Cardiac Augmentation (pulsators, Etc.) Patents (Class 600/16)
  • Patent number: 11911602
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: February 27, 2024
    Assignees: Board of Regents, The University of Texas System, Cardio Vol, I.LC
    Inventors: Jonathan W. Valvano, John Porterfield, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Patent number: 11908342
    Abstract: A human body simulation device includes a heart model simulating a heart, a beat portion for causing the heart model to beat, a blood vessel model simulating a blood vessel, a pulsation portion for sending a pulsated fluid into the blood vessel model, and a control portion for changing a beat rate of the beat portion and a pulsation rate of the pulsation portion depending on a prescribed heart rate.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: February 20, 2024
    Assignee: ASAHI INTECC CO., LTD.
    Inventors: Satoshi Namima, Yuta Kubo
  • Patent number: 11903694
    Abstract: A device for treating an aneurysm of a human or mammal patient, wherein the aneurysm may self-expand, leading to the aneurysm bursting with high risk for death of the human or mammal patient. The device comprising an implantable member adapted to be placed in connection with the outside of a blood vessel having the aneurysm, and to exercise a pressure on the outside of the blood vessel having the aneurysm, a measuring device or sensor for measuring or sensing an expansion of the aneurysm, and a pressure regulator adapted to regulate the exercised pressure on the outside of the blood vessel having the aneurysm.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: February 20, 2024
    Inventor: Peter Forsell
  • Patent number: 11896470
    Abstract: Actuator (1) for a medical device (100), comprising an electromotor, a mechanical transmission, and magnetic coupling means arranged for transmitting a mechanical torque from the electromotor to the mechanical transmission when said electromotor is powered by an energy source, wherein said electromotor and a first part of the magnetic coupling means kinematically linked to the electromotor are arranged and hermetically sealed in a first casing module, and wherein said mechanical transmission and a second part of the coupling means kinematically linked to said mechanical transmission are arranged in a second casing module, said first and second casing modules comprising each complementary fastening means such that said first and second casing modules can be removably connected to each other in such a way that said first and second parts of the magnetic coupling means magnetically couple together upon connection of said first and second casing modules.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: February 13, 2024
    Assignee: MYOPOWERS MEDICAL TECHNOLOGIES FRANCE SAS
    Inventors: Christophe Aubert, Fabian Kaegi
  • Patent number: 11896812
    Abstract: A system and method for positioning a modular heart pump about the ventricles of the heart. The modular heart pump has at least one active panel and an apical base. Each active panel includes an inflatable membrane. The apical base helps retain the active panels on position about the heart. The components are assembled in vivo to create a pump assembly that encircles all or part of the heart. During installation, the active panels are advanced along the outside of the ventricles. Suction is provided on the leading edge of the active panels to remove any fluids and/or loose tissue that may prevent the active panel from advancing to an operable position.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: February 13, 2024
    Assignee: Lifebridge Technologies LLC
    Inventor: Mark P. Anstadt
  • Patent number: 11883274
    Abstract: Apparatus and methods are described for improving renal function of a patient, including mechanically occluding the patient's inferior vena cava downstream of the renal vein ostium to form an upstream region and a downstream region of the inferior vena cava, and mechanically pumping blood through the inferior vena cava from the upstream region to a discharge location in the downstream region while the inferior vena cava is occluded, wherein the blood remains in the inferior vena cava while being mechanically pumped. Other applications are also described.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 30, 2024
    Assignee: Magenta Medical Ltd.
    Inventors: Ehud Schwammenthal, Yosi Tuval, Daniel Glozman
  • Patent number: 11850039
    Abstract: An apparatus and a method are described in which a signal is received from a gyroscope sensor mounted on a subject. The gyroscope sensor is configured to measure rotational movement of the subject's heart, the signal being indicative of a left ventricular twist of the subject's heart. A change in the left ventricular twist of the subject's heart caused by occlusion of blood flow by an arterial occlusion device configured to selectively occlude blood flow of the subject is determined.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: December 26, 2023
    Assignee: Nokia Technologies Oy
    Inventors: Harri Lindholm, Satu Rajala
  • Patent number: 11850415
    Abstract: Apparatus and methods are described including a blood pump that includes a catheter, a first impeller disposed on the catheter, and a second impeller disposed on the catheter, proximally to the first impeller. A motor drives the first and second impellers to pump blood of a subject, by driving the first and second impellers to rotate. The blood pumps is configured such that (a) the first and second impellers are shaped differently from each other when the first and second impellers are in non-radially-constrained configurations, (b) the first and second impellers are sized differently from each other when the first and second impellers are in non-radially-constrained configurations, and/or (c) the first and second impellers are driven by the motor to rotate under respective rotation conditions that are different from each other. Other applications are also described.
