Electrode Guide Means Patents (Class 606/129)
  • Patent number: 11298528
    Abstract: Tether apparatus may be used to replace an implanted lead extension with a replacement lead extension without tunneling or the use of tunneling tools.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: April 12, 2022
    Assignee: Medtronic, Inc.
    Inventors: Peter Appenrodt, Daniel Schmitz, Paul Van Venrooij
  • Patent number: 11285331
    Abstract: An implantable medical device includes a housing having a proximal end and a distal end. The implantable medical device is placeable on cardiac tissue in the region of the distal end. An anchoring device is fixedly attached to the housing in the region of the distal end. The anchoring device includes at least one anchoring member. The at least one anchoring member includes a first end and a second end opposite the first end. The second end is disposed on the housing. The at least one anchoring member longitudinally extends between the first end and the second end along an axis of extension and is formed by a flat strip which is twisted by a twist angle about the axis of extension between the first end and the second end. A method for manufacturing an implantable medical device is also provided.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: March 29, 2022
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: R. Hollis Whittington, Dirk Muessig, Brian M. Taff, Nicholas Devich
  • Patent number: 11253703
    Abstract: A system and method for eye treatment. The system and method utilize an electro acupuncture stimulator. The electro acupuncture stimulator includes a positive lead and a negative lead. The system further includes a pair of first needles, a second needle and a diode. The pair of first needles are electrically connected to one of the positive lead and the negative lead. The diode is electrically connected to the other of the positive lead and the negative lead. The second needle is electrically connected to the diode.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: February 22, 2022
    Inventor: Richard Charles Niemtzow
  • Patent number: 11253260
    Abstract: A device and system are described that are capable of isolating at least one targeted tissue and forming an anastomosis between two internal body structures though a completely endoscopic procedure. Further, the device and system described generally comprise two tubular members that are capable of moving in a telescopic fashion relative to one another. Additionally, a method is described for using the device and/or system to bypass the duodenum from digestion.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: February 22, 2022
    Assignee: CVDevices, LLC
    Inventors: Ghassan S. Kassab, Jose A. Navia, Sr.
  • Patent number: 11235145
    Abstract: Implantable device systems include an electrical lead with one or more electrodes and a shield. The shield is attached to the electrical lead with the shield covering a first side of the electrode and extending laterally away from the electrode. The shield directs energy from at least one of the electrodes of the the electrical lead in a direction away from the shield.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 1, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Arthur J. Foster, G. Shantanu Reddy
  • Patent number: 11229798
    Abstract: An implantable leadless pacing device and delivery system may comprise an implantable leadless pacing device and a catheter configured to deliver the implantable leadless packing device to a target location. The implantable device may comprise a power source, circuitry operatively coupled to the power source, a housing at least partially enclosing the circuitry, a first electrode secured relative to and offset from a longitudinal axis of the housing and exposed exterior to the housing, and a fixation mechanism secured relative to the housing. The fixation mechanism may comprise at least one tine configured to move between an elongated delivery configuration and a curved deployed configuration and radially offset from the first electrode. The catheter may comprise a distal holding section defining a cavity configured to receive the implantable leadless pacing device.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: January 25, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Peter Toy, Keith R. Maile, Brendan Early Koop, Bryan J. Swackhamer, Allan Charles Shuros
  • Patent number: 11213196
    Abstract: The present invention is directed at minimally invasive systems in which the proximal end portion of the working channel has either zero or a limited range of movement in the lateral direction. A first embodiment has a slidable collar attached to a pair of flanges, wherein movement of the collar is bounded by an annular frame. A second embodiment has a substantially spherical element attached to the tube. A third embodiment has a plurality of caps. A fourth embodiment is adapted for a larger working channel.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: January 4, 2022
    Assignee: Medos International Sarl
    Inventors: Salman Chegini, Joern Richter, Daniel Thommen, Peter Senn, Piet Hinoul, Richard Kocharian
  • Patent number: 11214048
