Employing Diverse Materials Or Particular Material In Refrigeration Circuit Patents (Class 62/114)
  • Patent number: 10323870
    Abstract: A refrigeration system includes a valve and a controller. The valve is configured to control the flow of refrigerant into an evaporator, the refrigerant having an associated liquid setting comprising a temperature and a pressure at which the refrigerant flows through the valve. The controller is operable to adjust the liquid setting, the adjusted liquid setting comprising a temperature and a pressure selected to improve energy efficiency under conditions currently being experienced by the refrigeration system, wherein the controller is operable to adjust the temperature and the pressure simultaneously such that the adjustment does not interfere with operation of the valve.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: June 18, 2019
    Assignee: Heatcraft Refrigeration Products LLC
    Inventors: Jonathan Douglas, Umesh Gokhale
  • Patent number: 10317118
    Abstract: A variable refrigerant volume system includes: a compressor; a four-way valve; an indoor unit; a liquid tube, the first end thereof being connected to the indoor unit, the second end thereof being connected to the third valve port of the four-way valve, and a condenser being provided on the liquid tube; a low pressure air pipe, the first end thereof being connected to the indoor unit, and the second end thereof being connected to the fourth valve port of the four-way valve; a refrigerant adjustment tank, the first port thereof being connected to the liquid tube, the second port thereof being connected to the low pressure air pipe, and the third port thereof optionally communicating with the liquid tube or the low pressure air pipe.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: June 11, 2019
    Assignee: Gree Electric Appliances, Inc. of Zhuhai
    Inventors: Wenjie Dai, Shiqiang Zhang, Yihe Zhang, Jianguo Xiong, Kai Yu, Benyong Bao, Weiguo Li
  • Patent number: 10309699
    Abstract: An electric compressor and a method of controlling the same, the electric compressor including a detection unit for detecting a phase of refrigerant in the electric compressor, a connection unit wound at a position adjacent to a passage of a housing for movement of a refrigerant in the electric compressor, and a control unit for performing control according to the phase of refrigerant by differently controlling power applied to the connection unit in response to data detected by the detection unit. The method including aligning a position of a rotor after an electric compressor is turned on, determining whether a refrigerant is in liquid phase or in gas phase, preheating the refrigerant by applying power to the electric compressor according to the phase of refrigerant, and controlling the electric compressor such that the electric compressor is normally operated after the refrigerant is preheated.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: June 4, 2019
    Assignee: HANON SYSTEMS
    Inventors: Jeong Gil Heo, Soo Cheol Jeong, Gun Woong Park, Chan Ho Baek, Jae Sik Son
  • Patent number: 10302521
    Abstract: A tool connects a source of compressed air to a low pressure service port valve of a refrigerant system for pressurizing the refrigerant system with air to locate leaks. The tool includes a connector, an air pressure regulator having a control knob and a pressure gauge, and an air hose fitting having an inlet for removable attachment to an air hose of the air source and an outlet in communication with the air pressure regulator inlet. The connector outlet is configured for removable attachment to the low pressure service port valve for air flow from the connecter outlet into the low pressure service port valve. The air pressure regulator outlet is in air flow communication with the connector inlet. With the tool installed, the closed refrigerant system can be pressured with air to a desired air pressure so that leaks become apparent by compressed air escaping.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 28, 2019
    Inventor: Robert Dean Hoffman
  • Patent number: 10293197
    Abstract: Azeotrope-like compositions are disclosed. The azeotrope-like compositions are mixtures of HFO-E-1,3,4,4,4-Pentafluoro-3-trifluoromethyl-1-butene and E-1-Chloro-3,3,3-trifluoropropene. Also disclosed is a process of preparing a thermoplastic or thermoset foam by using such azeotrope-like compositions as blowing agents. Also disclosed is a process of producing refrigeration by using such azeotrope-like compositions. Also disclosed is a process of using such azeotrope-like compositions as solvents. Also disclosed is a process of producing an aerosol product by using such azeotrope-like compositions. Also disclosed is a process of using such azeotrope-like compositions as heat transfer media. Also disclosed is a process of extinguishing or suppressing a fire by using such azeotrope-like compositions. Also disclosed is a process of using such azeotrope-like compositions as dielectrics.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: May 21, 2019
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Mark L Robin
  • Patent number: 10239380
    Abstract: An air conditioning system for a vehicle is provided. The system includes a cooling module in which a plurality of evaporation cores are disposed and a heating module in which a plurality of condensers are disposed. The plurality of condensers and the plurality of evaporation cores are connected onto a refrigerant channel.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: March 26, 2019