    Type: Grant
    Filed: April 4, 2023
    Date of Patent: December 26, 2023
    Assignee: Magenta Medical Ltd.
    Inventors: Ehud Schwammenthal, Yosi Tuval, Daniel Glozman
  • Patent number: 11844592
    Abstract: Apparatus and methods are described including a ventricular assist device that includes an impeller configured to be placed inside a subject's left ventricle. A frame is disposed around the impeller, the frame defining generally-cylindrical central portion, and a proximal conical portion that widens from a proximal end of the frame to a proximal end of the generally-cylindrical central portion. A motor drives the impeller to pump blood from the left ventricle to the subject's aorta, by rotation of the impeller. The impeller is configured to be disposed at least partially within the proximal conical portion of the frame during at least some of a time during which the impeller rotates. Other applications are also described.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: December 19, 2023
    Assignee: Magenta Medical Ltd.
    Inventors: Yosi Tuval, Zev Sohn, Ehud Schwammenthal, Gad Lubinsky
  • Patent number: 11844915
    Abstract: Provided is a balloon dilatation system, which includes a signal collecting module, a main controller, a pressurization module, a pressure relief module, a first pressure sensor, a flow rate sensor, a balloon catheter and a balloon. The signal collecting module is electrically connected to the main controller, and is configured to collect a control signal and send the control signal to the main controller; the main controller is electrically connected to the pressurization module and the pressure relief module; the pressurization module is connected to the balloon through the balloon catheter; the pressure relief module is connected to the balloon through the balloon catheter; the first pressure sensor is arranged on the balloon catheter and is configured to monitor a first liquid pressure of the balloon; the flow rate sensor is arranged on the balloon catheter and is configured to monitor a liquid flow rate of the balloon catheter.
    Type: Grant
    Filed: April 28, 2018
    Date of Patent: December 19, 2023
    Assignee: SURGSCIENCE (SHENZHEN) MEDICAL TECH. CO., LTD.
    Inventor: Gengchao Feng
  • Patent number: 11847934
    Abstract: A blood flow environment simulation device is disclosed, including: a liquid reservoir (1) for storing liquid; a vascular simulation tube (4); a pump (2) for pumping liquid; a plurality of circulation tubes (7, 11, 12), which form a liquid circulation path together with the vascular simulation tube; and a valve (6) located in the circulation path, having a valve inlet (17) and a valve outlet (18), wherein the area of the valve inlet (17) is variable to change the dynamic parameters of the fluid in the vascular simulation tube (4) over time. The present disclosure also relates to medical equipment that includes a blood flow environment simulation device as described.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: December 19, 2023
    Assignee: BEIJING BYWAVE SENSING TECHNOLOGY CO., LTD.
    Inventors: Lizhe Zhang, Qinhua Jin, Hao Liu, Qiaoli Zhang, Yujie Huang, Dongyun Li, Yonggang Guo
  • Patent number: 11839753
    Abstract: Some embodiments of percutaneous ventricular assist devices have a two-part design that includes a housing component and a separately deployable rotatable inner catheter component. The housing component can include an expandable pump housing. The inner catheter can include an expandable pump impeller and an associated flexible drive shaft. The drive shaft can be coupled to a motor located external to the patient. The motor can rotate the drive shaft to spin the pump impeller inside of the pump housing, causing blood to be pumped within the patient. In some embodiments, the pump impeller is inflatable or self-expandable. The two-part percutaneous ventricular assist devices with inflatable or self-expandable pump impellers are designed to have very small delivery profiles. Accordingly, various deployment modalities, including radial artery deployment, are practicable using the two-part percutaneous ventricular assist devices described herein.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: December 12, 2023
    Assignee: Narwhal Medical LLC
    Inventor: Loïc Van Horne
  • Patent number: 11833341
    Abstract: A heart pump including: a housing forming a cavity including: at least one inlet aligned with an axis of the cavity; and, at least one outlet provided in a circumferential outer wall of the cavity; an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet; and, a drive for rotating the impeller in the cavity and wherein a flow path through the pump has a minimal cross-sectional area of at least 50 mm2.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: December 5, 2023
    Assignee: BIVACOR Inc.
