Of Or By Compressor Patents (Class 62/193)
-
Patent number: 12007159Abstract: A refrigeration system includes a controllable valve positioned downstream from one or more low-temperature compressors. The controllable valve receives compressed refrigerant from the low-temperature compressors and directs flow of the refrigerant to one or both of (i) medium-temperature compressors downstream from the controllable valve and (ii) one or more evaporators based on an operation mode of the evaporators. A pressure-regulating valve is disposed in refrigerant conduit coupling a first flash tank to a second flash tank. After determining to operate a first evaporator in a defrost mode, a controller adjusts the controllable valve to direct a portion of refrigerant to the first evaporator and adjusts the pressure-regulating valve to increase a pressure of the first flash tank relative to that of the second flash tank.Type: GrantFiled: June 20, 2022Date of Patent: June 11, 2024Assignee: Heatcraft Refrigeration Products LLCInventor: Shitong Zha
-
Patent number: 11966939Abstract: A computer device and method for processing risk related data to determine one or more insurance products for appliances and other systems located in or on an insured property. Informatic data is received from one or more informatic sensor devices relating to one or more appliances located in or on an insured property. Analysis is performed on the received informatic data to determine one or more insurance products to be recommended for at least one appliance located in or on the insured property. Notification is provided regarding determination of the one or more insurance products for the at least one appliance located in or on the insured property.Type: GrantFiled: September 3, 2021Date of Patent: April 23, 2024Assignee: United Services Automobile Association (USAA)Inventors: Ramsey Devereaux, Michael J. Allen, Spencer Read, David S. Franck, William M. Chandler, Daniela M. Wheeler, Kathleen L. Swain
-
Patent number: 11906221Abstract: A defrosting control method of a multi-functional multi-split system with double four-way valves. The multi-functional multi-split system includes an outdoor unit, at least one set of hydraulic modules, and at least one set of indoor modules. When the multi-split system is switched from a normal operation mode to a defrosting mode, a first four-way valve and a second four-way valve are powered down, and operation modes of each set of indoor modules and each set of hydraulic modules, the on/off state of fans of an indoor heat exchanger and a hydraulic heat exchanger, opening degrees of a first electromagnetic valve of the indoor heat exchanger and a second electromagnetic valve of the hydraulic heat exchanger, and the on/off state of the first electromagnetic valve and the second electromagnetic valve are correspondingly adjusted based on the previous operation modes of each set of indoor modules and each set of hydraulic modules.Type: GrantFiled: December 29, 2021Date of Patent: February 20, 2024Assignee: GUANGDONG GIWEE TECHNOLOGY CO. LTD.Inventors: Min Zhou, Hongbin Liu
-
Patent number: 11885548Abstract: A refrigeration cycle apparatus includes: a refrigeration cycle circuit in which a compressor, a condenser, a first expansion valve, and an evaporator are connected by refrigerant pipes; an injection pipe having a refrigerant inflow side end and a refrigerant outflow side end, the refrigerant inflow side being connected between the condenser and the first expansion valve, the refrigerant outflow side end being connected to a suction side of the compressor; a second expansion valve provided at the injection pipe; and a controller that controls a rotation speed of the compressor and an opening degree of the second expansion valve. In the case of reducing a heat-exchange capability of the evaporator when the rotation speed of the compressor is a specified rotation speed, the controller performs a low load operation during which refrigeration is caused to flow through the injection pipe.Type: GrantFiled: January 7, 2019Date of Patent: January 30, 2024Assignee: Mitsubishi Electric CorporationInventors: Toshiki Imanishi, Kohei Tatsuwaki
-
Patent number: 11796227Abstract: A CO2 refrigeration system includes a plurality of compressors configured to circulate a CO2 refrigerant, a suction line configured to deliver the CO2 refrigerant to the compressors, an oil separator configured to separate oil from the CO2 refrigerant, and an oil return line configured to deliver the oil from the oil separator to the suction line. The oil mixes with the CO2 refrigerant in the suction line before reaching the compressors.Type: GrantFiled: May 21, 2019Date of Patent: October 24, 2023Assignee: Hill Phoenix, Inc.Inventor: Kim G. Christensen
-