    Assignee: Hyundai Motor Company
    Inventors: Gee Young Shin, June Kyu Park, Keon Soo Jin, Dae Ig Jung, Kwang Woon Cho
  • Patent number: 10215444
    Abstract: A heat exchanger is provided with stacked coil sections. Each of the stacked coil sections is configured to circulate a fluid independent from the other coil section. An air moving device is used to circulate air through both of the stacked coil sections. The stacked coil sections are positioned to have the air exiting the one coil section entering the other coil section.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: February 26, 2019
    Assignee: Johnson Controls Technology Company
    Inventors: William L. Kopko, Mustafa Kemal Yanik, Michael Lee Buckley, Glenn Eugene Nickey, Ian Michael Casper
  • Patent number: 10184697
    Abstract: The invention provides a method for cooling fluid having the steps of supplying a fluid at a first temperature T1, raising the temperature of the fluid to a second temperature T2 through contact with an electric field, contacting the fluid with a heat exchanger to decrease its temperature to a third temperature T3, removing the electric field to decrease the temperature of the fluid to a fourth temperature T4, and applying a heat load to the fluid to increase the temperature of the fluid to T1. Also provided is a system for cooling fluid having a closed loop having a first region subject to an electric field, a second region in contact with a heat exchanger, a third region remote from the electric field, and a fourth region contacting a heat load.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: January 22, 2019
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Gian G. Guzman-Verri, Peter B. Littlewood
  • Patent number: 10156386
    Abstract: In accordance with an embodiment of the invention, there is provided a system for cooling a load.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 18, 2018
    Assignee: Brooks Automation, Inc.
    Inventors: Allen J. Bartlett, William Johnson, Mark Collins, Sergei Syssoev, Michael J. Eacobacci
  • Patent number: 10107549
    Abstract: Process for liquefying natural gas in a cryogenic heat exchanger by flowing in indirect contact with refrigerant fluid entering heat exchanger at a first inlet at temperature T0 and pressure P1, and flowing through the exchanger as co-current with the natural gas stream, leaving the heat exchanger in the liquid state, then being expanded at the cold end of the exchanger to return to gaseous state at a pressure P?1 P1 and temperature T1 T0, before leaving the hot end of exchanger by outlet orifice in gaseous state T0. The fluid is then reliquefied to the inlet of the exchanger via compression followed by partial condensation and phase separation, a first liquid phase taken to the first inlet, a first gaseous portion compressed by a second compressor and cooled in desuperheater by contact with portion of the first liquid phase, prior to condensing in a second condenser.
    Type: Grant
    Filed: July 4, 2013
    Date of Patent: October 23, 2018
    Assignee: Saipem S.A.
    Inventors: Marc Bonnissel, Bertrand Du Parc, Boris Bolosier
  • Patent number: 10101065
    Abstract: A heat transmission method using a heat pump system according to the present invention uses a heat transmission medium containing at least one compound represented by general formula (1). In the formula, R1 is a CHmF3-m group, m is an integer of 0 or more and 3 or less, R2, R3 and R4 are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or a hydrogen atom, and at least one fluorine atom is contained in a molecule. The heat transmission method includes (A) step of gasifying the heat transmission medium; (B) step of compressing the heat transmission medium into a supercritical state; (C) step of causing heat exchange between the heat transmission medium in the supercritical state and a medium to be heated; and (D) step of decreasing the pressure of the heat transmission medium.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: October 16, 2018
    Assignee: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Yoshio Nishiguchi, Satoru Okamoto, Masatomi Kanai
  • Patent number: 10101043
    Abstract: An improved, energy-efficient HVAC system and method of use employing a solution that is run parallel to refrigerant lines in a chiller unit. The solution is directed through the chiller unit through its proximity to chilled refrigerant wherein the chilled solution, rather than refrigerant, enters an air handler or an air pump and used to adjust the air temperature to a desired level. The system and method permits the place of a refrigerant based system external an enclosed building and a non refrigerant based system position internal the enclosed building.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: October 16, 2018
    Assignee: Energy Design Technology & Solutions, Inc.
    Inventor: James E. Bellamy, Jr.
  • Patent number: 10060674
    Abstract: A process is described herein for the production of a selected quantity of ethane as a component of a production inventory of mixed refrigerant for an LNG production plant prior to start-up of the LNG production plant.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: August 28, 2018
    Assignee: WOODSIDE ENERGY TECHNOLOGIES PTY LTD.