    Inventor: Daniel Timms
  • Patent number: 11837358
    Abstract: Medical devices, systems, and methods related thereto a glucose monitoring system having a first display unit in data communication with a skin-mounted assembly, the skin-mounted assembly including an in vivo sensor and a transmitter. The first display unit and a second display unit are in data communication with a data management system. The first display unit comprises memory that grants a first user first access level rights and the second display unit comprises memory that grants a second individual second access level rights.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: December 5, 2023
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Christopher V. Reggiardo, Namvar Kiaie, James Thomson
  • Patent number: 11826127
    Abstract: A blood pump including a housing having an inlet element, the inlet element including a distal portion coupled to the housing and a proximal portion sized to be received within at least a portion of a heart of a patient and a rotor configured to rotate within the housing and impel blood from the heart. At least one pressure sensor is coupled to the proximal portion of the inlet element.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: November 28, 2023
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Patent number: 11815097
    Abstract: The invention relates to a pump device having a pump (8) and an energy supply device (5, 18), wherein the pump has a conveying element (9, 11) which conveys a fluid by means of supplied energy, wherein the pump has a transport state and an operating state, and wherein at least one first element (9, 9a, 10, 10?, 11) of the pump has a different shape and/or size in the transport state than in the operating state. The operating safety of such a pump device is increased by a detection device (12, 20, 21, 22, 23, 24, 25, 27, 28, 29) which detects whether at least the first element is in the operating state with respect to shape and/or size by means of a sensor.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: November 14, 2023
    Assignee: ECP ENTWICKLUNGSGESELLSCHAFT MBH
    Inventor: Joerg Schumacher
  • Patent number: 11813154
    Abstract: An implantable prosthesis for repairing or reinforcing a tissue or muscle wall defect is provided. The implantable prosthesis includes a first biocompatible structure having a tether attached thereto for maintaining stable deployment of the implantable prosthesis through an abdominal wall; a rigid reinforcement member positioned adjacent a bottom side of the first biocompatible structure, the rigid reinforcement member including an inner circumferential ring, a plurality of spoke elements, a plurality of openings, and a plurality of guide members molded thereon; a mesh structure positioned adjacent a bottom surface of the rigid reinforcement member, the mesh structure overlapping the inner circumferential ring of the rigid reinforcement member; a second biocompatible structure and an anti-adhesion barrier having a collagen coating positioned on a bottom surface of the second biocompatible structure.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 14, 2023
    Assignee: COVIDIEN LP
    Inventor: Matthew D. Cohen
  • Patent number: 11813445
    Abstract: Mechanical circulatory supports configured to operate in series with the native heart are disclosed. In an embodiment, a centrifugal pump is used. In an embodiment, inlet and outlet ports are connected into the aorta and blood flow is diverted through a lumen and a centrifugal pump between the inlet and outlet ports. The supports may create a pressure rise between about 40-80 mmHg, and maintain a flow rate of about 5 L/min. The support may be configured to be inserted in a collinear manner with the descending aorta. The support may be optimized to replicate naturally occurring vortex formation within the aorta. Diffusers of different dimensions and configurations, such as helical configuration, and/or the orientation of installation may be used to optimize vortex formation. The support may use an impeller which is electromagnetically suspended, stabilized, and rotated to pump blood.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: November 14, 2023
    Inventors: Theodosios Alexander, Martin T. Rothman
  • Patent number: 11806116
    Abstract: Apparatus and methods are described including a blood pump that includes an impeller, and a motor configured to drive the impeller to pump blood by rotating the impeller. The impeller is configured to undergo axial motion, in response to changes in a pressure against which the impeller is pumping. A sensor detects the axial motion of the impeller, and generates a sensor signal in response thereto. A computer processor receives the sensor signal and generates an output in response thereto. Other applications are also described.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: November 7, 2023
    Assignee: Magenta Medical Ltd.