    Abstract: A stiffener-reinforced microelectrode array probe and fabrication method using wicking channel-distributed adhesives which temporarily adheres a flexible device onto a rigid stiffener for insertion and extraction. Assembly is by dispensing a liquid adhesive into a narrow open groove wicking channel formed on the stiffener so that the adhesive is wicked along and fills the channel by capillary action, and adhering the adhesive-filled bonding side of the elongated section of the rigid substrate to a flexible device.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 4, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Diana George, Satinderpall S. Pannu, Sarah Felix
  • Patent number: 11207116
    Abstract: A method and system for creating permanent lesions in an area of target tissue, such as tissue at or proximate a junction between a pulmonary vein and the left atrium. The method may generally include positioning a medical device in contact with a pulmonary vein ostium, ablating the tissue, and recording a plurality of temperature measurements from one or more of three temperature sensors. The device may include an occlusion element in communication with a coolant source, a first sensor located distal of the occlusion element, a second sensor located proximal of the occlusion element, and a third sensor located in the occlusion element. One or more temperature measurements may be compared with each other to assess occlusion of the pulmonary vein, and/or may be compared with a set of reference temperatures to predict a real-time temperature within the target tissue.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: December 28, 2021
    Assignee: Medtronic CryoCath LP
    Inventors: Dan Wittenberger, Jean-Pierre Lalonde, Stephen A. Howard
  • Patent number: 11197772
    Abstract: The present invention provides a guidewire adjuster and a delivery-system control handle provided with the guidewire adjuster. The guidewire adjuster includes a support mechanism which has a lumen for a guidewire to extend therethrough; and a driving mechanism for driving the guidewire to move back and forth in the lumen. The guidewire adjuster is able to drive the guidewire to move with respect to a sheath of the delivery system. The support mechanism is connected to the control handle of the delivery system and forms a lumen for accommodating the guidewire. A proximal end of the sheath together with the stent can be driven to move upwardly, due to the relative movement between the guidewire and the sheath of the delivery system. Therefore, the position of the stent can be adjusted by advancing the guidewire forward when the stent has been deployed at a lower position than expected.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: December 14, 2021
    Assignee: Venus Medtech (Hangzhou) Inc
    Inventor: Rongjun Lei
  • Patent number: 11191941
    Abstract: Systems and connectors for hemostasis valves and associated methods are disclosed herein. According to an aspect, a connector for a medical device includes a body defining a first opening, a second opening, and a channel. The channel provides passage between the first opening and the second opening. The body is configured to engage an inlet port of a hemostasis valve at the first opening when the body and the hemostasis valve are arranged in one or more positions with respect to each other. The connector also includes a clip attached to the body and configured to fasten the body to the hemostasis valve when the body and the hemostasis valve are arranged in one of the positions.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: December 7, 2021
    Assignee: Duke University
    Inventors: Guillaume Marquis-Gravel, Manesh Patel, Katie Carroll, Shweta Shrikant
  • Patent number: 11167130
    Abstract: A shield member is placed within a polymer flexible carrier in between a manipulation member used to aid implant of a nerve cuff and the nerve to avoid touching the nerve surface with the manipulation member because the texture or material of the flexible member typically causes more foreign body reaction or other biologic reaction from the nerve and surrounding tissues than the polymer of the flexible carrier itself.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: November 9, 2021
    Assignee: MICROTRANSPONDER, INC.
    Inventor: Ravi Jain
  • Patent number: 11160989
    Abstract: A leadless pacing device may include a power supply providing a power supply voltage, a housing having a first end, a second end, and a side extending between the first end and the second end, and a set of electrodes supported by the housing and in communication with the power supply. The housing may be angled to follow a contour of a patient's heart when the housing is positioned within the coronary sinus of the patient's heart. In some cases, an angled portion of the housing may include a smooth-curve. In some cases, an angled portion of the housing may include a first portion of the housing and a second portion of the housing at an angle of less than one-hundred-eighty degrees with respect to the first portion of the housing. One or more of the electrodes may be exposed on a concave side of the angled housing.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: November 2, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Allan Charles Shuros, Lili Liu, G. Shantanu Reddy
  • Patent number: 11116965
    Abstract: Nerve cuff deployment apparatuses and methods of using them to deliver a nerve cuff electrode to a target nerve trunk.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: September 14, 2021
    Assignee: Neuros Medical, Inc.