Patent number: 11773838Abstract: A compressor includes a compression mechanism that compresses refrigerant, and an electromotive mechanism that drives the compression mechanism. A shell accommodates the compression mechanism and the electromotive mechanism, with a reservoir inside the shell and that stores mixed liquid including liquid refrigerant and refrigerating machine oil. An electrode is provided inside the reservoir and faces an inner surface of the shell.Type: GrantFiled: February 2, 2016Date of Patent: October 3, 2023Assignee: Mitsubishi Electric CorporationInventors: Yuki Tamura, Shuhei Koyama, Takashi Ishigaki
-
Patent number: 11718148Abstract: A thermal system for an electrified vehicle including a thermal loop and a controller is provided. The thermal loop may include a rear evaporator and a compressor fluidly connected thereto, a conduit to distribute oil throughout the thermal loop, and an evaporator valve. The controller may be programmed to, responsive to receipt of a signal indicating evaporator valve shut-off and detection of a vehicle plug-in event, cycle the compressor to promote oil movement through the compressor. The controller may be further programmed to, responsive to receipt of the signal, open the evaporator valve to force oil back to the compressor. The thermal loop may further include a first expansion valve up stream of a chiller fluidly connected to the compressor, a second expansion valve between the evaporator valve and the rear evaporator, and a third expansion valve up stream of a front evaporator fluidly connected to the compressor.Type: GrantFiled: January 23, 2018Date of Patent: August 8, 2023Assignee: Ford Global Technologies LLCInventors: Angel Fernando Porras, Timothy Noah Blatchley, Brett Allen Dunn, Rohan Shrivastava
-
Patent number: 11656012Abstract: A cooling system uses P-traps to address the oil return issues that result from a vertical separation between the compressor and the high side heat exchanger. Generally, the vertical piping that carries the refrigerant from the compressor to the high side heat exchanger includes P-traps installed at various heights to capture oil in the refrigerant and to prevent that oil from flowing back to the compressor. As oil collects in the P-traps, the refrigerant begins to push the oil upwards until the oil reaches the high side heat exchanger. Multiple piping of different sizes may be used depending on a discharge pressure of the compressor. When the discharge pressure is higher, a larger piping may be used direct the oil and refrigerant to the high side heat exchanger.Type: GrantFiled: September 10, 2021Date of Patent: May 23, 2023Assignee: Heatcraft Refrigeration Products LLCInventor: Shitong Zha
-
Patent number: 11619430Abstract: A cooling system uses P-traps to address the oil return issues that result from a vertical separation between a compressor and a heat exchanger. Generally, the vertical piping that carries the refrigerant from the compressor to the heat exchanger includes P-traps installed at various heights to capture oil in the refrigerant and to prevent that oil from flowing back to the compressor. T-connections are coupled to the P-traps to allow the oil to drain out of the P-traps. The oil may then be collected and returned to the compressor.Type: GrantFiled: February 7, 2022Date of Patent: April 4, 2023Assignee: Heatcraft Refrigeration Products LLCInventors: Nicole Z. Martin, Shitong Zha
-
Patent number: 11493243Abstract: Disclosed is a cooling system comprising a refrigerant cycle for cycling refrigerant from at least a compressor unit for com-pressing gaseous refrigerant to a condenser unit for condensing gaseous refrigerant to liquid refrigerant, from the condenser unit to an evaporator unit for evaporating the liquid refrigerant to gaseous refrigerant, and from the evaporating unit back to the compressor unit, and a lubrication cycle having at least one lubricating refrigerant supply line for providing refrigerant as lubricant to a bearing assembly, wherein the at least one lubricating refrigerant supply line branches off from the refrigerant cycle at the condenser unit for providing refrigerant to the bearing assembly, and re-unites with the refrigerant cycle at the evaporator unit, for feeding back refrigerant from the bearing assembly to the refrigerant cycle.Type: GrantFiled: November 26, 2019Date of Patent: November 8, 2022Inventors: Rudolf Hauleitner, Christine Matta, Guillermo Enrique Morales Espejel, Hans Wallin
-
Patent number: 11493242Abstract: A cooling system and methods of employing the same includes a refrigerant cycle for cycling refrigerant from a compressor to a condenser and from the condenser an evaporator unit, and a lubrication cycle having at least one lubricating refrigerant supply line for providing refrigerant as lubricant to a bearing assembly.Type: GrantFiled: November 15, 2019Date of Patent: November 8, 2022Assignee: AKTIEBOLAGET SKFInventors: Rudolf Hauleitner, Christine Matta, Guillermo Enrique Morales Espejel, Hans Wallin
-