    Inventors: Yosi Tuval, Zev Sohn, Ehud Schwammenthal, Gad Lubinsky
  • Patent number: 11806117
    Abstract: Apparatus and methods are described including a blood pump that includes an axial shaft, an impeller disposed on the axial shaft, a frame disposed around the impeller, and a motor disposed outside a subject's body, and configured to drive the impeller to pump blood from a distal end of the impeller to a proximal end of the impeller. A drive cable extends from outside the subject's body to the axial shaft, and is configured to impart rotational motion from the motor to the impeller by rotating. The drive cable is held in a preloaded state with respect to the frame, such that initiation of pumping of blood by rotation of the impeller does not cause the drive cable to axially elongate. Other applications are also described.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: November 7, 2023
    Assignee: Magenta Medical Ltd.
    Inventors: Yosi Tuval, Zev Sohn, Ehud Schwammenthal, Gad Lubinsky
  • Patent number: 11793995
    Abstract: Various systems and methods are provided for reducing pressure at an outflow of a duct such as the thoracic duct or the lymphatic duct. A catheter system can include a catheter shaft configured to be at least partially implantable within a patient's vein, a flexible membrane attached to the catheter shaft, the flexible membrane being a collapsible, tube-like member having a lumen extending therethrough, and a single selectively deployable restriction member formed over a portion of the flexible membrane at substantially a midpoint between a proximal end of the flexible membrane and a distal end of the flexible membrane, the restriction member being configured to control a size of the lumen so as to direct a controlled volume of fluid from an upstream side of the restriction member to a downstream side the restriction member.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: October 24, 2023
    Assignee: WHITE SWELL MEDICAL LTD.
    Inventors: Yaacov Nitzan, Menashe Yacoby, Sagi Raz, Shani Chen, Or Inbar
  • Patent number: 11793641
    Abstract: An annuloplasty device is disclosed for treating a defective mitral valve having an annulus, comprising a removable and flexible elongate displacement unit for temporary insertion into a coronary sinus (CS) adjacent the valve, wherein the displacement unit has a delivery state for delivery into the CS, and an activated state to which the displacement unit is temporarily and reversibly transferable from said delivery state, the displacement unit comprises a proximal reversibly expandable portion, a distal anchoring portion being movable in relation to the proximal expandable portion in a longitudinal direction of the displacement unit to said activated state in which the shape of the annulus is modified to a modified shape, wherein the proximal expandable portion is reversibly foldable to an expanded state for positioning against a tissue wall at the entrance of the CS.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: October 24, 2023
    Inventors: Olli Keränen, Jouko Vallikari, Hans-Reinhard Zerkowski
  • Patent number: 11793971
    Abstract: An intrathecal drug delivery system configured to improve dispersion of medicament with cerebral spinal fluid in a subarachnoid space of a patient. The intrathecal drug delivery system including an implantable medical pump and a catheter having a wall defining a lumen extending between a proximal end in fluid communication with the implantable pump and structure defining a medicament exit positionable within the subarachnoid space of the patient, the wall further defining at least one feature configured to generate vortices within the cerebrospinal fluid for the purpose of improving intrathecal drug dispersion.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: October 24, 2023
    Assignee: Medtronic, Inc.
    Inventor: Jeffrey Bodner
  • Patent number: 11786719
    Abstract: A centrifugal blood pump includes a housing having a pumping chamber, an inlet having an inlet axis, and an outlet having an outlet axis. The inlet and the outlet are in fluid communication with the pumping chamber. The pump further includes an impeller rotatably disposed within the pumping chamber, and a strut connected to the housing at the inlet. The strut is connected to the housing at a circumferential position about the inlet axis such that a major axis of the strut and the outlet axis define a predetermined angle in a cross-sectional plane perpendicular to the inlet axis. The circumferential position of the strut relative the outlet axis reduces or eliminates damage to blood flowing around the strut.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 17, 2023
    Assignee: CARDIACASSIST, INC.