    Inventor: Derek William Hodges
  • Patent number: 10060662
    Abstract: Surged heat pump systems, devices, and methods are disclosed having refrigerant phase separators that generate at least one surge of vapor phase refrigerant into the inlet of an evaporator during an on cycle of the compressor. This surge of vapor phase refrigerant, having a higher temperature than the liquid phase refrigerant, increases the temperature of the evaporator inlet, thus reducing frost build up in relation to conventional refrigeration systems lacking a surged input of vapor phase refrigerant to the evaporator. The temperature of the vapor phase refrigerant is raised in relation to the liquid phase with heat from the liquid by the phase separation, not by the introduction of energy from another source. The surged heat pump systems may operate in highest heat transfer efficiency mode and/or in one or more higher temperature modes.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 28, 2018
    Assignee: XDX Global, LLC
    Inventor: David Wightman
  • Patent number: 10005940
    Abstract: This invention provides, as alternative refrigerants for R404A, a refrigerant and refrigerant composition that have, for example, a nonflammability similar to that of R404A, a refrigerating capacity that can replace that of R404A, a ratio of refrigerating capacity to power consumed in a refrigeration cycle (coefficient of performance (COP)) that is equal or superior to that of R404A, and a lower GWP than that of R404A. More specifically, this invention provides a composition comprising a mixture containing fluorinated hydrocarbons, the mixture comprising difluoromethane (R32), pentafluoroethane (R125), and 1,1,1,2-tetrafluoroethane (R134a) in amounts such that the sum of the concentrations thereof is 99.5 wt % or more, the composition ratio of the fluorinated hydrocarbons contained in the mixture falling within a triangle having the following three points as vertices in a ternary composition diagram in which the sum of the concentrations of R32, R125, and R134a is 100 wt %: point A (R32/R125/R134a=37.3/17.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 26, 2018
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Mitsushi Itano, Hitomi Kuroki, Tatsumi Tsuchiya, Yasufu Yamada
  • Patent number: 10001310
    Abstract: A two-stage refrigeration apparatus includes a high-stage refrigeration cycle including a high-stage-side refrigerant circuit including a high-stage-side compressor, high-stage-side condenser, high-stage-side expansion valve, and high-stage-side evaporator connected by pipes, a low-stage refrigeration cycle including a low-stage-side refrigerant circuit including a low-stage-side compressor, low-stage-side condenser, low-stage-side receiver, low-stage-side expansion valve, and low-stage-side evaporator connected by pipes, a cascade condenser including the high-stage-side evaporator and low-stage-side condenser, a receiver heat exchanging portion configured to cool the low-stage-side receiver, and a high-stage refrigeration cycle controller configured to perform controlling so as to activate the high-stage-side compressor when estimating a low-stage-side refrigerant will reach a supercritical state when the low-stage-side compressor is inactive on the basis of the pressure of the low-stage-side refrigerant.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: June 19, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Keisuke Takayama, Tomotaka Ishikawa, Takeshi Sugimoto, Tetsuya Yamashita, Takashi Ikeda
  • Patent number: 9964341
    Abstract: A heat pump hot-water supply device and a method for controlling a heat pump hot-water supply device are provided. The heat pump hot-water supply device may include a first refrigerant cycle, in which a first refrigerant may circulate, the first refrigerant cycle including a first compressor, an outdoor heat exchanger, and a first expansion device; a second refrigerant cycle, in which a second refrigerant may circulate, the second refrigerant cycle including a second compressor and a second expansion device; a water-refrigerant heat exchanger to which the first refrigerant compressed in the first compressor and the second refrigerant compressed in the second compressor may be introduced; a water introduction path coupled to a first side of the water-refrigerant heat exchanger and into which supplied water may be introduced; and a water discharge path coupled to a second side of the water-refrigerant heat exchanger and from which the water heat-exchanged in the refrigerant heat exchanger may be discharged.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: May 8, 2018
    Assignee: LG ELECTRONICS INC.
