With Treatment Of Mother Liquor After Crystal Separation Patents (Class 585/814)
  • Patent number: 8962906
    Abstract: A filter column apparatus comprising a filtration zone and a reslurry zone. These zones are separated by a barrier wall or are in substantial cooperation with each other. Also disclosed is a process for separating at least a portion of at least one substantially solid component from a solid-liquid stream comprising the substantially solid component and at least one substantially liquid component. Also disclosed is a process for forming a substantially solids containing packed bed. Also disclosed is a process for purifying paraxylene in a filtration zone.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 24, 2015
    Assignee: BP Corporation North America Inc.
    Inventors: Richard A Wilsak, Scott A Roberts, Dean B. Comstock, Ronald D Stefanski
  • Patent number: 8558048
    Abstract: This invention relates to methods for the stabilization, storage and delivery of biologically active macromolecules, such as proteins, peptides and nucleic acids. In particular, this invention relates to protein or nucleic acid crystals, formulations and compositions comprising them. Methods are provided for the crystallization of proteins and nucleic acids and for the preparation of stabilized protein or nucleic acid crystals for use in dry or slurry formulations. The present invention is further directed to encapsulating proteins, glycoproteins, enzymes, antibodies, hormones and peptide crystals or crystal formulations into compositions for biological delivery to humans and animals. According to this invention, protein crystals or crystal formulations are encapsulated within a matrix comprising a polymeric carrier to form a composition.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: October 15, 2013
    Assignee: Althea Technologies, Inc.
    Inventors: Alexey L. Margolin, Nazar K. Khalaf, Nancy L. St. Clair, Scott L. Rakestraw, Bhami C. Shenoy
  • Patent number: 8530716
    Abstract: Processes for separating a solid from a solids-liquids slurry under conditions that prevent ingress of molecular oxygen are advantageous where the presence of molecular oxygen would otherwise reduce efficiencies, contribute to limited product yields, and potentially compromise safe operation of the process or downstream unit operations. Among the various embodiments disclosed herein, is a process utilizing filter columns as solid-liquid separators in combination with crystallization and reslurry unit operations to recover a product component from an initial feed mixture of miscible components. Embodiments of the disclosed processes may include the separation and purification of a product component using a crystallizer in series with a filter column followed by a chemical reactor, using a reslurry drum in series with a filter column, and using a combination of crystallizers and/or reslurry drums in series with at least one filter column.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: September 10, 2013
    Assignee: BP Corporation North America Inc.
    Inventors: Richard A. Wilsak, Scott A. Roberts, Rose M. Janulis
  • Patent number: 8431763
    Abstract: Disclosed is a method for separating aromatic compounds using a simulated moving bed adsorptive chromatography, comprising a sulfolan process that is a non-aromatic compound removing process, a benzene/toluene fractionation process, an aromatic compound fractionation process, a selective toluene disproportionation process, a transalkylation process, a simulated moving bed para-xylene separation process and a xylene isomerization process, wherein the method is characterized by further comprising a simulated moving bed xylene mixture pre-treatment process and an additional xylene isomerization process. The separation method of aromatic compounds according to the present invention can make significant improvement in para-xylene and benzene production in the overall process, as compared to the conventional aromatic compound separation process.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 30, 2013
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Jin-Suk Lee, Hyun-Chul Kim
  • Patent number: 8232442
    Abstract: Disclosed is a method for separating aromatic compounds using a simulated moving bed adsorptive chromatography and a crystallization process, comprising a sulfolan process that is a non-aromatic compound removing process, a benzene/toluene fractionation process, an aromatic compound fractionation process, a selective toluene disproportionation process, a transalkylation process, a crystallization process for para-xylene separation, a simulated moving bed para-xylene separation process and a xylene isomerization process, wherein the method is characterized by further comprising a simulated moving bed xylene mixture pre-treatment process and an additional xylene isomerization process. The separation method of aromatic compounds according to the present invention can make significant improvement in para-xylene and benzene production in the overall process, as compared to the conventional aromatic compound separation process.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 31, 2012
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Jin-Suk Lee, Hyun-Chul Kim
  • Patent number: 8211319
    Abstract: A process for separating solids from liquids in a filtration zone defined by a higher concentration zone and a lower concentration zone separated by a filter. The process includes the steps of directing a slurry feed comprising a liquid and solids into the higher concentration zone, directing a displacement fluid to the higher concentration zone and passing at least a portion of the liquid through a filter to the filtrate zone, producing a filtrate.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: July 3, 2012
    Assignee: BP Corporation North America Inc.