    Inventor: Jon Joseph Snyder
  • Patent number: 11065456
    Abstract: In various examples, an apparatus is configured for subcutaneously inserting an implantable device within a patient. The apparatus includes a dilator portion including a dilator including a dilator length. The dilator portion is configured to separate tissue to create a subcutaneous pocket within the patient sized and shaped to accommodate an implantable device within the subcutaneous pocket. A sheath portion includes a sheath sized and shaped to accommodate the dilator within a sheath lumen. The sheath is configured to accommodate an antenna of the implantable device with the dilator removed from within the sheath. The sheath includes a sheath length that is at least substantially as long as an antenna length. The sheath is configured to separate to allow removal of the sheath around the implantable device to remove the sheath from and leave the implantable device within the subcutaneous pocket within the patient.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: July 20, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Rodolphe Katra, Scott Kimmel, Lawrence Kane, Daniel Chase
  • Patent number: 11020075
    Abstract: Implantation of a cardiac stimulus system using an illuminating catheter system, and devices for such implantation. Multiple catheter systems for allowing for selective visualization of the internal thoracic vasculature are discussed and disclosed. A multiple lumen catheter may be used to selectively direct a contrast agent to a desired portion of the thoracic vasculature which may include the internal thoracic vein(s) and/or one or more intercostal veins.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: June 1, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Lili Liu, Andrew L. De Kock, James O. Gilkerson, James K. Cawthra, Jr., G. Shantanu Reddy
  • Patent number: 10905883
    Abstract: Methods and systems for selecting electrical stimulation parameters for an electrical stimulation device implanted in a patient can use an iterative process for identifying electrodes for stimulation, as well as suitable stimulation parameters. The process begins with an initial set of electrode combinations to identify regions of the nerve or other tissue for stimulation. This leads to selection of other electrode combinations to test, followed by the selection of multiple electrode groups (which can include three or more electrodes) for stimulation.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: February 2, 2021
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Bryan Allen Clark, William Conrad Stoffregen, Michael X. Govea, Craig M. Stolen, David J. Ternes, David Blum, Pramodsingh Hirasingh Thakur, Stephen B. Ruble
  • Patent number: 10905872
    Abstract: An IMD may include a housing with a controller and a power supply disposed within the housing. A distal electrode may be supported by a distal electrode support that biases the distal electrode toward an extended position in which the distal electrode extends distally from the distal end of the housing and allows the distal electrode to move proximally relative to the extended position in response to an axial force applied to the distal electrode in the proximal direction. In some cases, the distal electrode support may include a tissue ingrowth inhibiting outer sleeve that extends along the length of the distal electrode support and is configured to shorten when the distal electrode moves proximally relative to the extended position and to lengthen when the distal electrode moves back distally toward the extended position in order to accommodate movement of the distal electrode.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: February 2, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Peter Toy, Keith R. Maile, Bryan J. Swackhamer, G. Shantanu Reddy, Stephen J. Hahn
  • Patent number: 10898707
    Abstract: Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: January 26, 2021
    Assignee: Medtronic, Inc.
    Inventors: Michael D. Eggen, Kevin R. Seifert, Vladimir Grubac
  • Patent number: 10894162
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include an intermediate tubular member and an inner tubular member slidably disposed within a lumen of the intermediate tubular member. A distal holding section may extend distally of a distal end of the intermediate tubular member and define a cavity therein for receiving an implantable leadless pacing device. At least a portion of the lumen of the inner tubular member may be bifurcated to form a first lumen and a second lumen.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 19, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian Soltis, Ronald W. Kunkel, Kurt G. Koubal, James P. Goodman
  • Patent number: 10856905
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: December 8, 2020
    Assignee: PACESETTER, INC.
