Incineration, Calcination, Pyrolyzing To Obtain Solid Residue Patents (Class 588/19)
  • Patent number: 11570856
    Abstract: Provided is an induction heating device with which discharging can be easily avoided even when a large electric current is used. The induction heating device comprises a high-frequency power supply provided with a connection portion for an alternating-current power supply, and a heating coil portion connected to the high-frequency power supply. In the heating coil portion, a plurality of coils include n coils surrounding a cavity portion in a plane, wherein the plurality of coils are mutually connected in series via one of a plurality of capacitors.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: January 31, 2023
    Assignee: DENKI KOGYO COMPANY, LIMITED
    Inventors: Yohei Awata, Keiichi Kubo, Mitsunori Hayashi, Tetsuo Fusato
  • Patent number: 10593437
    Abstract: Treatment of radioactive waste comprising organic compounds, and sulfur-containing compounds and/or halogen-containing compounds. An apparatus comprises a reaction vessel comprising a filter for carrying out thermal treatment of the waste and a thermal oxidizer. Utilizing co-reactants to reduce gas phase sulfur and halogen from treatment of wastes.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 17, 2020
    Assignee: Studsvik, Inc.
    Inventors: J. Bradley Mason, Walter Scott Roesener
  • Patent number: 10573423
    Abstract: A method for thermal volume reduction of waste material contaminated with radionuclides includes feeding the waste material into a fluidized bed reactor, injecting fluidizing gas into the fluidized bed reactor to fluidize bed media in the fluidized bed reactor, and decomposing the waste material in the fluidized bed reactor. A system for thermal volume reduction of the waste material includes one or more of a feedstock preparation and handling system, a fluidized bed reactor system, a solids separation system, and an off-gas treatment system. The method and system may be used to effectively reduce the volume or radioactive wastes generated from the operation of nuclear facilities such as nuclear power plants including wastes such as spent ion exchange resin, spent granular activated carbon, and dry active waste.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: February 25, 2020
    Inventors: Scott D. Poole, Lu Liu, Timothy Milner
  • Patent number: 9412478
    Abstract: The present invention refers to a method and related plants for removing, by means of redox reactions, the 137Cs from polluted EAF dusts, with an initial average value of radioactivity concentration either higher or lower than 10,000 Bq/kg, the decontamination from the 137Cs initially present in the EAF dusts having a yield of 98%-100%; the present invention also refers to the use of chemical-physical destabilization agents, by means of redox reactions, for obtaining EAF dusts decontaminated from 137Cs.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: August 9, 2016
    Inventors: Aldo Cianchi, Sandro Degetto
  • Patent number: 9105363
    Abstract: A method for collecting volatile radioactive substances. The method includes irradiating a volatile radioactive substance on or under a contaminated material surface using microwave radiation and vaporizing the volatile radioactive substance, wherein the volatile radioactive substance comprises at least one of cesium and iodine. The method further includes recovering the vaporized volatile radioactive substance from the contaminated material. The method may be accomplished with and/or without physically collecting or isolating the contaminated material.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: August 11, 2015
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Roland R. V. Benke, Ralph H. Hill, Jr., Roberto T. Pabalan, James A. Moryl, Jeremy R. Pruitt
  • Publication number: 20150148582
    Abstract: The present invention refers to a method and related plants for removing, by means of redox reactions, the 137Cs from polluted EAF dusts, with an initial average value of radioactivity concentration either higher or lower than 10,000 Bq/kg, the decontamination from the 137Cs initially present in the EAF dusts having a yield of 98%-100%; the present invention also refers to the use of chemical-physical destabilisation agents, by means of redox reactions, for obtaining EAF dusts decontaminated from 137Cs.