    Inventor: Junhyeon Hwang
  • Patent number: 9933193
    Abstract: An air-conditioning apparatus includes a refrigeration cycle charged with non-azeotropic refrigerant mixture and refrigerating machine oil. A suction pipe which is a refrigerant pipe connecting between a suction port of a compressor and an accumulator has an end portion on the side of the accumulator extending into the accumulator. In addition, the suction pipe of the air-conditioning apparatus includes an oil return hole formed in a portion of the suction pipe located inside the accumulator at a position higher than a central portion of the accumulator. A controller of the air-conditioning apparatus controls an opening degree of a pressure reducing device so as to make quality of refrigerant flowing into the accumulator less than 1.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: April 3, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuhide Yamamoto
  • Patent number: 9927170
    Abstract: The invention relates to a heat exchanger system (1) for heat exchange between at least a first medium (M), in particular in the form of a hydrocarbon-rich phase, and a second medium (K), with at least first and second pipe space sections (101, 103; 103, 105) for accommodating the first medium (M), and with a first pipe space section connecting means (102; 104), via which the two pipe space sections (101, 103; 103, 105) are connected to one another in a flow-guiding manner. The first pipe space section (101; 103) is surrounded by a first shell space (201, 203), and the second pipe space section (103; 105) is surrounded by a second shell space (203, 205) for accommodating the second medium (K). The first shell space (201; 203) is defined by a first shell (301; 303) and the second shell space (203; 205) is defined by a second shell (303; 305).
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: March 27, 2018
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Christiane Kerber, Jurgen Spreemann, Norbert Reiter, Markus Hammerdinger, Manfred Steinbauer
  • Patent number: 9863680
    Abstract: An apparatus includes a refrigerant circuit in which a compressor that compresses a refrigerant, an indoor-side heat exchanger serving as a radiator that exchanges heat between the refrigerant and a heating target, an expansion valve that decompresses the refrigerant by opening-degree adjustment, and an outdoor-side heat exchanger serving as an evaporator that exchanges heat between a heat-exchange target and the refrigerant are connected by pipes. The apparatus includes: an outdoor air temperature sensor that detects a temperature of outdoor air serving as the heat-exchange target; a discharge-side temperature sensor that detects a discharge temperature of the refrigerant discharged by the compressor; and a controller that, when the controller determines that a rotation speed of the compressor is a maximum and the temperature of the heat-exchange target is lower than a preset temperature, controls an opening degree of the expansion valve by using the discharge temperature.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: January 9, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Komei Nakajima, Kosuke Tanaka, Hiroaki Makino, Kazuhide Yamamoto
  • Patent number: 9857106
    Abstract: A heat pump includes a regenerator housing that is movable along a lateral direction relative to a magnet. A valve assembly is provided for regulating a flow of the working fluid from a pump through the regenerator housing. The valve assembly includes a pair of inlet conduits that extend along the lateral direction from the regenerator housing. A pair of outlet conduits also extends along the lateral direction from the regenerator housing. A valve body assembly defines a plurality of shafts that each receives a respective conduit of the pair of inlet conduits and the pair of outlet conduits. The conduits of the pair of inlet conduits and the pair of outlet conduits are slidable within the shafts of the plurality of shafts.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: January 2, 2018
    Assignee: Haier US Appliance Solutions, Inc.
    Inventors: Michael Goodman Schroeder, Michael Alexander Benedict
  • Patent number: 9851134
    Abstract: An air-conditioning apparatus includes a refrigerant circuit formed by connecting a compressor that discharges a zeotropic refrigerant, an outdoor-side heat exchanger that exchanges heat between outside air and the refrigerant, a first expansion device that regulates the pressure of the refrigerant, and a load-side heat exchanger that exchanges heat between the air in an air-conditioning target space and the refrigerant. The air-conditioning apparatus includes a controller that has a composition computing function unit and a composition determining function unit The composition determining function unit is configured to adopt a predetermined value set in advance and related to composition as a circulating composition if the computation result is determined as incorrect, and adopt the computation result as the circulating composition if the computation result is determined as correct.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: December 26, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Katsuhiro Ishimura, Koji Yamashita, Hiroyuki Morimoto
  • Patent number: 9835341