Patent number: 11473801Abstract: A multi-split system and a method and device for adjusting an oil volume of a compressor of a multi-split system. The adjusting method comprises the following steps: recycling oil back to an oil storage tank by controlling a switch unit to turn on and an oil volume adjusting unit to turn off; when a continuous time over which the oil storage tank recycles oil reaches a first pre-set time (t1), controlling the switch unit to turn off and controlling a multi-split system to perform a test run; obtaining, according to a low-pressure piping pressure loss (P1) and a refrigerant flow (Q), a low-pressure piping pipe diameter (D) and a low-pressure refrigerant density (Den), an excess oil volume (Q2) that needs to be recycled, and obtaining, according to the excess oil volume and a maximum oil storage volume (Qz) of the oil storage tank, an oil volume to be expelled (Q3).Type: GrantFiled: November 8, 2018Date of Patent: October 18, 2022Inventors: Mingren Wang, Kun Yang
-
Patent number: 11460227Abstract: An oil separator has a filter portion in a differential pressure generation mechanism configured to collect, by a differential pressure, lubricating oil that is in a form of mist included in high-pressure refrigerant that flows in a first pipe that is connected to a discharge port of a compressor and allows the collected lubricating oil to move downstream along an internal wall of the first pipe.Type: GrantFiled: November 15, 2017Date of Patent: October 4, 2022Assignee: Mitsubishi Electric CorporationInventors: Shun Kato, Hiroki Ishiyama, Yusuke Shimazu, Daisuke Ito
-
Patent number: 11454432Abstract: A refrigeration apparatus, including a main circuit for a loop circulation of a main flow of refrigerant, the main circuit including a compressor, a condenser, an expansion valve and an evaporator. The refrigeration apparatus comprises a lubrication branch, for deriving a lubrication flow from the main flow for feeding the compressor for lubrication. The main circuit includes a low-temperature part, consisting in the evaporator, the compressor inlet, and any part of the main circuit between the evaporator and the compressor inlet. The lubrication branch further includes a subcooling heat exchanger, which is configured for enabling an exchange of heat between the lubrication flow circulating through the lubrication branch and the main flow of refrigerant circulating through the low-temperature part, so that the lubrication flow may be cooled by the main flow of refrigerant circulating through the low-temperature part, within the subcooling heat exchanger.Type: GrantFiled: May 18, 2020Date of Patent: September 27, 2022Assignee: CARRIER CORPORATIONInventor: Raphael Muller
-
Patent number: 11326813Abstract: This refrigeration apparatus (1) includes a main refrigerant circuit (2) including a positive displacement compressor (4), a condenser (6), an expansion valve (8), and an evaporator (10), through which a refrigerant circulates successively in a closed loop circulation, and a lubrication refrigerant line (18) connected to the main refrigerant circuit (2) between the condenser (6) and the expansion valve (8) or to the condenser (6), in which circulates a portion of the refrigerant of the main refrigerant circuit (2) and connected to the compressor (4) for lubrication of said compressor (4) with the refrigerant. The refrigeration apparatus includes a lubrication refrigerant tank (20) connected to the lubrication refrigerant line (18) upstream the compressor (4), the lubrication tank (20) being configured to store liquid refrigerant for lubrication of the compressor (4) and the lubrication refrigerant tank (20) comprises means (32, 34; 38, 40) to cool down the refrigerant.Type: GrantFiled: May 13, 2020Date of Patent: May 10, 2022Assignee: CARRIER CORPORATIONInventor: Raphael Muller
-
Patent number: 11300328Abstract: Systems and methods for providing lubricant from a first compressor to a second compressor are provided. A control module receives a start command for a climate-control system having the first and second compressors, allows lubricant from the first compressor to flow into an inlet of the second compressor, turns the second compressor to an ON-mode, and prevents lubricant from the first compressor from flowing into the inlet of the second compressor after the second compressor has been in the ON-mode for a predetermined time period.Type: GrantFiled: December 18, 2019Date of Patent: April 12, 2022Assignee: Emerson Climate Technologies, Inc.Inventors: Michael M. Perevozchikov, Kirill M. Ignatiev
-
Patent number: 11287168Abstract: A cooling system uses P-traps to address the oil return issues that result from a vertical separation between the compressor and the high side heat exchanger. Generally, the vertical piping that carries the refrigerant from the compressor to the high side heat exchanger includes P-traps installed at various heights to capture oil in the refrigerant and to prevent that oil from flowing back to the compressor. T-connections are coupled to the P-traps to allow the oil to drain out of the P-traps. The oil may then be collected and returned to the compressor.Type: GrantFiled: February 5, 2020Date of Patent: March 29, 2022Assignee: Heatcraft Refrigeration Products LLCInventors: Nicole Z. Martin, Shitong Zha
-
