Abstract: Catalyst particles are separated from the wax in a reactor slurry reactor by feeding a portion of the slurry to a dynamic settler. Heavier catalyst particles settle and are removed as the slurry at the bottom of the settler is recycled back to the reactor. Clarified wax is removed at the top of the settler. A multi-channel baffle prevents turbulence, improving retention of the desired heavier catalyst particles.
Abstract: A method of separation of aromates from hydrocarbon mixtures by extractive distillation with a selective solvent, includes introducing a hydrocarbon mixture into the extractive distillation column, distillating out non-aromate components of the introduced hydrocarbon mixture from a head of the extractive distillation column, withdrawing aromates together with a used solvent from a sump of the extractive distillation column and supplying to a driving-out column, separating the aromates from the solvent in the driving-out column, withdrawing the aromates as a head product and the solvent as a sump product from the driving-out column, reintroducing the withdrawn solvent into the extractive distillation column, the withdrawing of the solvent from the driving-out column including withdrawing only part of the solvent with a high temperature required for the complete aromate driving-out from the sump of the driving-out column, while a rest of the solvent with a certain aromate content and a lower temperature is with
Abstract: A process for the manufacture of an olefin oligomer, comprising the steps of polymerizing an olefin monomer in the presence of boron trifluoride and a boron trifluoride-alcohol complex as catalysts, to prepare a first oligomerization product, and then carrying out one of following steps (a) to (c): (a) removing boron trifluoride from the above first product by (i) placing the product under a reduced pressure, (ii) blowing an inert gas into the product, or (iii) heating the product at a relatively low temperature, to thereby prepare a second oligomerization product, and then subjecting the second product to a precipitation treatment to separate the boron trifluoride-alcohol complex therefrom, (b) heating the above first product at a relatively elevated temperature to recover boron trifluoride, or (c) centrifuging the above first product to recover the boron trifluoride-alcohol complex. These steps allow the catalysts to be recovered while maintaining the activity thereof at a desired level.