Of External Fluid Reheating Patents (Class 62/173)
  • Publication number: 20080311836
    Abstract: A conditioning system that conditions exterior air for use in a spray booth. The exterior air is conditioned and subsequently used to carry away coating mist, dust, and contaminants from a spray area. The conditioning system heats, cools, humidifies, and dehumidifies the exterior air to a variable set point. The variable set point, while bounded by dry-bulb temperature and relative humidity constraints, is selected based upon cost and/or energy minimization. Additionally, the set point selection may be based upon future predicted weather conditions that are determined with a mathematical profile of previous weather conditions and weather trends in a localized domain, where the localized domain is a geographic area surrounding a manufacturing plant that includes a spray booth.
    Type: Application
    Filed: June 13, 2007
    Publication date: December 18, 2008
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Shubho Bhattacharya
  • Patent number: 7464560
    Abstract: A flow passage through which a heat exchange medium flows is formed at least at a part of each airflow duct 3 to 6, and the heat exchange medium flowing through the passage (t) is allowed to cool or heat air flowing through the airflow duct 3 to 6. Alternatively, a heat generation film H is formed at a part of an inner surface of an air passage of each airflow duct 3 to 6 and is allowed to heat air flowing through the airflow duct 3 to 6. Because the airflow ducts 3 to 6 per se are first cooled or heated by the heat exchange medium flowing through the passage (t), the heat exchange loss with the airflow ducts, that has occurred in the prior art, can be eliminated. Because air conditioning wind is cooled or heated inside the airflow ducts 3 to 6, too, instantaneous cooling/warming performance can be improved.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: December 16, 2008
    Assignee: Denso Corporation
    Inventors: Tatsuhiko Nishino, Eiichi Torigoe
  • Publication number: 20080271471
    Abstract: A substrate processing system comprises a plurality of CVD processing units (15a-15c) and one refrigerator (101). A supply line (102) for supplying a cooling medium from the refrigerator to the CVD processing units, and a feedback line (103) for feeding the cooling medium back to the refrigerator from the processing units are laid in the system. The cooling medium from the refrigerator is thus distributively fed to the processing units. Circuits (104a-104c) are laid out in rod stages (33), objects of temperature control, in the respective processing units. Each circuit is connected to the supply line and to the feedback line. The cooling medium is circulated around the circuits to control the temperatures of the rod stages stably. When the temperature of the rod stage rises, the cooling medium at a low temperature is taken in the circuit from the supply line to cool the rod stage.
    Type: Application
    Filed: December 24, 2004
    Publication date: November 6, 2008
    Inventors: Toshihisa Nozawa, Koji Kotani
  • Patent number: 7434415
    Abstract: A humidity control method is provided for a multi-stage cooling system having two or more refrigerant circuits that balances humidity control and cooling demand. Each refrigerant circuit includes a compressor, a condenser and an evaporator. A hot gas reheat circuit having a hot gas reheat coil is connected to one of the refrigerant circuits and is placed in fluid communication with the output airflow from the evaporator of that refrigerant circuit to provide additional dehumidification to the air when humidity control is requested. The hot gas reheat circuit bypasses the condenser of the refrigerant circuit during humidity control. Humidity control is only performed during cooling operations and ventilation operations.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: October 14, 2008
    Assignee: York International Corporation
    Inventors: John Terry Knight, Stephen Wayne Bellah, Stephen Blake Pickle
  • Publication number: 20080196426
    Abstract: A refrigerant system is provided with a reheat circuit. A pulse width modulation control is provided to achieve variable reheat capacity and thus to satisfy a wide spectrum of temperature and humidity levels in an environment conditioned by a refrigerant system. The pulse width modulation signal provided for the reheat flow control device achieves incremental amounts of reheat while avoiding temperature and humidity variations in the conditioned space.
    Type: Application
    Filed: August 23, 2005
    Publication date: August 21, 2008
    Inventors: Michael F. Taras, Alexander Lifson
  • Publication number: 20080173035
    Abstract: Mini, split-system dehumidifier that provides three modes of operation: heating and dehumidification, cooling and dehumidification, and dehumidification only. The dehumidifier maintains a set temperature of the supply air by controlling the amount of heat of rejection at the primary condenser that is cycled back into the supply air.