Patent number: 11236933Abstract: A chiller system is provided and includes a chiller, a lubrication assembly and a controller. The chiller includes a compressor, a condenser, an expansion assembly and an evaporator in fluid communication with one another. The lubrication assembly is operably coupled to the compressor, the condenser and the evaporator and is formed to define first-third pathways via a three-way valve and a fourth pathway. The first pathway is configured for pumping refrigerant through the chiller, the second pathway is configured for pre-storing refrigerant in the chiller, the third pathway is configured for removing refrigerant from the chiller and the fourth pathway is configured for charging refrigerant into the chiller. The controller is configured to control the lubrication assembly to selectively engage one of the first-fourth pathways.Type: GrantFiled: May 23, 2018Date of Patent: February 1, 2022Assignee: CARRIER CORPORATIONInventors: Martin D. Bryant, Hsihua Li, Areeya Xiong
-
Patent number: 11112148Abstract: A vapor compression system (20; 400; 420) comprises: a compressor (22) having a suction port (40) and a discharge port (42); a heat rejection heat exchanger (58) coupled to the discharge port to receive compressed refrigerant; a heat absorption heat exchanger (88); a first lubricant flowpath (120, 126) from the heat rejection heat exchanger to the compressor; a second lubricant flowpath (121, 126) from the heat absorption heat exchanger to the compressor; at least one lubricant pump (190); and a controller (900) configured to control lubricant flow along the first lubricant flowpath and the second lubricant flowpath based on a sensed fluctuation.Type: GrantFiled: August 10, 2017Date of Patent: September 7, 2021Assignee: Carrier CorporationInventors: Scott A. Nieforth, Vishnu M. Sishtla
-
Patent number: 11060767Abstract: A method for operating a compressor unit (2) comprising one or more compressors (8, 9, 10) is disclosed, the compressor unit (2) being arranged in a vapour compression system (1). Two or more options for distributing the available compressor capacity of the compressor unit (2) between being connected to a high pressure suction line (11) and to a medium pressure suction line (13) are defined. For each option, an expected impact on one or more operating parameters of the vapour compression system (1), resulting from distributing the available compressor capacity according to the option, is predicted. An option is selected, based on the predicted expected impact for the options, and based on current operating demands of the vapour compression system (1), and the available compressor capacity is distributed according to the selected option, e.g. by means of settings of one or more valve arrangements (14, 15).Type: GrantFiled: October 31, 2016Date of Patent: July 13, 2021Assignee: DANFOSS A/SInventors: Kristian Fredslund, Jan Prins, Kenneth Madsen, Frede Schmidt
-
Patent number: 10962263Abstract: A vapor compression system (20, 400, 420, 440, 460, 480) has: a compressor (22) having a suction port (40) and a discharge port (42); a heat rejection heat exchanger (58) coupled to the discharge port to receive compressed refrigerant; a heat absorption heat exchanger (88); a first lubricant flowpath (120, 126; 120) from the heat rejection heat exchanger to the compressor; a second lubricant flowpath (121, 126; 121) from the heat absorption heat exchanger to the compressor; at least one lubricant pump (190; 190, 191); at least one liquid level sensor (180, 181; 180, 181, 330); and a controller (900) configured to control lubricant flow along the first lubricant flowpath and the second lubricant flowpath based on output of the at least one liquid level sensor.Type: GrantFiled: August 9, 2017Date of Patent: March 30, 2021Assignee: Carrier CorporationInventors: Vishnu M. Sishtla, Scott A. Nieforth
-
Patent number: 10849256Abstract: A cooling device for a frequency converter of a refrigerating or conditioning plant comprises at least one thermal exchange element supplied with a total flow rate of refrigerating fluid; regulating means configured to selectively regulate the total flow rate of refrigerating fluid on the basis of at least one parameter indicative of the temperature of the frequency converter.Type: GrantFiled: June 3, 2014Date of Patent: November 24, 2020Assignee: FRASCOLD S.P.A.Inventor: Thomas Broglia
-
Patent number: 10837445Abstract: A compressor includes a bore, a rotor disposed within the bore, a compressor inlet, a compressor outlet and a compression chamber defined between the bore and the rotor. A volume of the compression chamber gradually reduces from the compressor inlet to the compressor outlet. An economizer is configured to fluidically connect to the compression chamber. The economizer is configured to inject a working fluid into the compression chamber at an injection position. The injection position is changeable according to a working condition of the compressor.Type: GrantFiled: July 13, 2017Date of Patent: November 17, 2020Assignee: TRANE INTERNATIONAL INC.Inventor: Jay H. Johnson
-