    Type: Application
    Filed: April 18, 2013
    Publication date: May 28, 2015
    Inventors: Aldo CIANCHI, Sandro DEGETTO
  • Patent number: 8946498
    Abstract: An apparatus and method for the granulation of radioactive waste in which a preprocessing method for the vitrification of radioactive waste is simplified to conform to onsite conditions of a nuclear power plant, additives are improved, and pellets suitable for vitrification are manufactured. The apparatus for the granulation of radioactive waste includes: a body frame having an inlet and an outlet; a hopper supplying the radioactive waste to be transferred and fed through the inlet; a feeder transferring/supplying the radioactive waste supplied to a specific position and in a certain quantity; a stirrer pulverizing/mixing lumps of the radioactive waste supplied; an additive supply part supplying a lubricant to the radioactive waste fed into the stirrer; and a pellet press pressing the radioactive waste fed through the feeder into a pellet shape and discharging the pellet through the outlet.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 3, 2015
    Assignee: Korea Hydro Nuclear Power Co., Ltd
    Inventors: Hyun-je Cho, Deuk-man Kim, Cheon-woo Kim, Jong-kil Park, Young-bu Choi
  • Publication number: 20150025294
    Abstract: This invention relates to a method for decontaminating radioactively contaminated material, for example construction waste. The material is comminuted by means of voltage pulses and can be divided with a high degree of selectivity into non-contaminated or only weakly contaminated material and contaminated remainder. The majority therefore represents non-contaminated or only weakly contaminated waste material which can be disposed of much more easily than the contaminated remainder. Therefore, the method is particularly suitable for reducing the volume of radioactive waste material which is subject to stringent safety requirements in respect of its storage and disposal and therefore its storage and disposal incur high costs.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 22, 2015
    Inventors: Karl-Heinz Grosse, Richard Seemann
  • Patent number: 8921639
    Abstract: A method is provided for the decontamination of radioactive carbonaceous material, such as graphite, in which an injection of steam is planned into the material, concurrent with a first roasting thermal treatment of the material at a temperature between 1200° C. and 1500° C. Advantageously, the first treatment may be followed by a second treatment at a lower temperature with an injection of carbon oxide for oxidation according to the Boudouard reaction.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 30, 2014
    Assignee: Electricite de France
    Inventor: Gérard Laurent
  • Publication number: 20140343342
    Abstract: To provide a method and an apparatus for removing radioactive cesium from waste containing radioactive cesium at low cost. A radioactive cesium removal apparatus 1 including: an incinerator 22 for burning an inflammable waste polluted with radioactive cesium; a suspension preheater 23 for, with the combustion exhaust gas G5 and a sensible heat of the incineration ash of a combustible C discharged from the incinerator, generating calcium oxide or/and magnesium oxide from a source of calcium oxide or/and a source of magnesium oxide, cyclones of the suspension preheater being arranged in multistages; a rotary kiln 21 for burning an inorganic substance S polluted with radioactive cesium together with the calcium oxide or/and the magnesium oxide and the incineration ash D3 including the radioactive cesium; and collectors 31, 32 for collecting cesium volatilized in the rotary kiln.
    Type: Application
    Filed: October 30, 2012
    Publication date: November 20, 2014
    Applicant: TAIHEIYO CEMENT CORPORATION
    Inventors: Tetsuo Ogiri, Souichirou Okamura, Kenichi Honma
  • Patent number: 8846999
    Abstract: A method for treating a nitric aqueous liquid effluent containing nitrates of metals or metalloids, comprising a step for calcination of the effluent in order to convert the nitrates of metals or metalloids into oxides of said metals or metalloids, at least one compound selected from the nitrates of metals or metalloids and the other compounds of the effluent leading upon calcination to a tacky oxide, and a dilution adjuvant comprising at least one nitrate of metal or metalloid leading upon calcination to a non-tacky oxide being added to the effluent prior to the calcination step in order to give a mixture of effluent and of dilution adjuvant.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 30, 2014
    Assignee: Areva NC
    Inventors: Alain Ledoux, Jean-François Hollebecque
  • Patent number: 8754283
    Abstract: Methods for partially decontaminating radioactive waste wherein the waste is first mixed, or brought in contact, with at least one corrosive medium. Activation energy is then supplied to the corrosive medium, so that at least a portion of the radionuclide present in the waste is converted into at least one gaseous reaction product, or is dissolved, by hydrogen or hydrogen ions, oxygen or oxygen ions, and/or halogen (for example chlorine) or halogen ions from the corrosive medium. The aim is that of decontaminating a 12C/13C-containing porous solid waste, which is contaminated with the 14C radionuclide. For this purpose, CO2 and/or hydrogen are applied as corrosive media to the waste, so that at least a portion of the waste is reacted to form at least one gaseous reaction product, wherein the process temperature is selected so that the 14C radionuclide is enriched in the reaction product over 12C/13C.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: June 17, 2014
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Werner F. Lensa, Dirk Vulpius, Hans-Juergen Steinmetz, Kathrin Baginski, Rahim Nabbi
  • Publication number: 20140121440
    Abstract: A method is provided for the decontamination of radioactive carbonaceous material, such as graphite, in which an injection of steam is planned into the material, concurrent with a first roasting thermal treatment of the material at a temperature between 1200° C. and 1500° C. Advantageously, the first treatment may be followed by a second treatment at a lower temperature with an injection of carbon oxide for oxidation according to the Boudouard reaction.