    Type: Application
    Filed: January 22, 2007
    Publication date: July 24, 2008
    Inventors: Daniel D. Thayer, David E. Beal
  • Publication number: 20080156006
    Abstract: A soft freeze assembly for a refrigerator including a freezer storage compartment having a first temperature includes a second storage compartment positioned within the freezer storage compartment. A heat source is positioned with respect to the second storage compartment and configured to heat air within the second storage compartment to a second temperature greater than the first temperature within the freezer storage compartment. A controller is in operational control communication with the heat source and configured to operate the heat source.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Inventors: Tim A. Hamel, Mark W. Wilson, Alexander Pinkus Rafalovich, Sathi Bandaru
  • Patent number: 7389813
    Abstract: The present invention provides systems and methods of controlling local environment. In one embodiment, incoming air enters a contactor such the Direct Contact Cooler-Condenser (DCCC) where the air contacts water distributed on the contact media. After passing through the DCCC, the air is saturated at a temperature equal or close to that of the water. Depending on the state of the incoming air, in the DCCC will be humidified or dehumidified to yield saturated air at the desired humidity ratio. In one embodiment, a blower draws air through the DCCC and blows into the heater. The heater heats the air to the desired dry-bulb temperature. Before exiting, the air may pass through a filter.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: June 24, 2008
    Assignee: ASML Holding N.V.
    Inventors: Dikran S. Babikian, Bryan H. Wade
  • Publication number: 20080098756
    Abstract: An air conditioning system comprising an air mover for circulating air to a space; a vapor compression circuit including a compressor, a condenser, and an expansion device; an evaporator; an air-reheat heat exchanger; and a control system. In one embodiment, the evaporator receives refrigerant from the vapor compression circuit and provides a cooled stream of air to the space. The air-reheat heat exchanger is positioned to receive the cooled stream of air. In one embodiment, the vapor compression circuit, the evaporator, and the air-reheat heat exchanger are operable in combination to provide a plurality of modes of operation. In a preferred embodiment, the control system is configured to compute a Sensible cooling-to-Total cooling (S/T) process ratio and to control an operation of at least one of the vapor compression circuit, the evaporator, and the air-reheat heat exchanger. A method of manufacturing the air conditioning system is also provided.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 1, 2008
    Applicant: Lennox Manufacturing, Inc.
    Inventor: Robert B. Uselton
  • Publication number: 20080022705
    Abstract: A device and method are specified for managing indoor air quality. More particularly, to promote health, comfort, and air quality, a device and method are proposed for filtering and dehumidifying air in an indoor environment, e.g., air that flows through an HVAC system.
    Type: Application
    Filed: July 25, 2006
    Publication date: January 31, 2008
    Inventor: Roger Dale Clearman
  • Publication number: 20070283705
    Abstract: A gas pressure reducer comprising at least one gas expansion device for allowing the gas to expand and thereby reduce in pressure, and at least one means for raising the temperature of the gas in the vicinity of the gas expansion device and wherein the means for raising the temperature of the gas comprises a liquid or solid fuel heater or a liquid fuelled engine.
    Type: Application
    Filed: May 28, 2007
    Publication date: December 13, 2007
    Inventor: Anthony John Taylor
  • Patent number: 7261150
    Abstract: A method for humidifying and controlling the temperature of a process gas stream comprising the steps of super-saturating and heating the process gas stream with steam until it reaches a first pre-set temperature; cooling the process gas stream until it reaches a second pre-set temperature; removing excess condensed water from the process gas stream; and heating the process gas stream until it reaches a third pre-set temperature. An apparatus for implementing this method is also disclosed.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: August 28, 2007
    Assignee: Hydrogenics Corporation
    Inventors: Joe Cargnelli, Ravi B. Gopal
  • Patent number: 7168258
    Abstract: A real temperature output air conditioner which lowers the ambient temperature of an interior space to a desired temperature and, once that has been achieved, delivers a constant flow of air at that specific temperature thereto. The present invention further includes a reservoir within the evaporator unit in which the evaporator coils and heater element are immersed. The evaporator coils and heat element act upon the fluid wherein thermal transfer to the ambient air is enhanced and dissipated to the interior space by the evaporator fan.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: January 30, 2007
    Inventor: Osama Othman Mostaeen Al-Khateeb
  • Patent number: 7121103
    Abstract: An automobile air conditioning system controls the high pressure of the refrigeration cycle in a wide range of airflows from a low airflow region during an intermediate period to a high airflow region. When a dehumidifying mode is selected, the target high pressure at which the cycle efficiency calculated from a gas cooler outlet refrigerant temperature is maximized is defined as a target value to a valve such as a heating variable throttle valve to control the high pressure of the refrigeration cycle to the target value. This permits control such that the cycle efficiency of the refrigeration cycle is maximized in a wide range of airflow from a low airflow region during an intermediate period to a high airflow region at a relatively low, about 10° C., outside air temperature.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: October 17, 2006