Patent number: 10684049Abstract: An oil separator and an air conditioner including an oil separator are provided. The oil separator may include a housing including a suction tube that guides a refrigerant, in which an oil may be mixed, into the housing and a discharge tube that discharges refrigerant separated from the refrigerant, in which the oil may be mixed, to the outside, a first collection tube that communicates with a lower portion of the housing to discharge the oil separated from the oil to a compressor, a second collection tube that communicates with a side surface of the housing to discharge the oil separated from the refrigerant to the compressor, and a control valve provided in communication with the first collection tube or the second collection tube to control a flow of the oil through the first collection tube or the second collection tube.Type: GrantFiled: October 6, 2015Date of Patent: June 16, 2020Assignee: LG ELECTRONICS INC.Inventors: Pilhyun Yoon, Yongcheol Sa
-
Patent number: 10670312Abstract: An evaporator comprises a plurality of thermal elements disposed in a shell interior of an evaporator shell. A primary supply line configured to carry a working fluid is disposed in the shell interior. A plurality of tube sets is fluidically coupled to the primary supply line, and each tube set is spaced apart from an adjacent tube set along the first primary supply line. Each tube set comprises a plurality of individual tubes, with each tube proximate a different subset of thermal elements within the shell interior. Each tube comprises a plurality of first fluid distribution points configured to distribute the working fluid proximate the external surface of at least one of the plurality of thermal elements, thereby increasing the amount of surface area of the thermal elements in contact with the working fluid, and increasing the overall efficiency of the evaporator.Type: GrantFiled: June 9, 2016Date of Patent: June 2, 2020Assignee: Lockheed Martin CorporationInventors: Scott M. Maurer, Derek M. Beckner, Nicholas J. Nagurny
-
Patent number: 10634403Abstract: An evaporator comprises a plurality of thermal elements disposed in a shell interior of an evaporator shell. A primary supply line configured to carry a working fluid is disposed in the shell interior. A plurality of tube sets is fluidically coupled to the primary supply line, and each tube set is spaced apart from an adjacent tube set along the first primary supply line. Each tube set comprises a plurality of individual tubes, with each tube proximate a different subset of thermal elements within the shell interior. Each tube comprises a plurality of first fluid distribution points configured to distribute the working fluid proximate the external surface of at least one of the plurality of thermal elements, thereby increasing the amount of surface area of the thermal elements in contact with the working fluid, and increasing the overall efficiency of the evaporator.Type: GrantFiled: June 9, 2016Date of Patent: April 28, 2020Assignee: Lockheed Martin CorporationInventors: Scott M. Maurer, Derek M. Beckner, Nicholas J. Nagurny
-
Patent number: 10527331Abstract: Various embodiments disclosed herein related to a multistage oil separator. The oil separator includes a housing having a nozzle and defining an internal space and an oil outlet; a body disposed within the internal space, the body including a mixed fluid inlet configured to receive a coolant and oil mixture and a nozzle that receives at least a portion of the coolant and oil mixture from the mixed fluid inlet and discharges coolant and oil into the internal space of the housing; and, a wall disposed proximate to the nozzle of the body, wherein at least a portion of the discharged coolant and oil impacts the wall to direct the at least the portion of coolant and oil towards the nozzle of the housing. The oil separator functions to separate the coolant from the oil discharged from a compressor in a cooling system.Type: GrantFiled: October 3, 2017Date of Patent: January 7, 2020Assignee: Hill Phoenix, Inc.Inventors: John Vincent Mullis, Senthilkumar Kandappa Goundar Shanmugam
-
Patent number: 10385840Abstract: A system and method for flooded start control of a compressor having a crankcase heater are provided. A control module receives sensed data from a sensor, determines a current rate of liquid migration into the compressor, and compares the current rate with first and second predetermined thresholds. The control module operates the compressor in a flooded-start control mode, including operating the compressor according to at least one cycle with a first time period when the compressor is on and a second time period when the compressor is off. The control module operates the compressor in the flooded start control mode when the current rate is greater than the first predetermined threshold, activates the crankcase heater when the current rate is between the first and second predetermined thresholds, and operates the compressor without the flooded start control mode when the current rate is less than the second predetermined threshold.Type: GrantFiled: November 20, 2015Date of Patent: August 20, 2019Assignee: Emerson Climate Technologies, Inc.Inventor: Hung M. Pham