    Inventors: Richard A. Wilsak, Scott A. Roberts, Dean B. Comstock, Ronald Stefanski, George A. Huff
  • Patent number: 8030533
    Abstract: A process for the combined production of para-xylene and benzene comprises: separating a first feed, by adsorption in a simulated moving bed SMB, to produce an extract E rich in para-xylene and at least one raffinate R which is depleted in para-xylene; converting a secondary feed of toluene by selective disproportionation to produce benzene and xylenes; a) at the start of the cycle, producing a supplemental quantity of para-xylene in a crystallization unit supplied with the xylenes from the disproportionation; b) at the end of the cycle, when the adsorbant has aged: dividing the distilled extract E into a first fraction Ea and a complementary second fraction Eb; replacing the feed to the initial crystallization by the stream Ea; and recycling the xylenes from the disproportionation to the SMB. The invention enables para-xylene and benzene production to be maintained despite ageing of the SMB absorbent.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: October 4, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Gerard Hotier, Kim Seo Il
  • Patent number: 7812206
    Abstract: A filter column apparatus comprising a filtration zone and a reslurry zone. These zones are separated by a barrier wall or are in substantial cooperation with each other. Also disclosed is a process for separating at least a portion of at least one substantially solid component from a solid-liquid stream comprising the substantially solid component and at least one substantially liquid component. Also disclosed is a process for forming a substantially solids containing packed bed. Also disclosed is a process for purifying paraxylene in a filtration zone.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: October 12, 2010
    Assignee: BP Corporation North America Inc.
    Inventors: Richard A. Wilsak, Scott A. Roberts, Dean B. Comstock, Ronald D. Stefanski
  • Patent number: 7795489
    Abstract: High-purity 2,6-dimethylnaphthalene is prepared by (1) subjecting a dimethylnaphthalene isomer mixture rich in 1,5-dimethylnaphthalene, high boiling point materials, unreacted 1,5-dimethyltetralin, and low boiling point materials, which are produced from a dehydrogenation reaction of 1,5-dimethyltetralin, to separation, using a distillation column; subjecting the dimethylnaphthalene mixture separated by the distillation column to liquid state isomerization in the presence of an isomerization catalyst; (3) a first crystallization (melt crystallization process) by cooling the product of liquid state isomerization with a refrigerant without a solvent to form crystals; and (4) a second crystallization (solution crystallization process) of mixing the crystals of the first crystallization step with a solvent to form crystals.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 14, 2010
    Assignee: Hyosung Corporation
    Inventors: Yang-Ho Chenon, Young-Gyo Choi, Ik-Hyun Kwon
  • Patent number: 7605296
    Abstract: A method for separating and purifying 2,6-dimethylnaphthalene, is provided in which 2,6-dimethylnaphthalene of high purity is obtained from a mixture of dimethylnaphthalene isomers with a high yield, by means of a combined process of column melt crystallization and sweating operation.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: October 20, 2009
    Assignee: Hyosung Corporation
    Inventors: Yang-Ho Chenon, Young-Gyo Choi
  • Patent number: 6894202
    Abstract: An object of the present invention is to provide a method for manufacturing 2,6-DMN, in which even when a mixture containing DMN isomers which includes 5 wt % or more of 2,7-DMN is used, a highly pure 2,6-DMN can be obtained. The method for manufacturing the highly pure 2,6-dimethylnaphthalene of the present invention comprises performing cooling crystallization of a mixture containing dimethylnaphthalenes which includes 2,6-dimethylnaphthalene, performing solid-liquid separation to obtain a solid component, and washing the solid component using a solvent, wherein the solid-liquid separation performed after the cooling crystallization includes press filtration.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: May 17, 2005
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Yamamoto, Seiichi Yamamoto, Takeharu Tanaka, Masahiro Motoyuki, Shingo Yoshida
  • Patent number: 6737558
    Abstract: Process for the separation of 2,6-dimethylnaphthalene from mixtures containing it, comprising the following operations: crystallization by the addition of a solvent and cooling of the mixture to a temperature higher than the formation value of the first eutectic; removal of the mother liquor by repeated washings; dissolution of the solid obtained; crystallization by cooling; filtration.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: May 18, 2004
    Assignees: ENICHEM S.p.A., ENI S.p.A.