    Type: Application
    Filed: January 2, 2013
    Publication date: May 1, 2014
    Applicant: ELECTRICITE DE FRANCE
    Inventor: Gérard Laurent
  • Patent number: 8686213
    Abstract: Methods and apparatus for decontaminating disposable protective products prepared from polyvinyl alcohol (PVA), used in a nuclear power plant, to less than minimum detectable activity (MDA) are disclosed. In the disclosed methods and apparatus, solid protective products made of PVA, generated from a nuclear power plant, are dissolved into a liquid, and then are decontaminated to less than MDA. The PVA solution decontaminated in this way is concentrated to an appropriate concentration or dried, and finally is subjected to self-disposal. This can fundamentally block the generation amount of combustible waste amounting to 50% or more of low and intermediate level waste of nuclear power plants, thereby considerably contributing to a reduction of the operating expenses of the nuclear power plants.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 1, 2014
    Assignee: Hana Inspection & Engineering Co., Ltd.
    Inventors: Jin-Kil Kim, Eui-Dong Lee, Hyun-Ki Kim, Seong-Jun Hong
  • Publication number: 20140066685
    Abstract: Provided is a method for disposal of radioactive waste which can reduce the radiation level until the waste can be reused as landfill or the like and which prevents the leakage of radiation nuclides in the ground. The method includes the following: a primary treatment step of turning the radioactive waste into a radioactive waste (primary treated waste) which has a radiation level equal to or less than a reference value via a radiation shielding agent composed of or predominantly composed of a Ca-based inorganic compound; and a secondary treatment step of heating to melt the primary treated waste and thereafter cooling the same to glass granules, and then sealing radioactive nuclides in the glass body.
    Type: Application
    Filed: May 24, 2013
    Publication date: March 6, 2014
    Inventors: Daigo Kato, Masatomo Kato
  • Patent number: 8604264
    Abstract: A method for treating a nitric aqueous liquid effluent containing nitrates of metals or metalloids, comprising a step for calcination of the effluent in order to convert the nitrates of metals or metalloids into oxides of said metals or metalloids, at least one compound selected from the nitrates of metals or metalloids and the other compounds of the effluent leading upon calcination to a tacky oxide, and a dilution adjuvant leading upon calcination to a non-tacky oxide being added to the effluent prior to the calcination step, a method wherein the dilution adjuvant comprises aluminium nitrate and at least one nitrate selected from iron nitrate and rare earth nitrates.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: December 10, 2013
    Assignee: Areva NC
    Inventors: Alain Ledoux, Jean-François Hollebecque
  • Publication number: 20130178685
    Abstract: An apparatus and method for the granulation of radioactive waste in which a preprocessing method for the vitrification of radioactive waste is simplified to conform to onsite conditions of a nuclear power plant, additives are improved, and pellets suitable for vitrification are manufactured. The apparatus for the granulation of radioactive waste includes: a body frame having an inlet and an outlet; a hopper supplying the radioactive waste to be transferred and fed through the inlet; a feeder transferring/supplying the radioactive waste supplied to a specific position and in a certain quantity; a stirrer pulverizing/mixing lumps of the radioactive waste supplied; an additive supply part supplying a lubricant to the radioactive waste fed into the stirrer; and a pellet press pressing the radioactive waste fed through the feeder into a pellet shape and discharging the pellet through the outlet.
    Type: Application
    Filed: September 27, 2010
    Publication date: July 11, 2013
    Inventors: Hyun-je Cho, Deuk-man Kim, Cheon-woo Kim, Jong-kil Park, Young-bu Choi
  • Patent number: 8343432
    Abstract: A waste decomposition apparatus has a container-shaped body, a waste inlet for introducing wastes into the body, an outlet for discharging residual ash out of the body after the wastes introduced into the body are decomposed, and magnetic functioning means for inducing magnetic fields in the wastes introduced into the body. The waste decomposition apparatus includes pressing means for pressing the wastes introduced into the body.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 1, 2013
    Assignee: Jae Yong Lee
    Inventors: Mitsuo Endou, Yoshinori Yoshida, Goda Toshihisa, Tojo Toshiaki
  • Publication number: 20120220809
    Abstract: Methods and apparatus for decontaminating disposable protective products prepared from polyvinyl alcohol (PVA), used in a nuclear power plant, to less than minimum detectable activity (MDA) are disclosed. In the disclosed methods and apparatus, solid protective products made of PVA, generated from a nuclear power plant, are dissolved into a liquid, and then are decontaminated to less than MDA. The PVA solution decontaminated in this way is concentrated to an appropriate concentration or dried, and finally is subjected to self-disposal. This can fundamentally block the generation amount of combustible waste amounting to 50% or more of low and intermediate level waste of nuclear power plants, thereby considerably contributing to a reduction of the operating expenses of the nuclear power plants.