    Abstract: The present invention relates to an air conditioner that adjusts room temperature to a set temperature, and the problem to be solved thereby is to reduce the frequency of occurrence of situations in which the room temperature does not approach the set temperature. In the air conditioner, a target suction pressure is set to a value obtained by subtracting, from an evaporation pressure of an indoor heat exchanger, a pressure loss estimation value from an inlet of the indoor heat exchanger to a suction port of a compressor so that an evaporation temperature of the indoor heat exchanger is maintained constant. The displacement of the compressor is controlled so that the suction pressure becomes equal to the target suction pressure. A deviation determination unit determines whether the room temperature is stabilized at a temperature deviated from the set temperature.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: December 5, 2017
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventor: Akiharu Kojima
  • Patent number: 9834648
    Abstract: The present invention relates to a hardenable silicone composition including an irradiation-activated system for temporarily inhibiting the hydrosilylation reaction. Said system includes at least one inhibitor selected from among ?-acetylenic alcohols, ?-??-acetylenic diesters, conjugated ene-yne compounds, ?-acetylenic ketones, acrylonitriles, maleates, fumarates, the mixture thereof, at least one photoinitiator, and tris(trimethylsilyl)silane (TTMSS). The invention also relates to a method for preparing a silicone coating and hard elastomer materials provided comprising said silicone composition.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: December 5, 2017
    Assignee: BLUESTAR SILICONES FRANCE SAS
    Inventors: Emmanuel Pouget, Guillaume Pibre, Sebastien Marrot
  • Patent number: 9797618
    Abstract: In an air-conditioning apparatus, a heat source side heat exchanger, intermediate heat exchangers, and use side heat exchangers are formed in separate bodies respectively and adapted to be disposed at separate locations one another. In a heat medium circulation circuit where the intermediate heat exchanger and the use side heat exchanger are connected, temperature sensors are installed. An anti-freezing operation mode is provided in which, when the detection temperatures of the temperature sensors become equal to or lower than a set temperature Ts while a compressor or pumps are stopped, the heat medium is circulated to perform anti-freezing of the heat medium.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: October 24, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Koji Yamashita, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura
  • Patent number: 9791195
    Abstract: A cooling device management system is connected to a cooling device that carries out refrigerant leakage detection mode to detect leaks of refrigerant. The cooling management system includes a transmission section that transmits instructions to the cooling device, a reception section that receives information from the cooling device, a refrigerant leakage detection schedule setting section that receives inputting of settings of a refrigerant leakage detection schedule in order to carry out the refrigerant leakage detection mode in the cooling device, a schedule executing section, and a display section. The schedule executing section transmits instructions to carry out the refrigerant leakage detection mode from the transmission section to the cooling device based on the refrigerant leakage detection schedule which is received using the refrigerant leakage detection schedule setting section.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: October 17, 2017
    Assignee: Daikin Industries, Ltd.
    Inventors: Ryouhei Okada, Shouichi Hasuike
  • Patent number: 9759460
    Abstract: A channel on an upstream side of a third expansion device and a channel on an upstream side of a second expansion device are connected during a heating operation, and medium pressure refrigerant generated by the third expansion device during the heating operation is introduced on a suction side of a compressor via the second expansion device and a suction injection pipe.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: September 12, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Koji Yamashita, Takeshi Hatomura, Katsuhiro Ishimura, Shinichi Wakamoto, Naofumi Takenaka
  • Patent number: 9758948
    Abstract: A device that collects water vapor, from the ambient air, through condensation or deposition, on the surface of its unique heat exchangers, which are embodied with opposing intertwined and alternating refrigeration circuits. In a dual refrigeration circuit/dual heat exchanger configuration, one refrigeration circuit is responsible for freezing heat exchanger A and heating heat exchanger B while the other refrigeration circuit is responsible for heating heat exchanger A and freezing heat exchanger B. The alternating refrigeration circuits work together to intermittently freeze then thaw each heat exchanger. The water run-off from the thawing process is then collected for use. The condenser tubes of one refrigeration circuit are positioned proximate to the evaporator tubes of the second refrigeration circuit to facilitate the exchange of heat. The system may further comprise heat exchanger fins in contact with the tubes. Multiple pairs of heat exchangers may be utilized.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: September 12, 2017
    Inventor: Philip Heller
  • Patent number: 9752801