    Inventors: Renzo Bignazzi, Gianni Pandolfi
  • Patent number: 6600083
    Abstract: A pressure swing adsorption process to separate para-xylene and ethylbenzene from C8 aromatics which uses a para-selective, non-acidic, medium pore molecular sieve of the MFI structure type and is operated isothermally in the vapor phase at elevated temperatures and pressures is integrated with crystallization to produce para-xylene product. A fixed bed of adsorbent is saturated with pX and EB, which are preferentially adsorbed, the feed is stopped, and lowering the partial pressure desorbs the pX and EB. The process effluent, which is rich in pX and EB, is crystallized to obtain para-xylene product.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: July 29, 2003
    Assignee: BP Corporation North America Inc.
    Inventors: Ruth Ann Doyle, Jeffrey T. Miller, Richard A. Wilsak, Scott A. Roberts, Giorgio Zoia
  • Patent number: 6525235
    Abstract: The present invention provides a method for manufacturing a highly pure 2,6-dimethylnaphthalene having a purity of 99% or more even when a mixture of dimethylnaphthalene isomers containing 5 wt % or more of 2,7-dimethylnaphthalate is used as a feedstock. The method for manufacturing 2,6-dimethylnaphthalene comprises a step of performing crystallization and solid-liquid separation of a liquid primarily containing dimethylnaphthalene isomers so that the liquid is separated into a cake containing the dimethylnaphthalene isomers and a mother liquor, and a step of performing separation/purification of the cake. In the method described above, the crystallization and the solid-liquid separation are performed under the condition in which the ratio of the content of 2,6-dimethylnaphthalene in the mother liquor to that of 2,7-dimethylnaphthalene therein is not less than 1 so that the content of 2,6-dimethylnaphthalene in the cake is 60% or more and that the content of 2,7-dimethylnaphthalene therein is 6.5% or less.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: February 25, 2003
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shingo Yoshida, Masahiro Motoyuki, Tomoki Uemura, Koji Yamamoto
  • Patent number: 6399846
    Abstract: A process for production of paraxylene from a charge containing C7-C9 aromatic hydrocarbons in which a first fraction is enriched to at least 30% weight with paraxylene and this fraction is purified by at least one high-temperature crystallization in at least one crystallization zone. Said first fraction is crystallized in a crystallization zone at high temperature T1 and advantageously between +10 and −25° C., crystals in suspension in a mother liquor are recovered, the crystals are separated from the mother liquor in at least a first separation zone, the crystals obtained are partially melted in at least a zone for partial melting and a suspension of crystals is recovered, the crystals in suspension are separated and washed in at least one separation and washing zone and pure paraxylene crystals and washing liquor are recovered, and pure crystals are optionally completely melted and a liquid stream of melted paraxylene is collected.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: June 4, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Stuart R MacPherson, Paul Mikitenko
  • Patent number: 6147272
    Abstract: A process for producing paraxylene of very high purity from a charge containing a mixture of aromatic hydrocarbons having 7 to 9 carbon atoms in which at least a portion of the charge is made to circulate in a zone suited to enrich a first fraction of paraxylene and at least a portion of said first fraction is purified by at least one high-temperature crystallization in at least one crystallization zone, the process being characterized in that said first paraxylene-enriched fraction is crystallized in a crystallization zone comprising at least two crystallization stages (50,70) at high temperature, and advantageously between +10 and -25 .degree. C.The paraxylene enriching zone can be a crystallization at very low temperature, a selective adsorption or a toluene disproportionation zone.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: November 14, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Paul Mikitenko, Stuart R MacPherson
  • Patent number: 6111161
    Abstract: A process for production of paraxylene from a charge containing C7-C9 aromatic hydrocarbons in which a first fraction is enriched to at least 30% weight with paraxylene and this fraction is purified by at least one high-temperature crystallization in at least one crystallization zone. Said first fraction is crystallized in a crystallization zone at high temperature T1 and advantageously between +10 and -25.degree. C., crystals in suspension in a mother liquor are recovered, the crystals are separated from the mother liquor in at least a first separation zone, the crystals obtained are partially melted in at least a zone for partial melting and a suspension of crystals is recovered, the crystals in suspension are separated and washed in at least one separation and washing zone and pure paraxylene crystals and washing liquor are recovered, and pure crystals are optionally completely melted and a liquid stream of melted paraxylene is collected.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: August 29, 2000
    Assignee: Institute Francais du Petrole
    Inventors: Stuart R MacPherson, Paul Mikitenko
  • Patent number: 6072098