    Assignee: Denso Corporation
    Inventors: Satoshi Itoh, Toshinobu Homan, Keiichi Kitamura
  • Patent number: 7062930
    Abstract: A humidity control method is provided for a multi-stage cooling system having two or more refrigerant circuits. A hot gas re-heat circuit having a hot gas re-heat coil is connected to one of the refrigerant circuits and is placed in fluid communication with the output airflow from the evaporator of that refrigerant circuit to provide additional dehumidification to the air. Humidity control is only performed during cooling operations and ventilation operations. During a first stage cooling operation using only one refrigerant circuit and having a low cooling demand, the request for humidity control activates the hot gas re-heat circuit for dehumidification and activates a second refrigerant circuit to provide cooling capacity. During a second stage cooling operation using two or more refrigerant circuits and having a high cooling demand, the request for humidity control is suspended and is initiated only upon the completion of the second stage cooling demand.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: June 20, 2006
    Assignee: York International Corporation
    Inventor: Ronald Richard Rayburn
  • Patent number: 7051801
    Abstract: A method for humidifying and controlling the temperature of a process gas stream comprising the steps of super-saturating and heating the process gas stream with steam until it reaches a first pre-set temperature; cooling the process gas stream until it reaches a second pre-set temperature; removing excess condensed water from the process gas stream; and heating the process gas stream until it reaches a third pre-set temperature. An apparatus for implementing this method is also disclosed.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: May 30, 2006
    Assignee: Hydrogenics Corporation
    Inventors: Joe Cargnelli, Ravi B. Gopal
  • Patent number: 7028492
    Abstract: A hybrid dehumidification system includes a compressor, a condenser, an expansion device and an evaporator connected for flow of working fluid through a fluid circuit; a reheat coil positioned relative to the evaporator for heating at least a portion of a stream of air passing through the evaporator; and a working fluid directing system adapted to flow working fluid in at least two modes of operation selected from the group consisting of a standard cooling mode, a cooling and enhanced dehumidification mode; a dehumidification without substantial sensible capacity mode; a heating and dehumidification mode; and a dehumidification with variable sensible capacity mode.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: April 18, 2006
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Alexander Lifson
  • Patent number: 6993920
    Abstract: A method comprises the steps of (a) providing a refrigeration unit having a refrigerated or heated space and at least one measured operating parameter, (b) providing heat to the refrigerated space when the at least one measured operating parameter exceeds a first threshold, (c) terminating provision of heat when the at least one measured operating parameter exceeds a second threshold, and repeating steps b–c when the at least one operating parameter falls below the first threshold. In using this method, the unit can be operated continuously, with substantially higher refrigerant mass flow and evaporator pressure then in the prior art. Higher refrigerant mass flow rate and higher evaporator pressure improve oil return to the compressor, thus reducing the like hood of compressor damage due to oil pump out.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: February 7, 2006
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Jason Scarcella
  • Patent number: 6976365
    Abstract: Apparatus for conditioning air comprising: a quantity of liquid desiccant (28); a dehumidifier section (12) in which air to be conditioned is brought into contact with a first portion of the liquid desiccant; a regenerator section (32) in which outside air is brought into contact with a second portion of the liquid desiccant; and a refrigeration system (45) having a first heat exchanger (46) associated with the first portion of liquid desiccant and a second heat exchanger (36) associated with the second portion of liquid desiccant and a third heat exchanger (136) that does not contact the liquid desiccant.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: December 20, 2005
    Assignee: Drykor Ltd.
    Inventors: Mordechai Forkosh, Dan Forkosh, Tomy Forkosh
  • Patent number: 6966364
    Abstract: The present invention provides systems and methods of controlling local environment. In one embodiment, incoming air enters a contactor such the Direct Contact Cooler-Condenser (DCCC) where the air contacts water distributed on the contact media. After passing through the DCCC, the air is saturated at a temperature equal or close to that of the water. Depending on the state of the incoming air, in the DCCC will be humidified or dehumidified to yield saturated air at the desired humidity ratio. In one embodiment, a blower draws air through the DCCC and blows into the heater. The heater heats the air to the desired dry-bulb temperature. Before exiting, the air may pass through a filter.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: November 22, 2005
    Assignee: ASML Holding N.V.