    Type: Application
    Filed: November 12, 2010
    Publication date: August 30, 2012
    Inventors: Jin-Kil Kim, Ui-Dong Lee, Hyun-Ki Kim, Seong-Jun Hong
  • Patent number: 8088312
    Abstract: Method for removing the epoxy and/or phenolic polymer encapsulating a nuclear fuel pellet comprising uranium dioxide UO2, the method comprising the following successive steps: a) the polymer is pyrolysed in a reducing atmosphere; and b) the carbon residues obtained after the pyrolysis step (a) are selectively oxidized, the oxidation being carried out at temperature above 1000° C. in an atmosphere comprising carbon dioxide CO2. Such a method makes it possible to remove the epoxy and/or phenolic polymer encapsulating the pellet while avoiding or limiting the risk of radiological contamination by the formation of U3O8.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: January 3, 2012
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Eric Hanus, Olivier Fiquet, Nicolas Tarisien
  • Publication number: 20110319699
    Abstract: The invention relates to the treatment of carbon-containing radioactive waste. It particularly envisages: a first type of waste treatment to obtain a carbon oxide, and a second type of treatment to obtain a solid precipitate of the carbon oxide by reacting with a selected element. A method according to the invention comprises: a first phase during which both the first and second type of treatment are applied, and a second phase during which only the first type of treatment is applied.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 29, 2011
    Applicant: ELECTRICITE DE FRANCE
    Inventor: Gérard Laurent
  • Patent number: 7731912
    Abstract: Disclosed herein is provided an evaporator/calciner in which hazardous materials, such as radioactive liquids, are converted into chemically stable, solid forms by evaporating, drying and calcination within a single vessel, that can then be sealed and used for long term storage.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: June 8, 2010
    Assignee: Atomic Energy of Canada Limited
    Inventors: Kenneth James Franklin, Andrew Donald Kettner, Bruce Wayne Hildebrandt, Howard Charles Jessup, Jr.
  • Patent number: 7648615
    Abstract: In the operation of smoking/burning type volume reduction treatment apparatus (1), referring to view (A), charcoal carbonized layer (T2) is spread over powdery ceramic layer (T1) in the state of having negative ion air fed through air supply inlet (H). Further, sawdust layer (T3) is spread thereover, and thereafter treatment subject layer (V) is piled thereon. In a temporary burning region of the carbonized layer (T2), the powdery ceramic layer (T1) exerts not only heat storing action but also heat radiation action. Referring to view (B), the interior of the sawdust layer (T3) is altered into temporary carbonized layer (T3 1) and temporary dried layer (T3 2). As the temporary burning region slowly moves upward, an under side of the treatment subject layer (V) is altered into dried layer (V1) and further, carbonized layer (V2) shown in view (C) is formed. Thereafter, this carbonized layer (V2) catches fire, so that burning region (V3) is formed in layered form in the treatment subject layer (V).
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: January 19, 2010
    Inventor: Kuniomi Araki
  • Patent number: 7465843
    Abstract: A recycling system for a waste converting apparatus collects residues from a post-processing means and re-introduces the residues into the apparatus such that the residues are exposed to the high temperature zone thereof.
    Type: Grant
    Filed: February 16, 2003
    Date of Patent: December 16, 2008
    Assignee: E.E.R. Environmental Energy Resources (Israe) Ltd.
    Inventors: Valeri G Gnedenko, Alexander Suris, David Pegaz
  • Publication number: 20080214886
    Abstract: Disclosed herein is provided an evaporator/calciner in which hazardous materials, such as radioactive liquids, are converted into chemically stable, solid forms by evaporating, drying and calcination within a single vessel, that can then be sealed and used for long term storage.