    Abstract: There are disclosed an industrially advantageous process for efficiently producing highly pure 2,6-dimethylnaphthalene (DMN) in high yield from a mixture of DMN by carrying out in turn, the steps of isomerizing a mixture of DMN in the presence of a catalyst; crystallizing the isomerization reaction product in the presence of a solvent (e.g.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: June 6, 2000
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Makoto Takagawa, Ryusuke Shigematsu
  • Patent number: 6063978
    Abstract: A process for separating paraxylene at very high purity from a charge of xylene isomers, comprising a selective adsorption of a fraction that is rich in paraxylene, at least one high-temperature crystallization of this fraction, and an isomerization of the fraction depleted of paraxylene, recycling the mother liquor to the selective adsorption optionally via a clay treatment followed optionally by a distillation of the treatment effluent, and optionally introducing the mother liquor into a distillation unit, wherein the crystallization can comprise several high-temperature stages.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: May 16, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Gerard Hotier, Paul Mikitenko, Stuart R MacPherson
  • Patent number: 6060634
    Abstract: Para-xylene is produced from a paraselective toluene disproportionation reactor, effluent (3) is distilled to eliminate toluene and benzene in at least 2 distillation columns (C1), (C2), and the xylenes (8) are crystallized at least once (10) at between +10.degree. C. and -30.degree. C. The separated mother liquor (14) is adsorbed on a zeolitic sieve in the presence of toluene in a simulated moving bed (15). This latter produces a raffinate (16) containing toluene which is depleted in para-xylene which is distilled in a distillation column (C4), and an extract which is enriched in para-xylene and contains toluene, which is recycled to columns (C1, C2). The para-xylene crystals are purified by washing with toluene and distillation or by partial melting (30) followed by washing with molten high purity para-xylene.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: May 9, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Paul Mikitenko, Gerard Hotier
  • Patent number: 6057487
    Abstract: A method is disclosed to produce 2,6-dimethylnaphthalene (2,6-DMN), used for the production of polyethylene naphthalate, at high purity and high yield from a mixture of dimethylnaphthalene isomers without limitation to the specific isomers present in the feed by a series of fractionation, crystallization and adsorption steps.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: May 2, 2000
    Assignee: Chevron Chemical Company
    Inventors: Curtis L. Munson, Patrick C. Bigot, Zunqing Alice He
  • Patent number: 5948949
    Abstract: A process for producing highly pure 2,6-dimethylnaphthalene in a high yield from a mixture of dimethylnaphthalene isomers in the presence of a solvent, such as an aliphatic or alicyclic saturated hydrocarbon. Highly pure 2,6-dimethylnaphthalene can be produced steadily for a long time by filtering the 2,6-dimethylnaphthalene crystal precipitated by the crystallizing by using a filtration apparatus, such as a rotary vacuum filter, peeling-off the filtered cake from a filter cloth and cleaning the filter cloth with a solvent, at a temperature not lower than a filtration temperature.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: September 7, 1999
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Makoto Takagawa, Ryusuke Shigematsu, Kuniaki Ageishi, Ko Kedo
  • Patent number: 5922924
    Abstract: To continuously produce and separate high purity p-xylene from a C.sub.8 aromatic hydrocarbon charge, successive use is made in combination of (1) a stage of separating low-purity p-xylene (75 to 98%) by simulated moving bed adsorption chromatography; (2) a stage of purifying and washing the low-purity p-xylene by recrystallization (-25 to +10.degree. C.); (3) a stage of catalytic isomerization of the charge which has been p-xylene-depleted by the separating stage (1); and recovering an isomerate which is then recycled to the charge. The solvent for desorption in stage (1) and washing in stage (2) is advantageously toluene.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: July 13, 1999
    Assignee: Institut Fran.cedilla.ais Du Petrole
    Inventors: Gerard Hotier, Claude Roux Guerraz, Than Nguyen Thanh
  • Patent number: 5866740
    Abstract: Para-xylene is produced from a paraselective toluene disproportionation reactor, effluent is distilled to eliminate toluene and benzene in at least 2 distillation columns, and the xylenes are crystallized at least once at between +10.degree. C. and -30.degree. C. The separated mother liquor is adsorbed on a zeolitic sieve in the presence of toluene in a simulated moving bed. This latter produces a raffinate containing toluene which is depleted in para-xylene which is distilled in a distillation column, and an extract which is enriched in para-xylene and contains toluene, which is recycled. The para-xylene crystals are purified by washing with toluene and distillation or by partial melting followed by washing with molten high purity para-xylene.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: February 2, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Paul Mikitenko, Gerard Paul Hotier
  • Patent number: 5811629
    Abstract: Improved process and apparatus for purifying paraxylene from mixed C8-aromatic feedstocks are disclosed in which the use of at least two crystallization stages operated at different temperatures in combination with a final product separator improves purity and recovery while reducing capital and energy costs.