    Inventors: Dikran S. Babikian, Bryan H. Wade
  • Patent number: 6955057
    Abstract: A method for operating a vapor compression system includes the steps of providing a vapor compression system having a compressor circuit including a compressor having an inlet port and an outlet port, a circuit incorporating the compressor, a condenser, an evaporator and an expansion device for sequentially generating a cooling refrigerant for cooling a stream of air so as to provide a dehumidified cooled stream of air, and a reheat refrigerant for heating the dehumidified cooled stream of air to provide a reheated dehumidified stream of air; controlling discharge pressure from the compressor outlet so as to increase discharge pressure from the compressor outlet. Furthermore, system dehumidification performance is improved in terms of latent capacity boost, undesired sensible capacity reduction, latent efficiency enhancement, and recovery of supply air temperature to a desired level.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: October 18, 2005
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Thomas J. Dobmeier, Ruddy C. Bussjager
  • Patent number: 6941770
    Abstract: An economizer loop is incorporated into the refrigerant system, which in conjunction with any selected reheat mode of operation, provides augmented performance, improved reliability, and enhanced control in meeting external heat load demands. A refrigerant system includes several features that can be selectively utilized alone or in combination with each other to provide an enhanced control over system cooling and dehumidification capability. In particular, a reheat coil is incorporated into the refrigerant system, and has alternative connection points to the main circuit, positioned both upstream and downstream of a condenser. Also, a flow control device allows a selective bypass around a condenser. In this manner, the refrigerant flowing through the reheat coil can be controlled to provide a desired level of temperature and humidity. Finally, the compressor may include an unloader feature such that additional steps in capacity control can be provided.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: September 13, 2005
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Alexander Lifson
  • Patent number: 6935421
    Abstract: An air conditioner includes a compressor for compressing refrigerant, an exterior heat exchanger for performing heat exchange between refrigerant and outside air, an interior heat exchanger for performing heat exchange between the refrigerant and air to be blown into the compartment, an ejector for decompressing high-pressure refrigerant, a heater core for heating air using a high-temperature fluid as a heating source, and a fluid-refrigerant heat exchanger that heats the fluid flowing to the heater core using high-temperature refrigerant discharged from the compressor as a heating source. In a dehumidifying and heating operation, refrigerant in the interior heat exchanger absorbs heat from air so that the air is cooled and dehumidified, and the dehumidified and cooled air can be further heated in the heater core by indirectly using the heating source from the high-temperature refrigerant.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: August 30, 2005
    Assignee: DENSO Corporation
    Inventors: Hirotsugu Takeuchi, Shin Nisida
  • Patent number: 6931868
    Abstract: The air conditioning system for conditioning of an airflow stream uses a fluid flow system to control operational modes of heating, cooling, dehumidifying freeze protection and defrost. The fluid flow system allows an air conditioning system to operate using a hot fluid source without the need for a gas or oil direct heat air stream heat system. The fluid flow system circulates fluid through a reheat coil and a precooling coil or a bypass conduit thereof depending on the operating mode of the system. Routing of fluid flow is controlled by a hot water control valve and a bypass valve under control of a control panel and a check valve stabilizing the fluid pressure minimizing formation of gas bubbles in the fluid which condition may degrade system performance.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: August 23, 2005
    Inventor: Stanley Goldstein
  • Patent number: 6920922
    Abstract: An air conditioner includes a compressor for compressing refrigerant, an exterior heat exchanger for performing heat exchange between refrigerant and outside air, an interior heat exchanger for performing heat exchange between the refrigerant and air to be blown into the compartment, a decompression unit for decompressing high-pressure refrigerant, and a heater that heats air using high-temperature refrigerant discharged from the compressor as a heating source. In a dehumidifying and heating operation, refrigerant in the interior heat exchanger absorbs heat from air so that the air is cooled and dehumidified, and the heater heats air having been dehumidified and cooled by using the heating source, so that low-humidity and high-temperature air is supplied into the compartment. The heater can be disposed to indirectly heat air by heating a fluid flowing through a heater core for heating air, or to directly heat air to be blown into the compartment.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: July 26, 2005
    Assignee: DENSO Corporation
    Inventor: Hirotsugu Takeuchi
  • Patent number: 6834511
    Abstract: A vehicle air conditioning apparatus includes a heater core 21 radiating heat of engine coolant to an air stream to be blown off to a vehicle compartment, a sub condenser 4 operative to radiate heat of compressed refrigerant to the air stream to be blown off to the vehicle compartment for condensing refrigerant, an evaporator 7 operative to allow expanded refrigerant by an expansion valve 6 to absorb heat of the air stream in the vehicle compartment to be evaporated, a variable displacement compressor 2 operative to compress evaporated refrigerant to be discharged to the condenser 4, a sensor 9 that detects a discharge refrigerant pressure of the compressor 2, and a compressor control means 100 operative to control a discharge refrigerant volume of the compressor 2 so as to compel a blow-off temperature to lie at a given temperature in response to a detected result of the sensor 9.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: December 28, 2004
    Assignee: Calsonic Kansei Corporation
    Inventor: Jun Hatakeyama
  • Patent number: 6826920
    Abstract: A humidity controller for an air handling unit of a space, room or zone. The controller may be a dehumidification system integrated with a constant volume air handling unit. The system may have separate actuator control of a mixed air damper and other actuator control for both an outdoor air intake damper and an indoor air exhaust damper. Humidity and temperature sensors may be placed outdoors and indoors in the space having air to be dehumidified, temperature controlled and/or mixed with outdoor air. An economizer controller may be connected to the sensors and actuators for controlling various properties of the air in the space. The air may be dehumidified by slowing down the movement of air across the cooling coil of the air handling unit.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: December 7, 2004
    Assignee: Honeywell International Inc.