    Abstract: A system (200; 250; 270) has first (220) and second (222) compressors, a heat rejection heat exchanger (30), first (38) and second (202) ejectors, a heat absorption heat exchanger (64), and a separator (48). The heat rejection heat exchanger is coupled to the second compressor to receive refrigerant compressed by the second compressor. The first ejector has a primary inlet (40) coupled to the heat rejection exchanger to receive refrigerant, a secondary inlet (42), and an outlet (44). The second ejector has a primary inlet (204) coupled to the heat rejection heat exchanger to receive refrigerant, a secondary inlet (206), and an outlet (208). The separator has an inlet (50) coupled to the outlet (44) of the first ejector to receive refrigerant from the first ejector. The separator has a gas outlet (54) coupled to the secondary inlet (206) of the second ejector via the first compressor (220) to deliver refrigerant to the second ejector.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: September 5, 2017
    Assignee: Carrier Corporation
    Inventors: Parmesh Verma, Thomas D. Radcliff, Frederick J. Cogswell
  • Patent number: 9746222
    Abstract: A computing device calculates an evaporating temperature Te* and a dew-point temperature Tdew* from a quality X, a temperature glide ?T determined by a difference between a boiling temperature and a dew-point temperature at a predetermined pressure, and a refrigerant temperature detected by second temperature detection device.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 29, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroyuki Morimoto, Koji Yamashita
  • Patent number: 9746193
    Abstract: An air-conditioning apparatus includes a refrigerant circuit in which a compressor, a heat-source-side heat exchanger, an expansion device, and a refrigerant flow path in at least one intermediate heat exchanger are connected by a refrigerant pipe, and a heat medium circuit in which a pump, a use-side heat exchanger, and a heat-medium flow path in the at least one intermediate heat exchanger are connected by a heat-medium conveying pipe, the heat medium circuit being configured to cause a heat medium to circulate therethrough. The at least one intermediate heat exchanger comprises a plurality of intermediate heat exchangers. The plurality of intermediate heat exchangers are operative in a heating only operation mode, a cooling only operation mode, and a cooling and heating mixed operation mode in which some of the intermediate heat exchangers serve as the condenser and others of the intermediate heat exchangers serve as the evaporator.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: August 29, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yuji Motomura, Daisuke Shimamoto, Takayoshi Honda, Osamu Morimoto, Koji Nishioka, Tatsuo Ono
  • Patent number: 9676984
    Abstract: The use of 1,1,1,2-tetrafluoroethane for increasing the miscibility of 2,3,3,3-tetrafluoropropene with a lubricating oil, and in particular with a polyalkylene glycol oil. Further included are heat-transfer compositions and also equipment and processes using these compositions. Also, a kit including a heat-transfer fluid including 2,3,3,3-tetrafluoropropene and 1,1,1,2-tetrafluoroethane, and a lubricant oil including a polyalkylene glycol, for use in a heat-transfer installation including a vapor compression circuit.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: June 13, 2017
    Assignee: ARKEMA FRANCE
    Inventors: Sophie Guerin, Laurent Abbas, Wissam Rached
  • Patent number: 9574124
    Abstract: A process for cooling or heating a fluid or a body by a vapor compression circuit having a centrifugal compressor and containing a heat transfer fluid, the heat-transfer fluid including at least two of 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane and 3,3,3-trifluoropropene, wherein: the ratio of the Mach number of the centrifugal compressor to the Mach number when the centrifugal compressor has, under the same operating conditions, the heat-transfer fluid is replaced with 1,1,1,2-tetrafluoroethane is at least 0.97 and at most 1.03; the compression ratio of the centrifugal compressor is less than or equal to the compression ratio when the centrifugal compressor has, under the same operating conditions, the heat-transfer fluid is replaced with 1,1,1,2-tetrafluoroethane. Also, equipment suitable for implementing this cooling or heating process, and also to a process for converting existing equipment.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 21, 2017
    Assignee: ARKEMA FRANCE
    Inventor: Wissam Rached
  • Patent number: 9518787
    Abstract: The present invention relates to a thermal energy storage system comprising an energy storage (2) having a vertical temperature gradient and an internal combined heating and cooling machine (15). The internal combined heating and cooling machine (15) is adapted for retrieving energy having a first temperature from the energy storage, while simultaneously returning heated energy having a second higher temperature and cooled energy having a third lower temperature. The invention also relates to a method for using the thermal energy storage system.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: December 13, 2016
    Assignee: SKANSKA SVERGIE AB
    Inventors: Hans Pilebro, Tobias Strand, Rasmus Vestin
  • Patent number: 9476613
    Abstract: A method to control a cooling circuit, with the cooling circuit comprising at least three evaporators, which are fluid connected to the cooling circuit in a parallel connection in individual paths, with each of the paths containing one shut-off valve, through which the flow of the refrigerant, which is circulating through the specific path, can be metered or cut off, where the shut-off valves can be activated or deactivated individually, with the individual evaporators being operative when the shut-off valve located within the specific path of the individual evaporator permits fluid flow, where a maximum of two of the at least three evaporators are operative simultaneously.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: October 25, 2016