    Type: Grant
    Filed: September 20, 1996
    Date of Patent: September 22, 1998
    Assignee: Raytheon Engineers & Constructors, Inc.
    Inventors: Douglas S. Hubbell, Philippe W. M. Rutten
  • Patent number: 5629467
    Abstract: To continuously produce and separate high purity p-xylene from a C.sub.8 aromatic hydrocarbon charge, successive use is made in combination of (1) a stage of separating low-purity p-xylene (75 to 98%) by simulated moving bed adsorption chromatography, with a ratio for the solvent to charge flow rates of 1.2 to 2.5; (2) a stage of purifying and washing the low-purity p-xylene by recrystallization (-25.degree. to +10.degree. C.); (3) a stage of catalytic isomerization of the charge which has been p-xylene-depleted by the separating stage (1); and recovering an isomerate which is then recycled to the charge. The solvent for desorption in stage (1) and washing in stage (2) is advantageously toluene.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: May 13, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Gerard Hotier, Claude Roux Guerraz, Than Nguyen Thanh
  • Patent number: 5329061
    Abstract: In a combination crystallization/xylene isomerization process for producing para-xylene crystals, the recovery section is modified to accommodate crystallizing and separating para-xylene crystals at two different temperatures (a higher temperature followed by a lower temperature). The benefit is a reduction in the overall energy cost of the process.
    Type: Grant
    Filed: June 1, 1993
    Date of Patent: July 12, 1994
    Assignee: UOP
    Inventor: John D. Swift
  • Patent number: 5284992
    Abstract: To continuously produce and separate high purity p-xylene from a C.sub.8 aromatic hydrocarbon charge, successive use is made in combination of (1) a stage of separating low-purity p-xylene (75 to 98%) by simulated moving bed adsorption chromatography, with a ratio of the solvent to charge flow rates ob 1.2 to 2.5; (2) a stage of purifying and washing the low-purity p-xylene by recrystallization (-25.degree. to +10.degree. C.); (3) a stage of catalytic isomerization of the charge which has been p-xylene-depleted by the separating stage (1); and recovering an isomerate which si then recycled to the charge. The solvent for desorption in stage (1) and washing in stage (2) is advantageously toluene.
    Type: Grant
    Filed: September 4, 1992
    Date of Patent: February 8, 1994
    Assignee: Institut Francais du Petrole
    Inventors: Gerard Hotier, Claude Roux Guerraz, Than Nguyen Thanh
  • Patent number: 5055630
    Abstract: The process for obtaining a p-xylene final product more than 98% pure from a crystalline starting material with a purity of about 98%, includes the steps of intermixing the starting material with precooled water and fed back recovered p-xylene in a mixer at a temperature of 0.degree. to 13.degree. C. to form a p-xylene-crystal-water mixture containing p-xylene crystals and water; continuously transferring the mixture produced as soon as it contains about 30% by weight p-xylene crystals into a purifying centrifuge via a dewatering filter to form a fluid phase and a p-xylene crystal slurry; separating the fluid phase further from the p-xylene crystals in a first stage of a purifying centrifuge, mixing the p-xylene crystal slurry in a second stage with a partial flow of final product, heating at about 13.degree. C.
    Type: Grant
    Filed: October 20, 1989
    Date of Patent: October 8, 1991
    Assignee: Krupp Koppers GmbH
    Inventor: Gunter Puppel
  • Patent number: 5004860
    Abstract: The filter system includes a plurality of porous metal filter tubes and is used in a method for extracting high purity solid para-xylene crystals from a mother liquor feed slurry of mixed xylenes in liquid and crystal form utilizing a separation unit which includes a crystallization stage where the mother liquor slurry is cooled in at least one crystallizer to crystallize liquid para-xylene into solid crystals, an isomerization stage where xylenes, such as ortho-xylene and meta-xylene, are reacted over a catalyst bed to convert these xylenes into para-xylene, and a distillation stage where the mixed xylenes are separated from the impurities from which byproducts are obtained.