    Type: Application
    Filed: September 14, 2007
    Publication date: September 4, 2008
    Applicant: ATOMIC ENERGY OF CANADA LIMITED
    Inventors: Kenneth James FRANKLIN, Andrew Donald KETTNER, Bruce Wayne Hildebrandt, Howard Charles Jessup
  • Publication number: 20080039672
    Abstract: A mobile destruction apparatus for use with oil contaminated with a toxic organic pollutant material includes a housing, which defines a first heating combustion chamber for heating the oil to generate a toxic fluid using a first burner connected thereto. The apparatus includes a rotating transition cylinder that defines a drying chamber, which is in fluid communication with the combustion chamber to receive the toxic fluid. The cylinder includes an amount of a desiccant material to dry the toxic fluid. A second heating destruction chamber is provided downstream of the cylinder to heat the toxic fluid to substantially convert it and destroy it into an inert fluid, which exhausts from the apparatus. A method of destructing toxic contaminants from contaminated oils is also described.
    Type: Application
    Filed: August 8, 2006
    Publication date: February 14, 2008
    Inventor: J. Rene Cornellier
  • Patent number: 7241932
    Abstract: The present invention relates to an immobilizing medium for the encapsulation of radioactive waste. The waste immobilizing medium has a sodium silicate based glass matrix in which there is contained radioactive waste wherein the waste comprises one or more inert metal components and one or more fission products. At least a portion of the inert metal components are dissolved in the glass matrix and increase its durability. As a result, the waste immobilising medium is highly durable and leach resistant and is suitable for long term storage of radioactive waste. The inert metal components preferably comprise iron, nickel and chromium.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 10, 2007
    Assignee: British Nuclear Fuels PLC
    Inventor: Ewan Robert Maddrell
  • Patent number: 7078581
    Abstract: A ceramic waste immobilizing material for the encapsulation of high level radioactive waste (HLW), e.g. resulting from the reprocessing of irradiated nuclear fuel. The ceramic waste immobilising material enables waste ions from at least fission products in irradiated nuclear fuel to be dissolved in substantially solid solution form. The ceramic waste immobilising medium has a matrix comprising phases of hollandite, perovskite and zirconolite in which the waste ions are dissolved. The invention also includes a method of immobilizing HLW from reprocessed nuclear fuel assemblies comprising the steps of mixing a liquor containing the HLW with a precursor material comprising oxides or oxide precursors of at least titanium, calcium and barium to form a slurry, drying the slurry, and calcining the dried slurry under a reducing atmosphere to form a powder comprising 30–65 weight % waste.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: July 18, 2006
    Assignee: British Nuclear fuels PLC
    Inventors: Ewan Robert Maddrell, Melody Lyn Carter
  • Patent number: 7034198
    Abstract: A conventional method of pyrolytically decomposing plastic to make low-molecular compounds is poor in efficiency of use of energy due to high heating temperatures (at least 600° C. and 800° C. at maximum). The invention provides that a functional powder is heated to a predetermined temperature and pieces of plastic to be disposed are caused to be contacted with the heated powder, the functional powder including a powder which does in an aqueous solution state show alkalinity, and a photo-catalyst effect powder.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: April 25, 2006
    Assignee: Osada Giken Co., Ltd.
    Inventors: Hideharu Osada, Tatsutoshi Shimabara
  • Patent number: 6625248
    Abstract: A process for the treatment of radioactive graphite which includes the following steps: (i) reacting the radioactive graphite at a temperature in the range of from 250° C. to 900° C. with superheated steam or gases containing water vapor to form hydrogen and carbon monoxide; (ii) reacting the hydrogen and carbon monoxide from step (i) to form water and carbon dioxide; and (iii) reacting the carbon dioxide of step (ii) with metal oxides to for carbonate salts. The process enables radioactive graphite, such as graphite moderator, to be treated either in-situ or externally of a decommissioned nuclear reactor.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: September 23, 2003
    Assignee: Studsvik, Inc.