    Inventors: Scott Kerns, Daniel Coyle
  • Patent number: 10849540
    Abstract: A biosensor device for the real-time detection of a target analyte includes a receptor component operatively connected to a transducer component which is adapted to interpret and transmit a detectable signal. The receptor component includes a sensing element capable of detecting and binding to at least one target analyte, and a self-assembled monolayer (SAM) layer. The SAM layer is positioned between and in contact with the sensing element and an electrode such that the sensing element, in the presence of the target analyte, causes a detectable signal capable of being transmitted to the electrode. The transducer component includes the electrode and microprocessor configured to screen noise and to pick up impedance change at a very low frequency range.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: December 1, 2020
    Assignee: The University of Toledo
    Inventors: Anand K. Agarwal, Vijay K. Goel, Dong-Shik Kim, Do Young Yoon, Boren Lin, Hamid Feyzizarnagh
  • Patent number: 10773089
    Abstract: Delivery devices, systems, and methods for delivering implantable leadless pacing devices are disclosed. An example delivery device may include an intermediate tubular member and an inner tubular member slidably disposed within a lumen of the intermediate tubular member. A distal holding section may extend distally of a distal end of the intermediate tubular member and define a cavity therein for receiving an implantable leadless pacing device. The device may be configured to enable fluid flushing of the delivery device prior to use, to remove any air from within the device as well as providing the option of fluid flow during use of the delivery device.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: September 15, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian Soltis, Benjamin J. Haasl, James P. Goodman, Vincent P. Hackenmueller
  • Patent number: 10750936
    Abstract: A pericardial-cavity observing method including: a step of inserting an endoscope sheath and an endoscope into a space between the heart and the pericardium; a step of disposing a protruding portion closer to the pericardium than an optical member is so that an angle that is formed between a centerline that passes through a center of the protruding portion and a center of the optical member and a tangent of the pericardium that passes through a foot of a perpendicular line drawn, from the center of the optical member of the endoscope, to the pericardium sagging down from the protruding portion toward the heart becomes greater than an angle formed between the centerline and an external common tangent of the protruding portion and the optical member; and a step of observing the heart by means of the endoscope.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: August 25, 2020
    Assignee: OLYMPUS CORPORATION
    Inventors: Yoshiro Okazaki, Naoya Sugimoto, Kazutoshi Kumagai, Shunji Takei, Yusuke Nomura
  • Patent number: 10751526
    Abstract: Methods and kits for subcutaneous defibrillator implantation. In various examples, two introducer tools each having a sheath are used during an implantation procedure to obviate the need for pulling a lead using a suture. The elimination of the suture-based pulling steps may reduce procedure time. A kit having two introducer tool and corresponding sheaths is also disclosed.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: August 25, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventor: G. Shantanu Reddy
  • Patent number: 10751529
    Abstract: Methods and devices for separating an implanted object, such as a pacemaker lead, from tissue surrounding such object in a patient's vasculature system. Specifically, the surgical device includes a handle, an elongate inner sheath and a circular cutting blade that extends from the distal end of the sheath upon actuating the handle. The circular cutting blade is configured to engage the tissue surrounding an implanted lead and cut such tissue in a coring fashion as the surgical device translates along the length of the lead, thereby allowing the lead, as well as any tissue remaining attached to the lead, to enter the device's elongate shaft. The surgical device has a barrel cam cylinder in the handle assembly that imparts rotation of the blade and a separate cam mechanism in the tip of outer sheath assembly that imparts and controls the extension and retraction of the blade.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 25, 2020
    Assignee: SPECTRANETICS LLC
    Inventors: Kenneth P. Grace, Weston H. Lee, Brian E. Kagarise, Robert L. Carver
  • Patent number: 10722684
    Abstract: Catheter and implantable leadless pacing devices, systems, and methods utilizing catheters and implantable leadless pacing devices are disclosed. An example catheter system may include a holding structure extending distally from a tubular member. An implantable device, such as a leadless pacing device, may be located within a cavity of the holding structure. The holding structure may include one or more electrical ports adjacent the proximal end of the holding structure and adjacent or proximal of the proximal end of the implantable device. The electrical ports may provide a conductive pathway extending through the distal structure to allow electrical signals to pass through the distal structure to and/or from the implantable device.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 28, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian Soltis, Brendan E. Koop, Benjamin J. Haasl, Kurt G. Koubal, James P. Goodman, Vincent P. Hackenmueller
  • Patent number: 10639066