    Inventor: Paul C. Wacker
  • Patent number: 6826921
    Abstract: A vapor compression air conditioning system, including a heat pump embodiment, provides enhanced dehumidification of supply air to an enclosed space. The refrigerant fluid circuit includes an evaporator and a reheat heat exchanger for controlling temperature and dehumidification of supply air. A variable speed fan motor controls air flow over an outdoor condenser heat exchanger whereby condenser heat exchange may be shifted progressively between the reheat heat exchanger and the condenser heat exchanger. One alternate embodiment includes a thermosiphon system for heat transfer to and from the reheat heat exchanger. Another embodiment includes a bypass air flow control damper for controlling flow of supply air through the evaporator and the reheat heat exchanger.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: December 7, 2004
    Assignee: Lennox Industries, Inc.
    Inventor: Robert B. Uselton
  • Patent number: 6792767
    Abstract: A control system for a HVAC unit for controlling the humidity and temperature of interior building space at desired levels regardless of the outside temperature and humidity conditions. This system is more efficiently so that it operates with less energy consumption than current HVAC systems. The control system employs a combination of modulated return air bypass, modulated capacity compressor, and modulating hot gas reheat to maintain proper interior space humidity, and temperature while maintaining adequate ventilation within the interior building space. The system employs feed forward control to prevent overheating the interior building space with reheat and also, once humidity requirements are met, resets low pressure limit settings at the exit of the evaporator to minimize use of reheat in the operation of the unit.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: September 21, 2004
    Assignee: Aaon Inc.
    Inventors: Stephen J. Pargeter, David Knebel
  • Patent number: 6698235
    Abstract: A refrigerant cycle system includes a condenser having a condensation portion for condensing refrigerant discharged from a compressor, and a receiver for separating refrigerant from the condensation portion into gas refrigerant and liquid refrigerant, and for storing the liquid refrigerant. In this system, refrigerant from the condensation portion flows into the receiver through a first communication hole, and liquid refrigerant in the receiver is discharged through a second communication hole in which a pressure loss is generated. Further, gas refrigerant at an upper side in the receiver is discharged to a downstream side of the second communication hole through a gas bypass pipe.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 2, 2004
    Assignee: Denso Corporation
    Inventors: Tetsuji Nobuta, Ryouichi Sanada, Satoshi Sumiya
  • Patent number: 6694756
    Abstract: A vapor compression system includes at least one vapor compression circuit including a compressor, a condenser, and an expansion device; an evaporator for receiving refrigerant from the vapor compression circuit and adapted to provide a cooled stream of air; an air-reheat heat exchanger positioned to receive the cooled stream of air and communicated with at least one of liquid discharged from the condenser and gas discharged from the compressor or both for reheating the cooled stream of air to a desired temperature; wherein the at least one vapor compression circuit, the evaporator and the air reheat heat exchanger are operable to provide a range of selectable dehumidification rates; and a control system adapted to receive input related to a desired humidity and current humidity-related data and to select an appropriate dehumidification rate from the range based upon the input and the data. A method is also provided.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: February 24, 2004
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Thomas J. Dobmeier
  • Patent number: 6694757
    Abstract: A multiple stage dehumidification and cooling system wherein a first stage direct expansion dehumidifier operating at its optimum dew point to an entering high humidity, high temperature air stream and effecting a first lowering of the temperature and humidity of the air stream, with the conditioned air stream being serially conveyed to a second stage chilled liquid dehumidifier operating at its optimum dew point to effect a second lowering of the temperature and humidity, and thereafter to a third stage reheat coil for providing an exiting air stream of desired temperature and humidity conditioning. The synergistic coupling provides significant power saving over the prior alternatives of desiccant and chilled liquid systems and the stages are individually modulated to reduce power consumptions as the load temperature and humidity set points are approached.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: February 24, 2004
    Inventor: Thomas J. Backman
  • Publication number: 20040003609
    Abstract: A five element refrigeration system whereby heating and cooling functions of the system can be accomplished as in a reverse cycle system without needing to reverse the flow of the liquid through the system. The system comprises a refrigerant compressor, a pair of air side heat exchangers, an air blower to provide circulation for the air side heat exchangers, a pair of water side heat exchangers, and a reservoir to provide cooling water for the water side heat exchangers. The refrigerant compressor increases the pressure of a refrigerant flowing through it, causing it to circulate through the first air side heat exchanger, or a reheat coil. The refrigerant continues to the first water side heat exchanger, which acts as a condenser. In a cooling mode, the refrigerant continues to the second air side heat exchanger, which acts as an evaporator. In a heating mode, the refrigerant continues to the second water side heat exchanger, which acts as an evaporator.