    Inventors: J. Bradley Mason, David Bradbury
  • Patent number: 6558308
    Abstract: The Advanced Vitrification System (AVS) Melting Process is a process for vitrification of waste in a disposable canister. In the process, waste is dropped into the disposable canister from the top. While the waste is being dropped into the disposable canister, radiant energy is added to the space above the waste in the canister, such that the temperature of the gaseous atmosphere above the waste is higher than the melting point of the waste. Since only the space above the waste in the canister is heated, the temperature of the melt decreases with increasing depth of the waste in the canister. The decreasing temperature permits a small surface melt volume to be maintained and solidified product to form with increasing depth. The process continues until the disposable canister is filled, then all heating is stopped and the disposable canister allowed to cool to ambient temperature.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: May 6, 2003
    Assignee: Radioactive Isolation Consortium, LLC
    Inventors: James R. Powell, Morris Reich
  • Patent number: 6518477
    Abstract: A method for remediating non-homogeneous radioactive waste to significantly reduce the waste mass/volume and to convert such waste to products that meet federal regulatory compliance standards is disclosed. High level waste (HLW) stored in underground tanks is typically a multi component mixture. After removal of the waste from the tanks or other storage areas the waste is isolated in a thermal desorption-type reaction vessel where the waste is pyrolized at pre-determined and carefully controlled temperatures, pressures, and atmospheres. This process eliminates organics, volatile metals, moisture and other low boiling temperature/high vapor pressure components and converts non-volatile waste to more stable metal oxides. Off-gas treatment systems scrub, treat and dispose of all off-gas components. A thermal desorption-type apparatus especially well suited for performing the method of the present invention is also disclosed.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: February 11, 2003
    Assignee: Hanford Nuclear Services, Inc.
    Inventor: Rengarajan Soundararajan
  • Patent number: 6476285
    Abstract: A method of melting treatment of radioactive miscellaneous solid wastes wherein, even when the wastes contain various kinds of substances in a mixed state, each of the substances is efficiently induction-heated and the whole of the wastes can be melted quickly. The radioactive miscellaneous solid wastes are charged into a water-cooling type cold crucible induction melting furnace disposed within a high-frequency coil. A plurality of high-frequency currents each having a frequency suitable for induction-heating each of the various kinds of substances contained in the radioactive miscellaneous solid wastes are supplied to the high-frequency coil to melt the solid wastes by being induction-heated. The high-frequency currents of different frequencies may be simultaneously supplied to a single high-frequency coil or may be supplied to a plurality of high-frequency coils, respectively.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: November 5, 2002
    Assignee: Japan Nuclear Cycle Development Institute
    Inventors: Hiroaki Kobayashi, Hiroshi Igarashi
  • Publication number: 20020010381
    Abstract: A method for remediating non-homogeneous radioactive waste to significantly reduce the waste mass/volume and to convert such waste to products that meet federal regulatory compliance standards is disclosed. High level waste (HLW) stored in underground tanks is typically a multi component mixture. After removal of the waste from the tanks or other storage areas the waste is isolated in a thermal desorption-type reaction vessel where the waste is pyrolized at pre-determined and carefully controlled temperatures, pressures, and atmospheres. This process eliminates organics, volatile metals, moisture and other low boiling temperature/high vapor pressure components and converts non-volatile waste to more stable metal oxides. Off-gas treatment systems scrub, treat and dispose of all off-gas components. A thermal desorption-type apparatus especially well suited for performing the method of the present invention is also disclosed.
    Type: Application
    Filed: April 24, 2001
    Publication date: January 24, 2002
    Applicant: Hanford Nuclear Services, Inc.
    Inventor: Rengarajan Soundararajan
  • Patent number: 6288300
    Abstract: Organic materials are mixed with metal oxide, such as hydrated metal oxides, prior to or during heat treatments in aerated or oxygenated environments to stabilize thermal decomposition or incineration of the organic materials and to suppress the emission of volatile, hazardous organic compounds. The organic materials may be ion exchange resins and polymeric sorbents, for example, and include contaminated materials such as hazardous wastes. The hydrated metal oxides may be hydrated ferric oxide, hydrated aluminum oxide or hydrated titania oxide, for examples. Ferrihydrite is preferred. The heat treatment may be a preparation for a waste disposal process, such as immobilization in ferric oxide, cement, concrete, a polymer, bitumen or glass, for example. Immobilization processes in ferric oxide are also discussed, including the use of additives such as magnesium oxide, ammonium dihydrogen phosphate and phosphoric acid, enabling consolidation at room temperature and pressures less than 15,000 psi.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: September 11, 2001
    Assignee: Consolidated Edison Company of New York, Inc.
    Inventors: Miriam Lemus, Aaron Barkatt, Marta Gmurczyk, Galina Cherepakhov
  • Patent number: 6223560
    Abstract: A process for recycling trash and obtaining a glassy vitreous product by mixing trash with a vitrifying composition comprising 30% Sodium Sulphate, 7% Quartz, 20% Calcium Carbonate, 23% Sodium Carbonate, 13% Organic Sulphate (consisting of 20% Sodium Sulphate and 80% Carbon Hydrates) and 7% Calcium Fluor, the composition comprising the 10-20 weight percentage of the mixture and thermochemically transforming the mixture, the product being used in multiple applications. The glassy product obtained by the process is also provided by the invention.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: May 1, 2001
    Assignee: Cerocon S.A.