    Abstract: A system for controlling displacement of an intervention device having an end for inserting in a patient body, including a base in a fixed position relative to the patient. A first portion has an arc member and is pivotally mounted on the base around a first axis (A1). A second portion includes a support member and a carrier member. The support member partially rotates around a second axis (A2). A third portion includes a holding member, and a sliding member mounted on the support member along a translation axis (AT). The holding member is arranged so that translation of the sliding member causes the intervention device to translate along a third axis (A3). The third axis (A3) is parallel to and offset from the translation axis (AT). When the carrier member is positioned halfway of the arc member, the first (A1), second (A2) and third (A3) axes are orthogonal.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: May 5, 2020
    Assignee: US Patent Innovations, LLC
    Inventors: Clement Vidal, Berengere Bardou
  • Patent number: 10623861
    Abstract: A wearable device including a body having one or more embedded electronic components, the body further including a thermoset material having a polymeric backbone with at least one urethane linkage and a glass transition temperature. At a first temperature that is lower than the glass transition temperature, the body has an original shape. When the body is heated to a second temperature that is higher than the glass transition temperature, the body is deformable from the original shape to a first shape and when the body is cooled to a third temperature that is lower than the glass transition temperature, the first shape is maintained. The body is further configured to transition from the first shape to the original shape when the body is heated from the third temperature to a fourth temperature that is higher than the glass transition temperature.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 14, 2020
    Assignee: Bose Corporation
    Inventors: Shawn Prevoir, Kai Gao
  • Patent number: 10617402
    Abstract: Methods and tool kits for implanting a lead subcutaneously. Examples include tool kits and methods for establishing first and second subcutaneous tunnels at an angle relative to one another to facilitate introduction of a lead to the subcutaneous space. In an example, a first insertion tool is used to establish a first subcutaneous tunnel, and a second insertion tool, with or without the use of a blunt dissector, sheath, guidewire, or steering mechanism, is used to initiate or form the second subcutaneous tunnel. Such methods and tool kits may reduce the number of incisions needed to implant a subcutaneous lead along a subcutaneous path having a curve therein.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: April 14, 2020
    Assignee: CAMERON HEALTH, INC.
    Inventors: G. Shantanu Reddy, Bruce A. Tockman
  • Patent number: 10603486
    Abstract: Methods for fabricating implantable cuff electrodes for contacting or at least partially surrounding internal body tissue such as, e.g., nerves, smooth muscles, striated muscles, arteries, veins, ligamental tissues, connective tissues, cartilage tissues, bones, or other similar body tissues, structures and organs are disclosed. An example method includes preparing a substrate including an implantable cuff electrode shape, applying a mold material to the substrate, curing the mold material to form a mold, releasing the mold from the substrate, inserting at least one conductor into the mold that penetrates through the channel of the mold, pressing a formable material into the channel of the mold to form a body of an implantable cuff electrode about the at least one conductor, curing the body of the implantable cuff electrode, and releasing the body of the implantable cuff electrode from the mold.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: March 31, 2020
    Assignee: GALVANI BIOELECTRONICS LIMITED
    Inventors: Dwight Sherod Walker, Daniel John Chew
  • Patent number: 10576269
    Abstract: An electrical stimulation lead includes a lead body having a distal end portion, a proximal end portion, and a longitudinal length; terminals disposed along the proximal end portion of the lead body; electrodes disposed along the distal end portion of the lead body; and conductors extending along the lead body and electrically coupling the terminals to the electrodes. The lead body includes an intermediate portion disposed between the proximal end portion and the distal end portion. The intermediate portion includes at least one separation element that extends longitudinally along the intermediate portion and the intermediate portion is deployable from an undeployed configuration to a deployed configuration responsive to operation of the at least one separation element.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 3, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: G. Karl Steinke, Michael X. Govea
  • Patent number: 10532205
    Abstract: A lead fixation accessory configured to be positioned over a skull hole and to transition between an opened state and a closed state during a lead implant procedure protects against lead migration by providing a mechanism for securing the lead in place at the skull hole while a stylet is removed from the lead. The lead fixation accessory remains in place after the implant procedure to provide chronic lead stability. A lead stabilization tool configured to access and grip a lead through a slotted cannula during the lead implant procedure also protects against lead migration by providing a mechanism for securing the lead in place at a point where the lead exits the skull hole while the slotted cannula is removed from the skull hole and peeled away from the lead.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 14, 2020
    Assignee: NeuroPace, Inc.