    Inventors: David Busch, John C. Marous, III, Anthony S. McCoppin, Robert G. Svitek
  • Patent number: 11781550
    Abstract: The invention relates to a micromotor (10), the stator of which contains a back iron jacket (18). Said back iron jacket consists of a continuous unslotted sleeve consisting of a metal alloy that contains ferritic iron as the main constituent, up to 30% chromium and preferably aluminium and yttrium oxide. Electric conductivity is reduced by the oxidation of the aluminium. The yttrium oxide performs the same function. The reduced electric conductivity suppresses eddy currents to a great extent. The back iron jacket (18) has a high magnetic conductivity with a small wall thickness, thus increasing the electrical output for a motor with a small diameter.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: October 10, 2023
    Assignee: ABIOMED EUROPE GMBH
    Inventors: Thorsten Siess, Frank Kirchhoff
  • Patent number: 11779752
    Abstract: A pump intended to be immersed in a fluid, including a housing, a brushless motor unit formed by a stator in which first magnetic elements are disposed, a rotor having second magnetic elements intended for magnetic coupling with the first magnetic elements of the stator, a transmission shaft connected to the rotor and constituting, in its upper part, a turbine, the turbine includes, at its apex, an output pivot interacting with a guide fastened to the housing, the guide having a complementary shape to that of the output pivot so as to keep the output pivot stable in rotation and to form a space between the output pivot and the guide, and the guide includes a central opening in the axis of rotation of the output pivot for a passage of fluid from the inside of the housing to the outside via the space and the opening.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: October 10, 2023
    Assignee: FINEHEART
    Inventors: Mohammad Haddadi, Stéphane Garrigue, Maryam Haddadi, Arnaud Mascarell
  • Patent number: 11773856
    Abstract: A sump pump system detects backflow from an outlet pipe in a sump pump system and implements control of the sump pump in light of the detected backflow (or lack thereof). The sump pump system may detect the backflow (or lack thereof) by detecting and comparing water rise rates in a sump basin before activation or engagement of the sump pump (e.g., immediately before the pump starts pumping) and after the pump has disengaged or deactivated (e.g., immediately after the pump stops pumping). The rises rates may be detected via sensors configured to detect motion or acceleration (e.g., accelerometers, inertial measurement units, or force acceleration sensors) placed in the sump basin such that detect motion of water in the basin corresponding to changing water levels.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: October 3, 2023
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Nathan L. Tofte, Jonathan Christopher Hull, John Donovan, Richard Jan Tjaden
  • Patent number: 11771907
    Abstract: An implantable heart help device adapted for implantation in a human patient is provided. The device comprising a fixating member adapted to fixate said device to a part of the human body comprising bone. Further a method of fixating an implantable heart help device in a human patient is provided. The method comprises the steps of: cutting the skin of said human patient, dissecting an area of the body comprising bone, and fixating said implantable heart help device to said part of the body comprising bone.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: October 3, 2023
    Inventor: Peter Forsell
  • Patent number: 11773863
    Abstract: To provide a simple embodiment of a rotor for a fluid pump which is nevertheless very flexible in handling and compressible, in accordance with the invention a conveying blade is provided having at least two struts and a membrane spanned between them in the expanded state, wherein the struts each have at least one joint, in particular more than one joint, which enables an angling in a first direction in a first movement plane and bounds an overelongation beyond an elongation angle of in particular 180° in the opposite second direction. In particular when a plurality of joints are provided at the struts, they, and with them the conveying blades, are particularly flexible for simple compressibility.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: October 3, 2023
    Assignee: ECP ENTWICKLUNGSGESELLSCHAFT MBH
    Inventor: Sami Er
  • Patent number: 11754077
    Abstract: A device to assist the performance of a heart with at least one pump that is formed as a rotary pump and driven via a magneto coupling.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: September 12, 2023
    Assignee: Miracor Medical SA
    Inventor: Werner Mohl
  • Patent number: 11752320
    Abstract: Disclosed is an assembly for fitting/removing a heart pump in a sleeve secured in an opening in a ventricular wall, the assembly including a guide element with a distal end, a proximal end, and a lumen extending between, and opening at, the distal and proximal ends, the heart pump having a pump body. With this pump body including an assembly element, the assembly includes a gripping unit which can slide in the lumen, the gripping unit having at its free end an assembly part which is complementary with the assembly element, which part is configured to cooperate with the assembly element, and to join this free end to the pump body, in order to permit the gripping and displacement of the heart pump.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: September 12, 2023
    Assignee: FINEHEART
    Inventors: Stéphane Garrigue, Arnaud Mascarell
  • Patent number: 11745004
    Abstract: Embodiments include Ventricular Assist Devices (VADs) with clips that help hold a cannula to the VAD. In some embodiments the clip embraces a cannula that has been placed around a cannula connector. In further embodiments an additional clip connects the first clip to the VAD housing preventing the first clip from slipping. The clip and additional clip may form a single piece. Further embodiments include a blood pumping sac located inside a cavity in the VAD forming one or more air chambers between the sac and the cavity walls, and an airflow channel leading from the air chambers to an airflow port allowing the sac to be evenly pressurized and depressurized. Still further embodiments include one or more purge devices that assist in removing bubbles from the VAD and helping connect cannulas to the VAD. Additional embodiments include a torqueable wrench to facilitate use and proper sealing of the device.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: September 5, 2023
    Assignee: VITALMEX INTERNACIONAL S.A. DE C.V.