    Inventors: Roberto Girotti, Luis Domingo Tatasciore
  • Patent number: 6120745
    Abstract: Method for the oxidation of at least one alkali metal, according to which this alkali metal is subjected in molten condition to an oxidation by a reaction with oxygen, characterized in that the molten alkali metal is dispersed in a fluidized bed (6) and is subjected to an oxidation by a reaction with oxygen in this bed (6), whereby the oxides formed in this manner are subjected to a carbonation by a reaction with carbonic gas supplied to the aforementioned bed (6).
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: September 19, 2000
    Assignee: Centre d'Etude de l'Energie Nucleaire, CEN
    Inventors: Andre Henri Alain Joseph Rahier, Veerle Harriet Josepha Van Alsenoy
  • Patent number: 6084149
    Abstract: A melting furnace that incorporates the autoclave theory and is equipped with a high-frequency (horizontal wave) device for incinerating material and for thermal decomposition and recrystallization of organic and inorganic hazardous compounds contained in it and to detoxify hazardous substances that have been recrystallized or thermally decomposed by using specific solvents. A method to accomplish the above is provided and hazardous gas that is generated during the incineration process at high temperature and under high pressure in the furnace is treated.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: July 4, 2000
    Inventors: Yukoh Akae, Kazuo Kote
  • Patent number: 6084147
    Abstract: An organic waste decomposition system and method is described having two reaction vessels in tandem, each using superheated steam augmented by oxygen for decomposing a wide variety of organic compounds to reduce both mass and volume. Decomposition takes place quickly when a steam/oxygen mixture is injected into a fluidized bed of ceramic beads. The speed of the fluidizing gas mixture agitates the beads that then help to break up solid wastes, and the oxygen allows some oxidation to offset the thermal requirements of drying, pyrolysis, and steam reforming. Most of the pyrolysis takes place in the first stage, setting up the second stage for completion of pyrolysis and adjustment or gasification of the waste form using co-reactants to change the oxidation state of inorganics and using temperature to partition metallic wastes.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: July 4, 2000
    Assignee: Studsvik, Inc.
    Inventor: J. Bradley Mason
  • Patent number: 6069290
    Abstract: A waste treatment process includes charging a reactor container (12) with a reactant alkaline metal alloy (10) and isolating the reactant alloy from oxygen gas. After heating the reactant alloy (10) in the reactor container (2) to a minimum of 770 degrees Celsius, a waste material is introduced into the molten alloy, preferably below the surface of the alloy. The waste material is pyrolized in the reactant alloy (10) to produce useful chlorine salts and other materials. The reactant alloy (10) includes magnesium and/or lithium, aluminum, zinc, calcium, and copper.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: May 30, 2000
    Assignee: Clean Technologies International Corporation
    Inventor: Anthony S. Wagner
  • Patent number: 6060635
    Abstract: Procedure for the treatment of radioactive hazardous waste, in which procedure oxygen is treated with radio-frequency electromagnetic radiation in a manner known in itself so that the oxygen forms a cold plasma, and the waste and the oxygen are fed together.