    Assignee: MAHLE International GmbH
    Inventors: John Milton Tepas, Lawrence Wei
  • Patent number: 9464822
    Abstract: A heat transfer system includes a working fluid and an electrochemical compressor. The working fluid is made up of a polar solvent that primarily acts as a condensable refrigerant and hydrogen that primarily acts as an electrochemically-active component. The electrochemical compressor includes an inlet fluidly coupled to an evaporator to receive the working fluid; an outlet fluidly coupled to a condenser; and one or more electrochemical cells electrically connected to each other through a power supply. Each electrochemical cell includes a gas pervious anode, a gas pervious cathode, and an electrolytic membrane disposed between and in intimate electrical contact with the cathode and the anode to pass the working fluid.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: October 11, 2016
    Assignee: Xergy LTD
    Inventor: Bamdad Bahar
  • Patent number: 9074787
    Abstract: The present invention provides a configuration in which a compressor can be controlled using an inverter in an air conditioner where only a signal related to ON/OFF of the compressor is output from a control terminal. An operation controller for a compressor is configured so that the compressor can be controlled using an inverter based on an ON signal output from a control interface of an air conditioner. Specifically, a target value of at least one of an outlet air temperature, an evaporation temperature and a condensation temperature, and a suction pressure and a discharge pressure of the compressor is corrected according to a duration of the ON signal or a duration of the OFF state thereof, thereby controlling the frequency of the compressor.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 7, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Masamitsu Kitagishi, Ryouta Takechi, Masao Igata
  • Publication number: 20150096312
    Abstract: A composition including 2,3,3,4,4,4-hexafluorobut-1-ene as a mixture with one or more hydrocarbon, hydrofluorocarbon, ether, hydrofluoroether or fluoroolefin compounds having a boiling point of less than or equal to 0° C. Also, the use of such a composition in heat transfer applications. Also, a heat transfer installation including a vapor compression circuit containing such a composition as heat-transfer fluid or containing a heat-transfer composition including such a composition, and also one or more additives chosen from lubricants, stabilizers, surfactants, tracers, fluorescers, odorous agents and solubilizers, and mixtures thereof.
    Type: Application
    Filed: March 29, 2013
    Publication date: April 9, 2015
    Inventor: Wissam Rached
  • Patent number: 8926856
    Abstract: A heat transfer composition comprising trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), difluoromethane (R-32) and 1,1-difluoroethane (R-152a).
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: January 6, 2015
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8911641
    Abstract: A heat transfer composition comprising trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), carbon dioxide (R-744) and a third component selected from difluoromethane (R-32), 1,1-difluoroethane (R-152a), fluoroethane (R-161), 1,1,1,2-tetrafluoroethane (R-134a), propylene, propane and mixtures thereof.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: December 16, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8894874
    Abstract: The invention provides a heat transfer composition comprising (i) from about 45 to about 75% by weight 2,3,3,3-tetrafluoropropene (R-1234yf); and (ii) from about 25 to about 55% by weight 1,1,1,2-tetrafluoroethane (R-134a). A heat transfer composition comprising, optionally consisting essentially of, (i) from about 20 to about 90% by weight R-1234yf; (ii) from about 10 to about 60% by weight R-134a; and (iii) from about 1 to about 20% by weight R-32 is also provided.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 25, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8850830
    Abstract: A cooling system includes a cooling loop that includes a reservoir. The reservoir has a level sensor that is configured to provide a level signal indicative of a coolant level within the reservoir. A temperature sensor is in communication with the cooling loop and is configured to provide a temperature signal. A controller is in communication with the level sensor and the temperature sensor. The controller has a coolant density data. The controller is configured to correct the level signal based upon the temperature signal and detect a leakage condition of the cooling system. A method of determining a coolant amount within a cooling system includes the steps of determining an amount of coolant having a temperature-variable density, determining a coolant temperature, correcting the coolant amount based upon the coolant temperature, and comparing the corrected coolant amount to a desired coolant amount to detect a coolant leakage condition.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: October 7, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Kurt J. Doughty
  • Patent number: 8844300