    Inventors: Jacob A. Mandell, Emily A. Mirro
  • Patent number: 10525262
    Abstract: The present invention includes devices and methods for lead, conduit or other medical fixture placement in tissues or organs. The device is configured to permit the placement foot, such as a suction foot, to articulate to a desired position with respect to the target tissue, while the lead, conduit or other medical fixture is releasably attached to the placement foot to permit it to be released from the placement foot after stabilization on the target tissue site. In a preferred embodiment, the invention features an articulating dual suction foot device, an inner lead conduit or guide and foot contained within an outer lead conduit or guide and foot, with the inner conduit or guide configured to extend from the outer conduit or guide, and to be further articulated once extended.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: January 7, 2020
    Inventor: Subhajit Datta
  • Patent number: 10492882
    Abstract: Stereotactic systems and implantation methods that can be designed for use with a specific species and further customized for use with an individual within the species are provided. The stereotactic system can include an implant jig that can model a tissue or organ in which a target tissue area is located. A neurocap can be coupled to the implant jig for pre-planning and pre-placement of implants. A stencil can be used to determine the location for placement of the neurocap on the individual, so that the implants can be precisely targeted at the desired location. Pre-surgical information and data can be obtained from an individual and used to customize components of a stereotactic system, which can improve accuracy of implant placement.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: December 3, 2019
    Assignees: The Florida International University Board of Trustees, The Regents of the University of California
    Inventors: Timothy Allen, Bruce McNaughton, Meifung Su, Leila Mangan Allen
  • Patent number: 10463411
    Abstract: The invention relates to a surgical retaining instrument for bone plates. The retaining instrument comprises a carrying element and two plate retaining jaws arranged on the carrying element. The mutual distance of the plate retaining jaws can be changed in order to pick up or release a bone plate. Furthermore, an actuating device is provided, which has two arms, which can be moved relative to each other and which are designed to change the mutual distance of the plate retaining jaws. The carrying element is rotatably mounted relative to the arms.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: November 5, 2019
    Assignee: Stryker European Holdings I, LLC
    Inventors: Christian Knoepfle, Karl Greiner, Manfred Schmuck, Uwe Koerner, Markus Kuhn
  • Patent number: 10449353
    Abstract: An implantable medical electrical lead includes an electrode assembly in which an electrical junction between a first conductor and an inner surface of a first electrode of the assembly is wedged within a first channel of at least one core member of the assembly, around which the first electrode extends. The at least one core member is formed from an insulating material, and the first channel may be one of a plurality of longitudinally extending channels arrayed around a circumference of a central lumen of the assembly, which is defined by the at least one core member. The first conductor extends along a length of the assembly, for example, defined between the first electrode and a second electrode thereof, in a helical path that travels around the central lumen.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: October 22, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Bret R. Shoberg, Gregory A. Boser, Michael T. Hegland, Robert L. Olson, Dale F. Seeley, Jacob W. Silverberg, Suraj Rama
  • Patent number: 10420932
    Abstract: An implantable leadless cardiac pacing device and associated retrieval features. The implantable device includes a docking member extending from the proximal end of the housing of the implantable device including a covering surrounding at least a portion of the docking member configured to facilitate retrieval of the implantable leadless cardiac pacing device.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 24, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, John M. Edgell, Dana Sachs
  • Patent number: 10391299
    Abstract: A tool for inserting an elongate medical device into a body includes a track (e.g. defined by inner surfaces of a base wall and opposing sidewalls), and a deployment assembly for moving the device along the track. A retainer of the assembly, fitted in sliding engagement within the track and limited to move only along a portion of the track, grips a first portion of a proximal length of the device; a slider of the assembly, also fitted in sliding engagement within the track and detachably joined to the retainer, receives a second portion of the device proximal length. When detached from the retainer, the slider is free to move along a distal length of the device, and can be moved along a distal segment of the track to disengage therefrom by separating from a distal terminal end of the guide.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 27, 2019
    Assignee: Medtronic, Inc.