    Type: Application
    Filed: July 2, 2002
    Publication date: January 8, 2004
    Applicant: Desert Aire Corp.
    Inventors: Peter Groenewold, Danny Hall
  • Patent number: 6672087
    Abstract: A vapor compression system including a vapor compression circuit having a compressor, a condenser, an expansion device and an evaporator serially connected by refrigerant lines; an air flow path through the evaporator for generating a cooled air stream; a heat exchanger communicated with the cooled air stream and an air reheating medium which is at least one of refrigerant liquid discharge from the condenser and refrigerant gas discharge from the compressor; and a regulating valve for controlling flow rate of the air reheating medium to the heat exchanger. This scheme provides precise and smooth simultaneous temperature and humidity control as well as reduces a number of start/stop cycles and eliminates switching between cooling and dehumidification regimes of operation, which enhances system reliability.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: January 6, 2004
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Thomas J. Dobmeier
  • Patent number: 6666040
    Abstract: A five element refrigeration system whereby heating and cooling functions of the system can be accomplished as in a reverse cycle system without needing to reverse the flow of the liquid through the system. The system comprises a refrigerant compressor, a pair of air side heat exchangers, an air blower to provide circulation for the air side heat exchangers, a pair of water side heat exchangers, and a reservoir to provide cooling water for the water side heat exchangers. The refrigerant compressor increases the pressure of a refrigerant flowing through it, causing it to circulate through the first air side heat exchanger, or a reheat coil. The refrigerant continues to the first water side heat exchanger, which acts as a condenser. In a cooling mode, the refrigerant continues to the second air side heat exchanger, which acts as an evaporator. In a heating mode, the refrigerant continues to the second water side heat exchanger, which acts as an evaporator.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: December 23, 2003
    Assignee: Desert Aire Corp.
    Inventors: Peter Groenewold, Danny Hall, Jr.
  • Patent number: 6658874
    Abstract: An air conditioner controller comprises a supply air duct with an air inlet, an air outlet and a blower. An evaporator is within the duct adjacent to the inlet. A subcooling heat exchanger is within the duct between the evaporator and the outlet. A liquid line feeds coolant from a condenser. The liquid line has a primary outlet coupled to the subcooling heat exchanger and a secondary outlet coupled to a first valve. A coupling line feeds coolant from the subcooling heat exchanger to an evaporator. The coupling line has a second valve adjacent to the subcooling heat exchanger and an intermediate line. A humidistat, under the control of an operator, controls the first and second valve to thereby vary the operating parameters.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: December 9, 2003
    Inventor: Richard W. Trent
  • Patent number: 6644049
    Abstract: In accordance with the present invention, a space conditioning system having multi-stage cooling and dehumidification capability is provided. The system includes plural refrigeration circuits operable in a cooling mode to provide cooled air to an indoor space. At least one of the refrigeration circuits is also operable in a reheat mode, wherein air is dehumidified by cooling it and then reheating it before it is supplied to the space. A control system is provided for controlling the operation of the refrigeration circuits to satisfy both a demand for cooling and a demand for dehumidification. Depending upon the level of demand for cooling, the system is operated to satisfy the dehumidification demand and the cooling demand simultaneously. However, in response to a higher level of demand for cooling (e.g., a second stage demand, or in some cases, a higher demand), the demand for cooling takes priority over the dehumidification demand.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: November 11, 2003
    Assignee: Lennox Manufacturing Inc.
    Inventor: Malcolm L. Alford
  • Publication number: 20030192331
    Abstract: In accordance with the present invention, a space conditioning system having multi-stage cooling and dehumidification capability is provided. The system includes plural refrigeration circuits operable in a cooling mode to provide cooled air to an indoor space. At least one of the refrigeration circuits is also operable in a reheat mode, wherein air is dehumidified by cooling it and then reheating it before it is supplied to the space. A control system is provided for controlling the operation of the refrigeration circuits to satisfy both a demand for cooling and a demand for dehumidification. Depending upon the level of demand for cooling, the system is operated to satisfy the dehumidification demand and the cooling demand simultaneously. However, in response to a higher level of demand for cooling (e.g., a second stage demand, or in some cases, a higher demand), the demand for cooling takes priority over the dehumidification demand.
    Type: Application
    Filed: April 16, 2002
    Publication date: October 16, 2003
    Applicant: Lennox Manufacturing Inc.