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: May 9, 2000
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventor: Rolf Rosenberg
  • Patent number: 5986159
    Abstract: A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: November 16, 1999
    Assignee: The Regents of the University of California
    Inventors: Roger D. Aines, Kent S. Udell, Carol J. Bruton, Charles R. Carrigan
  • Patent number: 5910621
    Abstract: A process for facilitating the removal of impurities e.g. radionuclides, such as uranium and thorium, and/or one or more of their radionuclide daughters, from titaniferous material includes contacting the titaniferous material with one or more reagents at an elevated temperature selected to enhance the accessibility of at least one of the radionuclide daughters in the titaniferous material. The reagent(s) may be a glass forming reagent and is selected to form a phase at the elevated temperature which disperses onto the surfaces of the titaniferous material and incorporates the radionuclides and one or more radionuclide daughter. The titaniferous material may be, e.g., ilmenite, reduced ilmenite, altered ilmenite or synthetic rutile.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: June 8, 1999
    Assignee: RGC Mineral Sands
    Inventors: Harold Robert Harris, Halil Aral, Warren John Bruckard, David Edward Freeman, Martin Richard Houchin, Kenneth Joun McDonald, Graham Jeffrey Sparrow, Ian Edward Grey
  • Patent number: 5909654
    Abstract: A method and apparatus for the volume reduction and processing of solid organic waste, in particular ion exchange media from nuclear facilities containing sulfur or chlorine. A method and apparatus for the volume reduction of nuclear waste is disclosed comprising: subjecting the waste to pyrolysis in a pyrolysis vessel, and gasifying the solid pyrolysis residue in a steam reformer to remove residual carbon. A further method and apparatus for the processing of nuclear waste is disclosed comprising: grinding the nuclear waste, addition of iron powder, pyrolysis, gasification of the pyrolysis residue, and combustion in a submerged bed heater. An evaporator cools gases from the submerged bed heater. Off gases from the evaporator are treated by a fiber bed scrubber to remove acids.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: June 1, 1999
    Inventors: Rolf Hesbol, J. Bradley Mason
  • Patent number: 5901169
    Abstract: Molten matter is discharged from a cold crucible induction melting furnace provided with a furnace body disposed within a high-frequency coil for heating the furnace body. A metallic discharging nozzle extends downwardly from an inner bottom portion of the furnace body and can be electrically insulated from the furnace body. A high-frequency coil for heating the discharging nozzle is disposed around the nozzle. An electric circuit for removing high-frequency noise generated from the high-frequency coil for heating the furnace body is disposed in the high-frequency coil for heating the nozzle. High reliability and high controllability can be achieved without electric short-circuits between the furnace body and the nozzle and noise interference between the high-frequency coils.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: May 4, 1999
    Assignee: Japan Nuclear Cycle Development Institute
    Inventor: Hiroaki Kobayashi
  • Patent number: 5877394
    Abstract: A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: March 2, 1999
    Inventors: Stephan T. Kujawa, Daniel M. Battleson, Edward L. Rademacher, Jr., Patrick V. Cashell, Krag D. Filius, Philip A. Flannery, Clarence G. Whitworth
  • Patent number: 5835866
    Abstract: Ion exchange resins contaminated with a radioactive component are treated by exposing the contaminated ion exchange resins to a bound radio frequency electric field for uniformly heating them to drive off water. The dried ion exchange resins are then uniformly heated by a transversely uniform bound radio frequency electric field to a second higher temperature which chemically inactivates the functional groups of the ion exchange resins to destroy their hydrophilic property and convert them to a stabilized product for long-term safe storage.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: November 10, 1998
    Assignee: IIT Research Institute
    Inventors: Jack E. Bridges, Guggilam C. Sresty
  • Patent number: 5774815
    Abstract: The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification.
    Type: Grant
    Filed: August 13, 1996
    Date of Patent: June 30, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Jerry Dale Christian, Thomas Russell Thomas, Glen F. Kessinger
  • Patent number: 5732362
    Abstract: The present invention relates to a method for treating radioactive laundry waste water generated from a nuclear power plant, nuclear fuel reprocessing plant, or radioactive nuclides handling facilities, and provides a method for treating the waste water safely and for reducing the volume of generated radioactive waste to a minimum.Radioactive laundry waste water containing a detergent of which major contents are a nonionic surface active agent and inorganic builders is concentrated by an evaporating concentrator, the concentrated waste water is dried and pulverized to dry powder by a rotary centrifugal thin film dryer, and the dry powder is incinerated. By using the above detergent, foaming at the concentration can be reduced, and the concentrated waste water can be easily dried and pulverized. Further, the dried powder can be incinerated stably and safely without influencing undesirable effect on the body of the incinerator.
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: March 24, 1998
    Assignees: Hitachi, Ltd., Hitachi Engineering & Services Co., Ltd., Hitachi Nuclear Engineering Co., Ltd.
    Inventors: Tatsuo Izumida, Ryozo Kikkawa, Hiroyuki Tsuchiya, Yoshimasa Kiuchi, Yasuo Hattori
  • Patent number: 5678241
    Abstract: The present invention describes a process to reduce the volume and/or weight of magnesium slag when the magnesium slag contains radioactive thorium. The process contacts the magnesium slag as an aqueous slurry with an acid in a pH range from about 4.0 to about 8.0, preferably from about 5.0 to about 5.5, followed by separating insoluble solids from the aqueous solution. Optionally, the acid digested solids are heated, either before or after the acid digestion, at a temperature from about 350.degree. to about 500.degree. C. The solid waste can then be further compacted, if desired, prior to disposal.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: October 14, 1997
    Assignee: The Dow Chemical Company
    Inventors: David A. Wilson, Jaime Simon, Garry E. Kiefer