    Inventor: Mark T. Marshall
  • Patent number: 10391321
    Abstract: A method of evaluating an implantation of a lead is disclosed. Via a graphical user interface of an electronic device, a visual representation of a sacrum of the patient and a lead that is implanted in the sacrum is displayed. The lead includes a plurality of electrode contacts. An evaluation is made as to how well the lead has been implanted in the sacrum based on the visual representation of the sacrum and the lead. The evaluating comprises: determining whether the lead is inserted in a predetermined region of the sacrum, determining how far a predetermined one of the electrode contacts is located from an edge of the sacrum, and determining a degree of curvature of the lead.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: August 27, 2019
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu, Steven Siegel
  • Patent number: 10368994
    Abstract: A burr hole cover is configured to be recessed in a burr hole formed in a patient and includes a base and a cap provided with complementary features to allow a portion of a medical device, such as a brain lead, to be situated in the burr hole cover and then secured by rotation of the cap relative to the base. The features include channels on the base and matching cut-outs on the cap, and slots and locking pockets on the base that are configured to be aligned with locking tabs and locking protrusions on the cap. Because the burr hole cover is recessed in the burr hole, the medical device can extend proximally of the burr hole at the level of the cranium. A bottom surface of the cap may be provided with guides for the lead extending distally in towards the brain.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: August 6, 2019
    Assignee: NeuroPace, Inc.
    Inventors: Alfonso Chavez, Peter B. Weber
  • Patent number: 10350405
    Abstract: System, method, and tool for implanting an electrode cuff. The system can include a cuff and a slider implement, where the cuff is temporarily retained within and/or onto the slider implement by a retainer mechanism during implantation. The cuff can be structured to exhibit a natural rolled shape, but can be resiliently bendable so as to flex from the rolled shape while having a tendency to move back to the rolled shape. The cuff can be releasably secured to a portion of the slider implement, which may include holding the cuff in an unrolled shape. The cuff can then be positioned adjacent the nerve. The retainer mechanism can then be actuated to allow the cuff to advance towards its naturally rolled shape, thereby wrapping around the nerve.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: July 16, 2019
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Wantjinarjo Suwito, Isaac Kreft, Andrew B. Kibler, Jeffrey A. von Arx
  • Patent number: 10322279
    Abstract: A surgical guide to facilitate delivery of a therapy delivery device into the pterygopalatine fossa of a subject includes a curvilinear body having a distal end portion, a proximal end portion, and an intermediate portion extending between the distal and proximal end portions. The proximal end portion is defined by oppositely disposed first and second surfaces. The proximal end portion and the intermediate portion define a longitudinal plane that extends between the proximal and distal end portions. The distal end portion has an arcuate configuration relative to the longitudinal plane and is defined by oppositely disposed third and fourth surfaces.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: June 18, 2019
    Assignee: THE CLEVELAND CLINIC FOUNDATION
    Inventor: Francis A. Papay
  • Patent number: 10314615
    Abstract: Methods and devices for separating an implanted object, such as a pacemaker lead, from tissue surrounding such object in a patient's vasculature system. Specifically, the surgical device includes a handle, an elongate sheath and a circular cutting blade that extends from the distal end of the sheath upon actuating the handle. The circular cutting blade is configured to engage the tissue surrounding an implanted lead and cut such tissue in a coring fashion as the surgical device translates along the length of the lead, thereby allowing the lead, as well as any tissue remaining attached to the lead, to enter the device's elongate shaft. The surgical device has a barrel cam cylinder in the handle assembly that imparts rotation of the blade and a separate cam mechanism in the tip of outer sheath assembly that imparts and controls the extension and retraction of the blade.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: June 11, 2019