-
Patent number: 10378539Abstract: A system may be operable to circulate a working fluid between first and second heat exchangers. The system may include a suction line, a low-side compressor, a high-side compressor and a discharge line. The low-side and high-side compressors may both be in fluid communication with the suction and discharge lines.Type: GrantFiled: May 17, 2016Date of Patent: August 13, 2019Assignee: Emerson Climate Technologies, Inc.Inventors: Michael M. Perevozchikov, Kirill M. Ignatiev
-
Patent number: 10260938Abstract: A foreign substance prevention apparatus according to an embodiment of the present invention may comprise: a housing including a suction port which is a passage for sucking external air, and a discharge port for discharging the sucked external air; a fan which exists inside the housing and rotates so as to suck the external air; and a connection bracket for connecting the housing and a sensor.Type: GrantFiled: December 4, 2014Date of Patent: April 16, 2019Assignee: HANWHA LAND SYSTEMS CO., LTD.Inventors: Jin Seok Park, Seung Park
-
Patent number: 10228168Abstract: A compressor (22) has a housing assembly (40) with a suction port (24), a discharge port (26), and a motor compartment (60). An electric motor (42) has a stator (62) within the motor compartment and a rotor (64) within the stator. The rotor is mounted for rotation about a rotor axis (500). One or more working impellers (44) are coupled to the rotor to be driven by the rotor in at least a first condition so as to draw fluid in through the suction port and discharge the fluid from the discharge port. An inlet guide vane (IGV) array (174) is between the suction port (24) and the one or more impellers (44). One or more bearing systems (66, 68) support the rotor (64) and/or the one or more impellers (44). One or more main drain passages (120, 234 206; 120, 232, 202, 206) are coupled to the bearings to pass fluid along a drain flowpath from the bearings to a location (172) upstream of the impeller and downstream of the IGV array.Type: GrantFiled: February 19, 2014Date of Patent: March 12, 2019Assignee: Carrier CorporationInventors: Ulf J. Jonsson, Vishnu M. Sishtla, Zaffir A. Chaudhry
-
Patent number: 9915265Abstract: A compressor system with a continuously variable oil injection orifice is structured to regulate a flow of oil from an oil reservoir into a compressor. The orifice includes a first valve member moveable in response to oil pressure toward a second valve member to define a continuously variable flow area. A biasing member urges the first valve member away from the second valve member.Type: GrantFiled: December 8, 2015Date of Patent: March 13, 2018Assignee: Ingersoll-Rand CompanyInventor: Michael Peters
-
Patent number: 9822789Abstract: A turbo compressor that has a pressure equalizing tube that circulates a gas from a gear unit accommodation space toward an IGV accommodation space, and an oil separation device that is provided in the gear unit accommodation space to separate lubricating oil that is contained in the gas, in which the oil separating device has a suction duct that communicates with the pressure equalizing tube, and the suction duct has a centrifugal separation portion provided with a first demister, a second demister provided on the downstream side of the first demister in relation to the suction direction, and a curved passage provided between the first demister and the second demister.Type: GrantFiled: February 20, 2015Date of Patent: November 21, 2017Assignee: DAIKIN INDUSTRIES, LTD.Inventors: Kentarou Oda, Seiichiro Yoshinaga, Nobuyoshi Sakuma
-
Patent number: 9694664Abstract: A vehicle drive apparatus includes a motor, a case, a cover member, a sensor, and a separate member. The case includes a reservoir to store liquid fluid. The sensor is provided in a first communication hole of the cover member and is fixed to the cover member. A second communication hole constitutes a part of a fluid flow path extending from an inside of the case to an outside of the case. The fluid flow path has an intake port through which the liquid fluid is to be drawn. The fluid flow path includes an inside fluid flow path provided from the second communication hole to the intake port. The separate member is fixed to the cover member to define the inside fluid flow path.Type: GrantFiled: September 24, 2013Date of Patent: July 4, 2017Assignee: HONDA MOTOR CO., LTD.Inventors: Takeshi Hoshinoya, Keiichi Ooiso, Yoshihito Kurizuka
-
