of selective solvents is N,N'-dimethyl ethylene urea.Procedure details and examples are given.
    Type: Grant
    Filed: May 9, 1978
    Date of Patent: May 6, 1980
    Assignee: Snamprogetti S.p.A.
    Inventors: Giancarlo Paret, Alessandro Vetere, Giuseppe Iori