    Type: Grant
    Filed: July 28, 1986
    Date of Patent: April 2, 1991
    Assignee: Amoco Corporation
    Inventors: John S. Hansen, William A. Waranius
  • Patent number: 4946560
    Abstract: A feedstock containing alpha olefins and internal olefins is converted into a first product having an enhanced internal olefin content over that of the feedstock and into a second product having an enhanced alpha olefin content over that of the feedstock by:(a) contacting the feedstock with an anthracene at a temperature ranging from 150.degree. to 275.degree. C. to form an olefin adduct with anthracene,(b) separating the adduct from the product of step (a) to leave a first product enriched in internal olefin,(c) heating the separated adduct at a temperature of from 250.degree.-400.degree. C. to produce anthracene and an olefin product enriched in alpha olefin, and(d) separating anthracene from the product of step (c) to produce a second product enriched in alpha olefin. Linear olefins are preferred feedstocks.
    Type: Grant
    Filed: October 27, 1988
    Date of Patent: August 7, 1990
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Howard L. Fong
  • Patent number: 4915794
    Abstract: This invention relates to a process for producing an olefin product having an enhanced alpha olefin content from an olefin feedstock containing internal olefins or a mixture of internal and alpha olefins which includes:(a) contacting the feedstock with an anthracene and a double-bond isomerization catalyst at a temperature ranging from about 150.degree. to about 275.degree. C. to form an olefin adduct with anthracene,(b) separating the adduct from the product of step (a),(c) heating the separated adduct at a temperature ranging from about 250.degree. to about 400.degree. C. to produce anthracene and an olefin product enhanced in alpha olefin content over the alpha olefin content of the feedstock, and(d) separating anthracene from the product of step (c) to produce the product enhanced in alpha olefin.Linear olefins are a preferred feedstock.
    Type: Grant
    Filed: October 27, 1988
    Date of Patent: April 10, 1990
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Howard L. Fong
  • Patent number: 4914257
    Abstract: The method for separating from a mother liquor containing at least two liquids, one of the two liquids including the steps of:(a) forming a precipitatable complex from one of the liquids and a complexing agent;(b) precipitating the precipitatable complex from the method liquor; and(c) recovering the second liquid from the remaining mother liquor. Typically, the two liquid substances are tetrahydrofuran and toluene and the complexing agent is titanium tetrachloride. The precipitatable complex is TiCl.sub.4.2C.sub.4 H.sub.8 O or TiCl.sub.4.C.sub.4 H.sub.8 O. Preferably, a cooling step is included in the method to enhance the removal of the precipitatabe complex. Superfractionation of the remaining liquor in distillation columns enables one to recover toluene, hexane, titanium tetrachloride and tetrahydrofuran. An apparatus for carrying out the method of recovering solvents in also disclosed.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: April 3, 1990
    Assignee: Amoco Corporation
    Inventors: Steven A. Cohen, James H. Lee, David B. Manley
  • Patent number: 4524227
    Abstract: Durene is recovered from a mixture rich in durene and containing hydrocarbons boiling in the gasoline range by cooling the mixture to a point where crystallization occurs and separating the crystallized durene. The durene subsequently is washed with a wash fluid. The wash fluid which can be methanol, is returned to a process wherein it is converted to gasoline and durene. The separated mother liquor is added to the gasoline fraction. The original mixture is obtained by the catalytic conversion of synthesis gas and methanol or by other means.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: June 18, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Patrick E. Fowles, Tsoung-Yuan Yan
  • Patent number: 4524228
    Abstract: Synthesis gas is catalytically converted to a feedstock comprising durene and gasoline. Durene is recovered from the feedstock by cooling it to a point where crystallization occurs and separating the crystallized durene. The durene subsequently is washed with a wash fluid. The wash fluid which can be methanol, is returned to a process wherein it is converted to gasoline and durene. The separated mother liquor is added to the gasoline fraction.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: June 18, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Patrick E. Fowles, Tsoung-Yuan Yan
  • Patent number: 4524231
    Abstract: Durene is recovered from a mixture rich in durene and containing hydrocarbons boiling in the gasoline range by cooling the mixture to a point where crystallization occurs and separating the crystallized durene. The durene subsequently is washed with a wash fluid. The wash fluid which can be methanol, is returned to a process wherein it is converted to gasoline and durene. The separated mother liquor is added to the gasoline fraction. The original mixture of durene and gasoline is obtained by the catalytic conversion of alcohols and ethers.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: June 18, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Patrick E. Fowles, Tsoung-Yuan Yan