    Inventors: Adrian Beltrán Calva, Cynthia Denisse Anaya Romo, Jesús Salvador Carlos Robles
  • Patent number: 11745005
    Abstract: A method and apparatus for long-term assisting the left ventricle of a heart to pump blood is disclosed which includes at least one transluminally deliverable pump and a transluminally deliverable support structure which secures the at least one pump within the aorta for long-term use.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: September 5, 2023
    Assignee: Procyrion, Inc.
    Inventor: Reynolds M. Delgado, III
  • Patent number: 11730946
    Abstract: An inlet tube of a circulatory support device includes a first end configured to receive incoming blood and a second end coupled to a first end of a blood pump. A lumen extends from the first end to the second end, and a spiral feature is disposed within the lumen and configured to support a spiral flow of the incoming blood.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: August 22, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jan Weber, Matthew Boyer
  • Patent number: 11730945
    Abstract: A device for circulatory support of the heart with holding means implanted intracardially in the left or right ventricular outflow of the hea by catheter, using an endovascular method, through a femoral access or a percutaneous transventricular, transseptal, transapical or transvenous access, the holding means comprises anchoring means fixed in the subcommissural triangle underneath the aortic valve and the pulmonary valve, in the flow direction of the blood on the ventricular side of the aortic valve and the pulmonary valve, a pump fixed in the holding means by a catheter, using an endovascular method, through a femoral access or a percutaneous transventricular, transseptal, transapical or transvenous access, the pump could be inserted releasably into the holding means after the holding means has been fixed by the anchoring means in the subcommissural triangles underneath the aortic valve and the pulmonary valve, or is connected to the collapsible and expandable anchoring means.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: August 22, 2023
    Inventor: Michael Siegenthaler
  • Patent number: 11730390
    Abstract: The present invention relates to a device for treating an aneurysm of a human or mammal patient, wherein the aneurysm may self expand, leading to the aneurysm bursting with high risk for death of the human or mammal patient. The device is provided with an implantable member to be placed in connection with the outside of a blood vessel having the aneurysm, and to exercise a pressure on the outside of the blood vessel having the aneurysm, a measuring device or sensor for measuring or sensing an expansion of the aneurysm, and a monitoring system for monitoring the expansion of the aneurysm based on a signal received from the measuring device or sensor.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: August 22, 2023
    Inventor: Peter Forsell
  • Patent number: 11730599
    Abstract: An annuloplasty device is disclosed for treating a defective mitral valve having an annulus, comprising a removable and flexible elongate displacement unit for temporary insertion into a coronary sinus (CS) adjacent the valve, wherein the displacement unit has a delivery state for delivery into the CS, and an activated state to which the displacement unit is temporarily and reversibly transferable from said delivery state, the displacement unit comprises a proximal reversibly expandable portion, a distal anchoring portion being movable in relation to the proximal expandable portion in a longitudinal direction of the displacement unit to said activated state in which the shape of the annulus is modified to a modified shape, wherein the proximal expandable portion is reversibly foldable to an expanded state for positioning against a tissue wall at the entrance of the CS, and wherein the distal anchoring portion comprises an inflatable unit.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 22, 2023
    Assignee: HVR Cardio Oy
    Inventors: Olli Keränen, Hans-Reinhard Zerkowski, Jouko Vallikari
  • Patent number: 11724092
    Abstract: A blood pump comprises a pump casing having a blood flow inlet and a blood flow outlet, and an impeller arranged in said pump casing so as to be rotatable about an axis of rotation. The impeller has blades sized and shaped for conveying blood from the blood flow inlet to the blood flow outlet. The blood pump also has an outflow cannula having an upstream end portion, a downstream end portion and an intermediate portion extending between the upstream end portion and the downstream end portion. The upstream end portion of the outflow cannula is connected to the pump casing such that blood is conveyed from the blood flow outlet of the pump casing into and through the intermediate portion of the outflow cannula towards the downstream end portion of the outflow cannula, wherein the downstream end portion has a blood flow outlet through which blood can exit the outflow cannula.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: August 15, 2023
    Assignee: ABIOMED EUROPE GMBH
    Inventors: Thorsten Siess, Walid Aboulhosn