Patent number: 9557122Abstract: A heat exchanger for cooling air, with a coolant onward-flow connection for feeding liquid coolant for cooling air and a coolant return-flow connection for discharging liquid coolant. For removing ice by melting accumulated ice in the heat exchanger, a heater is provided that is associated with an electrical heating element. An operational safety device prevents overheating of the heater. The operational safety device comprises a fault-current detection device. Such a heater, with a heating element for heating air for subjecting accumulated ice to heated air, and with such an operational safety device is provided. Also, a galley for a commercial aircraft is provided with a receiving space for trolleys, and a cooling device for cooling the receiving space. The cooling device comprises such a heat exchanger for cooling air.Type: GrantFiled: January 25, 2013Date of Patent: January 31, 2017Assignee: Airbus Operations GmbHInventors: Jens Schult, Thorsten Truemper
-
Patent number: 9416788Abstract: A turbo compressor includes a case; compression stages which are disposed in a plural number in a rotatable manner with respect to the case via a sliding part; an oil tank in which a lubricant oil to be supplied to the sliding part is stored; a pressure equalization pipe which communicates the oil tank with the vicinity of the inlet of the compression stage; and a check valve which allows only the movement of the fluid from the oil tank side to the compression stage side in the pressure equalization pipe.Type: GrantFiled: July 16, 2010Date of Patent: August 16, 2016Assignee: DAIKIN INDUSTRIES, LTD.Inventors: Kentarou Oda, Minoru Tsukamoto
-
Patent number: 9410715Abstract: An air conditioning apparatus has a refrigerant circuit made up of plural indoor units connected to an outdoor unit, and the air conditioning apparatus has a capacity controlling part and a target refrigerant temperature mode setting part. The capacity controlling part controls the air conditioning capacity of the outdoor unit in such a way that the evaporation temperature of refrigerant in the refrigerant circuit becomes a target evaporation temperature, or in such a way that the condensation temperature of the refrigerant becomes a target condensation temperature. The target refrigerant temperature mode setting part is configured to seta target refrigerant temperature mode to either a target refrigerant temperature changing mode or a target refrigerant temperature fixing mode.Type: GrantFiled: October 18, 2012Date of Patent: August 9, 2016Assignees: Daikin Industries, Ltd., Daikin Europe N.V.Inventors: Masahiro Honda, Shinya Matsuoka, Hideyuki Nakagawa
-
Patent number: 9243820Abstract: An apparatus and method for measuring concentration of a liquid-state refrigerant of a nonazeotrope refrigerant mixture. A container is disposed in such a way that a liquid-state refrigerant mixture of the nonazeotrope refrigerant mixture in a saturated state is temporarily stored with set quality. By measuring temperature and pressure of the liquid-state refrigerant mixture, concentration of the liquid-state refrigerant can be calculated from a database regarding a relationship between a saturation vapor pressure, temperature, quality, and concentration of the previously-stored nonazeotrope refrigerant mixture in the saturated state. Thus, a configuration for measuring the concentration of the liquid-state refrigerant-absorbent mixture includes a container, a temperature sensor and a pressure sensor and thus is very simple and the cost for the configuration can be reduced. In addition, the container can be easily mounted on existing equipment without disturbance of a flow.Type: GrantFiled: October 23, 2012Date of Patent: January 26, 2016Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Seong-Ryong Park, Siyoung Jeong, Minsung Kim
-
Patent number: 8978400Abstract: This invention relates generally to oil lubricated helium compressor units for use in cryogenic refrigeration systems, operating on the Gifford McMahon (GM) cycle. The objective of this invention is to keep the oil separator and absorber, which are components in an oil lubricated, helium compressor, in an indoor air conditioned environment while rejecting at least 65% of the heat from the compressor outdoors during the summer. The balance of the heat is rejected to either the indoor air conditioned air, or cooling water. This is accomplished by circulating hot oil at high pressure to an outdoor air cooled heat exchanger and returning cooled oil to the compressor inlet, while hot high pressure helium is cooled in an air or water cooled heat exchanger in an indoor assembly that includes the compressor, an oil separator, an oil absorber, and other piping and control components. It is an option to reject the heat from the oil to the indoor space during the winter to save on the cost of heating the indoor space.Type: GrantFiled: July 8, 2010Date of Patent: March 17, 2015Assignee: Sumitomo (Shi) Cryogenics of America Inc.Inventors: Stephen Dunn, Ralph Longsworth
-