    Inventor: Malcolm L. Alford
  • Patent number: 6622500
    Abstract: An energy-efficient air conditioning control method regulates the capacity of a variable capacity refrigerant compressor based on the compressor suction and discharge pressures and a measure of the ambient temperature. A target suction pressure is selected based on the ambient temperature and the sensed discharge pressure, and the capacity of the compressor is adjusted as required to attain the target suction pressure. In a first embodiment of the control method, the ambient temperature is used to select a target evaporator outlet air temperature, which is used along with the sensed discharge pressure to select the target suction pressure, while in a second embodiment of the control method, the target suction pressure is selected directly on the basis of the ambient temperature and the sensed discharge pressure.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: September 23, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Charles Andrew Archibald, Karma Vir Sangwan, Thomas Martin Urbank, James Joseph Christen
  • Patent number: 6612119
    Abstract: A refrigeration system with a high percentage of fresh air. The system comprises a supply air duct; an indoor heat exchange coil operably positioned in the supply air duct; a reheat heat exchange coil operably positioned in the supply air duct; an outdoor heat exchange coil; at least one compressor; and an expansion device. The system also comprises refrigeration system tubing connected to and serially arranging the compressor, the outdoor heat exchange coil, the expansion device and the indoor coil into a refrigeration circuit; and reheat tubing connecting the reheat coil to the refrigeration tubing so as to arrange the reheat coil in a parallel circuited arrangement with the outdoor heat exchange coil and in a series circuited arrangement with the compressor, the expansion device and the indoor heat exchange coil.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: September 2, 2003
    Assignee: American Standard International Inc.
    Inventors: David H. Eber, Paul R. Glamm, Dwayne L. Johnson, Walter Earhart, Jr., John F. Klouda, Brian J. Kiel, Dale A. Hulst
  • Patent number: 6595012
    Abstract: Described is a climate control system with an air conditioning or a heat pump and a method to provide desirable temperature and humidity of indoor air. In addition to a compressor, a condenser, an evaporator, and an expansion device, the air conditioner/heat pump includes an auxiliary coil, valve means, refrigerant communication means, and control means. In hot climate the system operates in two separate modes: a conventional cooling mode and a cooling mode with enhanced dehumidification. In the conventional cooling mode the valve means direct refrigerant leaving the condenser to the expansion device and then to the auxiliary coil to absorb heat from conditioning air by refrigerant in the auxiliary coil. In this mode an extra amount of liquid refrigerant is stored in the refrigerant communication means.
    Type: Grant
    Filed: September 29, 2001
    Date of Patent: July 22, 2003
    Inventor: Alexander P Rafalovich
  • Patent number: 6523359
    Abstract: A dehumidifier for swimming pool enclosures includes a first circuit having a condenser, an evaporator, and refrigerant, and a second circuit including the evaporator of the first circuit, a second evaporator and a heat sink fluid movable along the circuit. The second evaporator is positioned upstream with respect to the condenser of the first circuit. A bypass directs air around the second evaporator and a second bypass selectively directs air around both the second evaporator and the condenser.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: February 25, 2003
    Assignee: Environmental Pool Systems, Inc.
    Inventor: Robert Posch
  • Patent number: 6422308
    Abstract: A heat pump type air conditioner for a vehicle has a refrigeration cycle constituted by a compressor, an external heat exchanger, a refrigerant valve unit and an internal heat exchanger unit. The refrigerant valve unit includes first and second flow control valves, and the internal heat exchanger unit includes an auxiliary internal heat exchanger and a main internal heat exchanger. In the refrigeration cycle, the first flow control valve, the auxiliary internal heat exchanger, the second flow control valve and the main internal heat exchanger are serially connected in the order of mention. The main and auxiliary internal heat exchangers change their function between an evaporator and a condenser according to the controlled state of the first and second flow control valve.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: July 23, 2002
    Assignee: Calsonic Kansei Corporation
    Inventors: Yasuhito Okawara, Toshio Ohashi, Yuichi Meguriya, Tadayoshi Tajima
  • Publication number: 20020088239
    Abstract: The air conditioning system for conditioning of an airflow stream uses a fluid flow system to control operational modes of heating, cooling, freeze protection and defrost. The fluid flow system allows an air conditioning system to operate using a hot fluid source without the need for a gas or oil direct heat air stream heat system. The fluid flow system circulates fluid through a reheat coil and a precooling coil or a bypass conduit thereof depending on the operating mode of the system. Routing of fluid flow is controlled by a hot water control valve and a bypass valve under control of a controls fluid pressure and minimizing formation of gas bubbles in the fluid which condition may degrade system performance.