  • Patent number: 11724095
    Abstract: The disclosure relates to devices and methods for the treatment of edema using a purge-free system. The invention provides devices and methods useful for treating edema by means of an indwelling catheter that is placed in a blood vessel of a patient and used to pump blood to cause a decrease in pressure at an outlet of a lymphatic duct. The catheter pumps blood by means of an impeller but is purge-free in that the catheter does not include a system for purging or flushing catheter components with a purge fluid. The purge-free catheter avoids blood-related mechanical complications such as clotting or thrombosis by means of an impermeable sleeve or shroud that protects moving parts of the impeller drive system.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: August 15, 2023
    Assignee: White Swell Medical Ltd
    Inventors: Yaacov Nitzan, Ronan Keating, Shahaf Marmur, Or Inbar, Eamon Brady, Gerry McCaffrey, Reed Williston, Sagi Raz
  • Patent number: 11717652
    Abstract: The disclosure relates to devices and methods for the treatment of edema, which devices use a restrictor for flow compensation. Devices and methods of the invention further use a flow-restrictor in the circulatory system, upstream of an intravascular pump, to balance pressure changes induced by the pump and to compensate for downstream flow. The device may be provided as an indwelling, intravascular catheter with a mechanical pump such as an impeller and a selectively deployable restrictor such as an inflatable balloon. Congestive heart failure or edema is treated by \ operating the pump in an innominate vein and using the restrictor for flow compensation, to restrict the upstream flow and thus amplify or maintain pressure reduction at the lymphatic outlet.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: August 8, 2023
    Assignee: White Swell Medical Ltd
    Inventors: Yaacov Nitzan, Ronan Keating, Shahaf Marmur, Or Inbar, Eamon Brady, Gerry McCaffrey, Reed Williston, Sagi Raz
  • Patent number: 11717670
    Abstract: An intravascular fluid movement device that includes an expandable member having a collapsed, delivery configuration and an expanded, deployed configuration, the expandable member having a proximal end and a distal end, a rotatable member disposed radially and axially within the expandable member, and a conduit coupled to the expandable member, the conduit at least partially defining a blood flow lumen between a distal end of the conduit and a proximal end of the conduit, the conduit disposed solely radially inside of the expandable member in a distal section of the expandable member.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: August 8, 2023
    Assignee: Shifamed Holdings, LLP
    Inventors: Amr Salahieh, Claudio Argento, Tom Saul, Brady Esch, Colin Mixter, Peter Brown, Anna Kerlo, Daniel Hildebrand, Daniel Varghai
  • Patent number: 11702938
    Abstract: A rotor for a pump has a housing and a rotor, and has at least one blade. The rotor is able to be actuated to rotate about an axis of rotation in order to convey a fluid in the axial or radial direction, and the rotor is able to be deformed in the radial direction between a first, radially compressed state and a second, radially expanded state. At a maximum speed of rotation of the rotor at which the power of the pump is at a maximum, the blade is essentially radially oriented, and/or the rotor has its maximum diameter.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: July 18, 2023
    Assignee: ECP ENTWICKLUNGSGESELLSCHAFT MBH
    Inventors: Joerg Schumacher, Mario Scheckel
  • Patent number: 11697016
    Abstract: A catheter pump having a rotor shaft rotatably arranged in the inner catheter for driving an expandable conveyor element provided at the pump head. The conveyor element is rotatably mounted between a. distal hearing point and a proximal bearing point, wherein the outer catheter has a sleeve section on the distal end thereof surrounding the proximal bearing point, and wherein the proximal bearing point can be moved in the axial direction relative to the sleeve section in order to expand the conveyor element, wherein the proximal bearing point comprises a bearing receiver having a rotational bearing point for a rotary head rotationally fixed to the distal end of the rotor shaft, and a force application point at an axial distance to same for a force application section provided at the distal end of the inner catheter for axially moving the proximal bearing points relative to the sleeve section.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 11, 2023
    Assignee: CardioBridge GmbH
    Inventor: Klaus Epple
  • Patent number: 11697017
    Abstract: An improved system for supporting (e.g., localization and/or positioning of) intravascular devices discussed herein provides for example a multi-element arrangement. A set of struts optionally projects from the intravascular device and contacts the vessel walls. The localization and positioning of the pump may be provided by the struts and/or by use of a tether opposing a propulsive force to ensure localization.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: July 11, 2023
    Assignee: PROCYRION, INC.