    Abstract: A method is disclosed that makes it possible to reduce the amount of refrigerant used and shorten the amount of time over which the new air conditioner must be run in a refrigerant pipe washing mode when an air conditioner that used a mineral-oil-based refrigerant oil is updated to or replaced with an air conditioner using an HFC refrigerant as the working refrigerant and the existing refrigerant piping is reused as is. Thus, the existing refrigerant piping of the air conditioner that used a mineral-oil-based refrigerant oil is reused in the air conditioner that uses an HFC refrigerant as the working refrigerant, the by washing the refrigerant piping using a cleaning agent comprising an HFC refrigerant containing at least 40 wt % of R32 to remove residual refrigerant oil in the refrigerant piping.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: September 30, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Kazuhide Mizutani, Hiromune Matsuoka, Atsushi Yoshimi, Manabu Yoshimi
  • Patent number: 8820079
    Abstract: Aspects of the present invention are directed to working fluids and their use in processes wherein the working fluids comprise compounds having the structure of formula (I): wherein R1, R2, R3, and R4 are each independently selected from the group consisting of: H, F, Cl, Br, and C1-C6 alkyl, at least C6 aryl, at least C3 cycloalkyl, and C6-C15 alkylaryl optionally substituted with at least one F, Cl, or Br, wherein formula (I) contains at least one F and at least one Cl or Br, provided that if any R is Br, then the compound does not have hydrogen. The working fluids are useful in Rankine cycle systems for efficiently converting waste heat generated from industrial processes, such as electric power generation from fuel cells, into mechanical energy or further to electric power. The working fluids of the invention are also useful in equipment employing other thermal energy conversion processes and cycles.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 2, 2014
    Assignee: Honeywell International Inc.
    Inventors: Gary Zyhowski, Ryan J. Hulse, Haridasan K. Nair, David Nalewajek, Rajiv R. Singh
  • Patent number: 8808571
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from 1,1-difluoroethane (R-152a), fluoroethane (R-161), and mixtures thereof.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8808570
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from propylene (R-1270), propane (R-290), n-butane (R-600), isobutane (R-600a), and mixtures thereof.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Publication number: 20140196483
    Abstract: In a heat pump apparatus of an indirect type including a primary circuit on a heat source side and a secondary circuit on a load side, a refrigerant in the primary circuit is prevented from leaking through the secondary circuit. An air-conditioning apparatus includes a leakage detecting device that detects leakage of the refrigerant circulated through a refrigerant circuit, serving as the primary circuit, from an intermediate heat exchanger into a water circuit, serving as the secondary circuit, and a controller that closes valves arranged on both sides of the intermediate heat exchanger in the water circuit to prevent water containing the refrigerant from flowing beyond the valves when the leakage detecting device detects the leakage.
    Type: Application
    Filed: January 31, 2012
    Publication date: July 17, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Takashi Okazaki
  • Patent number: 8696927
    Abstract: Disclosed herein is heat transfer system, comprising a brazed aluminum component, and a heat transfer fluid in fluid communication with the brazed aluminum component, wherein the heat transfer fluid comprises a liquid coolant, an oxy-anion of molybdenum, tungsten, vanadium, phosphorus, antimony, or a combination thereof, and a corrosion inhibitor. Also disclosed is a method of preventing corrosion in the heat transfer system, and a heat transfer fluid and additive package for use in the heat transfer system.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 15, 2014
    Assignee: Prestone Products Corporation
    Inventors: Bo Yang, Peter M. Woyciesjes, Aleksei V. Gershun, Filipe J. Marinho
  • Patent number: 8661839
    Abstract: A portable recovery unit for automatically filling a background tank of blended refrigerant includes a main tank for holding recovered refrigerant from a vehicle A/C system which has a first chemical composition, and an auxiliary tank for holding an auxiliary supply of fresh refrigerant which has a second refrigerant composition. The auxiliary tank is arranged in fluid communication with the main tank so that fluid can be transferred from the auxiliary tank to the main tank. An electronic controller controls the flow of fluid from the auxiliary tank to the main tank. A refrigerant identifier is coupled to the main tank to sample and analyze the refrigerant in the main tank in order to determine the chemical composition of the refrigerant in the main tank, so the refrigerant in the main tank can be purified to an acceptable level based on that analysis.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 4, 2014
    Assignee: Bosch Automotive Service Solutions LLC
    Inventor: Mark McMasters
  • Patent number: 8628681
    Abstract: A heat transfer composition comprising trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), carbon dioxide (R-744) and a third component selected from difluoromethane (R-32), 1,1-difluoroethane (R-152a), fluoroethane (R-161), 1,1,1,2-tetrafluoroethane (R-134a), propylene, propane and mixtures thereof.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: January 14, 2014
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E Low