    Assignee: The Spectranetics Corporation
    Inventors: Robert Carver, Weston H. Lee, Brian E. Kagarise, Bruce A. Hoo, Peter Wilbur Gleason, Phillip Charles Halbert
  • Patent number: 10279155
    Abstract: A system and method for delivering a bathing liquid via a nostril of a face-down user maintains the liquid in prolonged and predictable contact with the nasal and sinus mucosa. A head orientation unit attaches to the head and includes an angle monitoring unit to provide an indication of the angular orientation of the head as it turns to optimize delivery of the liquid to target head structures. A liquid supply delivers the liquid through the user's nostrils to the selected head structures as a function of the angular orientation indication and at a pressure and flow rate that maintains a constant volume of liquid in the nasal and sinus cavities. Indicia on the angle monitoring unit permit the user to orient his/her head to predetermined angular positions.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: May 7, 2019
    Inventor: Michael B. Siegel
  • Patent number: 10245435
    Abstract: Some implementations provide a method for implanting a neurostimulator system that includes: placing an introducer through an incision site on a patient into an epidural space of the patient, the introducer including a sheath and the patient having a primary area of pain; placing a neurostimulator system through the introducer into the epidural space of the patient, the neurostimulator system comprising an enclosure housing at least one pair of electrodes and at least one passive antenna; advancing the neurostimulator system through the epidural space such that the electrodes are placed at a targeted tissue of the patient; removing the introducer sheath from the epidural space of the patient; adjusting the neurostimulator system enclosure to leave a customized length of the device body enclosure in the epidural space; and anchoring the customized length of the neurostimulator system enclosure in tissue of the patient.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: April 2, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Benjamin Speck
  • Patent number: 10238371
    Abstract: A method is provided for measuring an opening of an appendage of an atrium of a subject, the method including inserting a catheter into the atrium of the subject. At least one loop is deployed from a wall of the catheter, such that a distal end of the loop is distal to a distal end of the catheter. The loop is used to measure the opening of the appendage.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: March 26, 2019
    Assignee: TRANSSEPTAL SOLUTIONS LTD.
    Inventor: Elad Sapir
  • Patent number: 10231816
    Abstract: Medical devices, systems, methods, and kits for the medialization of a vocal cord are described. A method comprises creating a passageway in thyroid cartilage of a patient, advancing a light source through the passageway, activating the light source, viewing light emitted from the light source to confirm placement of the passageway relative to the vocal cord, and advancing a medical device through the passageway to move the vocal cord toward a midline of the larynx of the patient.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 19, 2019
    Assignees: Cook Medical Technologies LLC, Northwestern University
    Inventors: Pamela Ridgley, Darin Schaeffer, Gordon Siegel, Marc Lim
  • Patent number: 10159834
    Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 25, 2018
    Assignee: Medtronic, Inc.
    Inventors: Ronald A Drake, Kenneth C Gardeski, Carla Pfeiffer, Kevin R Seifert, Lester O Stener, Matthew D Bonner
  • Patent number: 10143823
    Abstract: A system includes a delivery catheter and a separately-packaged implantable medical device assembly. The assembly includes a relatively compact implantable medical device, a support shaft, a tether, and a snare mandrel. The tether, which extends in the support shaft, has a distal portion coupled to the device, at a distal end of the support shaft, and a proximal portion protruding from a proximal end of the support shaft, for engagement by a hook of the snare mandrel. An operator may use the engaged snare mandrel to pull the support shaft into a lumen of an inner shaft of the catheter so that the coupled device comes into engagement with a flared end of the catheter inner shaft. Then, after locking the proximal portion of the tether within the catheter, the operator may advance a receptacle of the catheter over the device.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 4, 2018
    Assignee: Medtronic, Inc.
    Inventors: James M Keaveney, Jeffrey Madden, John Gallagher