    Inventors: William Clifton, Ronald G. Earles, Benjamin Hertzog, Jason J. Heuring, Christopher A. Durst, Omar Benavides, Eric S. Fain
  • Patent number: 11690996
    Abstract: A blood pump comprises a pump casing having a blood flow inlet and a blood flow outlet connected by a passage, and an impeller arranged in said pump casing so as to be rotatable about an axis of rotation. The impeller is provided with blades sized and shaped for conveying blood along the passage from the blood flow inlet to the blood flow outlet, and is rotatably supported in the pump casing by a first bearing at a first axial end of the impeller and a second bearing axially spaced apart from the first bearing. The first bearing comprises a projection extending along the axis of rotation and connected to one of the impeller and the pump casing and a cavity in the other one of the impeller and the pump casing, the projection comprising an enlarged portion that engages the cavity such that the first bearing and the second bearing are arranged to bear axial forces in the same axial direction.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: July 4, 2023
    Assignee: Abiomed Europe GmbH
    Inventors: Thorsten Siess, Walid Aboulhosn
  • Patent number: 11690521
    Abstract: A blood pump is described that includes an impeller having proximal and distal bushings, at least one helical elongate element, a spring that is disposed inside of the helical elongate element and along an axis around which the helical elongate element winds, and a film of material supported between the helical elongate element and the spring. A frame is disposed around the impeller. A flexible elongate element extends radially from the spring to the helical elongate element, and maintains the helical elongate element within a given distance from the spring, to thereby maintain a gap between an outer edge of a blade of the impeller and an inner surface of the frame, during rotation of the impeller. Other applications are also described.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: July 4, 2023
    Assignee: Magenta Medical Ltd.
    Inventors: Yosi Tuval, Zev Sohn, Ehud Schwammenthal, Gad Lubinsky
  • Patent number: 11690720
    Abstract: A system for treating cardiac dysfunction can include an expandable device for insertion into a heart, a foot configured to contact a portion of the heart, a support frame, and a membrane coupled to the support frame. The support frame can include a plurality of radially expandable struts each having a first free end configured to extend beyond the foot and a second end coupled to the foot. The plurality of radially expandable struts can include a plurality of staggered stops, and each of the stops can be positioned on a respective one of the struts proximal to the first free end of the respective one of the struts. Method for treating cardiac dysfunction can include implanting the systems described herein into a chamber of the heart.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: July 4, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Miles D. Alexander
  • Patent number: 11686318
    Abstract: A pump device (10) includes a housing (30) including a blood inflow port (38) through which blood flows in, and having a fixed-side repulsive magnet (44) disposed in an annular manner; and an impeller (14) that is rotatably housed inside the housing (30), and having a movable-side repulsive magnet (56) disposed in an annular manner. The fixed-side repulsive magnet (44) is disposed in a position offset toward the blood inflow port (38) side relative to the movable-side repulsive magnet (56). In the fixed-side repulsive magnet (44) and the movable-side repulsive magnet (56), a fixed-side repulsive surface (44a) and a movable-side repulsive surface (56a) adjacent to each other have the same polarity.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: June 27, 2023
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Takehisa Mori
  • Patent number: 11674517
    Abstract: A device to assist the performance of a heart with at least one pump that is formed as a rotary pump and driven via a magneto coupling.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: June 13, 2023
    Assignee: Miracor Medical SA
    Inventor: Werner Mohl
  • Patent number: 11666281
    Abstract: A method of detecting hypertension in a patient having an implantable blood pump, the method includes operating the implantable blood pump at a first pump set speed during a first period of time. A first flow rate minimum during a cardiac cycle of the patient is measured during the first period of time. The first pump set speed is reduced by at least 200 rpm during a second period of time after the first period of time to a second pump set speed, the second period of time being less than the first period of time. A second flow rate minimum is measured during a cardiac cycle during the second period of time. If the second flow rate minimum decreases during the second period of time at the second pump set speed by more than a predetermined amount, an alert is generated indicating a presence of hypertension.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic, Inc.
    Inventors: D'Anne E. Kudlik, Robert W. Stadler