    Type: Application
    Filed: February 6, 2002
    Publication date: July 11, 2002
    Inventor: Stanley Goldstein
  • Patent number: 6415621
    Abstract: An air conditioning system for an aircraft includes a first rotatable shaft with a first compressor, a first turbine, a cooling air fan, and an auxiliary compressor connected for rotation therewith, and preferably further includes a second rotatable shaft with a second compressor and a second turbine connected for rotation therewith. A compression, cooling, and expansion cycle driven by at least the first compressor and the first turbine provides a principle flow of air conditioning air. The auxiliary compressor draws in outside air and provides a redundant auxiliary ventilation air flow, which is supplied into the installation space in which the air conditioning unit is installed, or another space in the aircraft that requires a reliable constant ventilation and cooling whenever the air conditioning unit is operational. The auxiliary ventilation air may be connected to a common air distribution network with other air conditioning units.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: July 9, 2002
    Assignee: Airbus Deutschland GmbH
    Inventors: Uwe Buchholz, Juergen Kelnhofer, Thomas Scherer
  • Patent number: 6381970
    Abstract: A refrigeration system with a high percentage of fresh air. The system comprises a supply air duct; an indoor heat exchange coil operably positioned in the supply air duct; a reheat heat exchange coil operably positioned in the supply air duct; an outdoor heat exchange coil; at least one compressor; and an expansion device. The system also comprises refrigeration system tubing connected to and serially arranging the compressor, the outdoor heat exchange coil, the expansion device and the indoor coil into a refrigeration circuit; and reheat tubing connecting the reheat coil to the refrigeration tubing so as to arrange the reheat coil in a parallel circuited arrangement with the outdoor heat exchange coil and in a series circuited arrangement with the compressor, the expansion device and the indoor heat exchange coil.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: May 7, 2002
    Assignee: American Standard International Inc.
    Inventors: David H. Eber, Paul R. Glamm, Dwayne L. Johnson, Walter Earhart, Jr., John F. Klouda, Brian J. Kiel, Dale A. Hulst
  • Patent number: 6321546
    Abstract: A heat transfer system first includes an air conditioner which includes an evaporator. The system further includes a chamber having an air duct including an input end for receiving fresh ambient make up air and for also receiving recycled air. The air duct also includes an output end to move conditioned air passed the evaporator and into the chamber, with intermediate zones between the input end and the output end. The intermediate zones include a return air zone, a make up air zone, an air handler zone, and an air supply zone. The system also includes a distiller with an input end to receive water from a feed water source, an outputs, an exhaust chimney to direct the flow of excess heat and recycled air to atmosphere or for recirculation, and a heater element. Furthermore, the system includes a passive transfer assembly having a pair of ends with a coil at each end thereof and a pair of lines connecting the coils there between forming a closed loop for a second working fluid to pass.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: November 27, 2001
    Inventors: Douglas E. Johnson, Jon Lucas
  • Patent number: 6260366
    Abstract: A heat-recycling air conditioner is disclosed, which includes a first loop having a compressor, a condenser and an evaporator and a second loop having a condenser cooling water inlet and an outlet, an auxiliary heat exchanger and a source of cooling water. The cooling water flows to the condenser to absorb the heat from the coolant and then the heated cooling water flows to an auxiliary heat exchanger to add extra heat to the discharge air.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: July 17, 2001
    Inventor: Chi-Chuan Pan
  • Patent number: 6220042
    Abstract: The invention concerns a refrigerating fluid circuit capable of operating in three fluid circulation modes, namely an air conditioning mode whereby the fluid circulates successively in the evaporator where it is evaporated by receiving the heat of the air flow to be treated, in the compressor, in the condenser where it is condensed by yielding the heat to another medium and in a pressure reducing valve; a supplementary heating mode whereby the fluid circulates in gaseous state between the evaporator where it yields heat to the air flow and the compressor, without passing through the condenser, and an inoperative mode whereby the fluid does not circulate in the evaporator. The invention is characterized in that the circulation mode is determined taking into account not only the user's choice but also the possible presence of mist on the windscreen, detected by a sensor, so as to promote demisting while optimizing comfort and energy conservation.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: April 24, 2001
    Assignee: Valeo Climatisation
    Inventors: Jérôme Robillard, Christophe Petitjean
  • Patent number: 6131653
    Abstract: An air dehumidifying and conditioning system (20) draws incoming air (32) through a fan (40) and uses heat from the fan (40) and fan motor (48) to heat air discharged from the fan. The system then divides air discharged from the fan into a supply stream (50) and a scavenge stream (52). The supply stream is passed through a pre-cooler (60A) and an air cooler (60) for cooling and dehumidification. If necessary, the scavenge stream is heated with a pre-heater (62A) and a supplemental heater (62). The dehumidified air of the supply stream (50) is then heated by passing through a heat exchanger (80), with the heating by the heat exchanger being accomplished using the scavenge stream (52). Should no heating, cooling, or dehumidifying be required, a bypass stream (54) formed from the scavenge stream (52) is transmitted to the conditioned space.
    Type: Grant
    Filed: March 8, 1996
    Date of Patent: October 17, 2000
    Inventor: Donald E. Larsson