Publication number: 20150068229Abstract: A refrigerating cycle apparatus and a method of operating the same are provided. For a refrigerating cycle having a plurality of compressors connected in series for multi-stage compression, an inner space of each compressor and a pipe of the refrigerating cycle may be connected via an oil collection pipe, and oil may be discharged into the refrigerating cycle by pressure reversal during a pressure balancing operation, so as to allow the discharged oil to be collected into a high-stage compressor or a low-stage compressor. Accordingly, an amount of oil may be uniformly maintained in each of the plurality of compressors to prevent losses due to friction and/or increases in power consumption due to a lack of oil in one or more of the compressors. The structure of a device and pipes for performing oil balancing between the compressors may be simplified to enhance efficiency of the compressors.Type: ApplicationFiled: October 1, 2014Publication date: March 12, 2015Inventors: Minkyu OH, Jangseok Lee, Myungjin Chung, Chanho Jeon, Sunam Chae, Juyeong Heo, Kwangwook Kim, Hoyoun Lee
-
Patent number: 8966915Abstract: An air-conditioning apparatus includes an outdoor air temperature sensor detecting an outdoor temperature; a compressor temperature sensor detecting a temperature of an outer wall of a compressor; a liquid-level and concentration detection sensor detecting a liquid surface level in the compressor and a concentration of a lubricant oil in a liquid in the compressor; an electric heater heating the compressor; and a controller that carries out preheating to the compressor by driving the electric heater when a detection value of the outdoor air temperature sensor is higher than or equal to a detection value of the compressor temperature sensor and, further, when the liquid surface level detected by the liquid-level and concentration detection sensor is higher than or equal to a predetermined level and the concentration of the lubricant oil in the liquid is lower than a preset minimum required concentration.Type: GrantFiled: February 8, 2012Date of Patent: March 3, 2015Assignee: Mitsubishi Electric CorporationInventors: Katsuya Takeuchi, Hirokuni Shiba
-
Patent number: 8959947Abstract: The present invention disclosures an oil balance device and a method for performing an oil balance operation between a plurality of compressor units, which are suitable for air conditioner units comprising at least two parallel connected compressor units. Each compressor unit comprises at least one parallel connected compressors. The oil balance device comprises an oil reservoir, a first pipe, a second pipe, a third pipe and a fourth pipe. The four pipes communicate with the oil reservoir respectively. Each pipe is provided with at least one valve to control the opening and the closing of the corresponding pipe.Type: GrantFiled: March 17, 2011Date of Patent: February 24, 2015Assignees: Johnson Controls Technology Company, Johnson Controls Building Efficiency Technology (WUXI) CompanyInventors: Stone Zhai, Xiucheng Ji, Zhonghua Gu
-
Patent number: 8950081Abstract: Methods of removing moisture from a compressor using a sorbent technology are provided. A dehydration device incorporating the sorbent technology is disposed in a system that contains a hygroscopic fluid. By passing the hygroscopic fluid over the sorbent technology, moisture is removed from the hygroscopic fluid. The systems include sealed devices and integral components for heating, ventilation, and air conditioning (HVAC) systems and refrigeration devices.Type: GrantFiled: June 14, 2012Date of Patent: February 10, 2015Assignee: Emerson Climate Technologies, Inc.Inventor: Matthew J. Heidecker
-
Patent number: 8820103Abstract: An air conditioner includes a plurality of compressors, an intake passageway, a bypass unit, and an expansion valve. The intake passageway distributes a fluid to each of the compressors. The bypass unit includes a plurality of bypass pipes connected respectively to the compressors and a common bypass pipe to discharge the fluids from the compressors to the intake passageway. The expansion valve is provided to the bypass unit to control a flow of fluid from the common bypass pipe to the intake unit.Type: GrantFiled: December 22, 2010Date of Patent: September 2, 2014Assignee: LG Electronics Inc.Inventors: Hojong Jeong, Sedong Chang, Baikyoung Chung, Jiyoung Jang
-
Patent number: 8822395Abstract: The present invention provides a refrigerating machine oil composition for use in a compressor for a refrigerator in which a sliding surface of at least a part of constitutional members of the compressor is coated with a lubrication film-forming composition containing a resin having a heat distortion temperature of 100° C. or higher as a binder, and a solid lubricant, wherein the refrigerating machine oil composition contains a base oil made of a polyoxyalkylene glycol having a kinematic viscosity of from 3 to 50 mm2/s as measured at 100° C., and a compound selected from the group consisting of amide compounds, amidated amino acid compounds and aliphatic amines having a specific structural formula which compound is contained in an amount of from 0.Type: GrantFiled: April 27, 2006Date of Patent: September 2, 2014Assignee: Idemitsu Kosan Co., Ltd.Inventors: Harutomo Ikeda, Takayuki Kato, Manabu Sugiura, Masami Ohno, Shuichi Yasuda, Takahiro Sugioka
-
Patent number: 8806876Abstract: An air conditioner (10) composed of a refrigerating apparatus includes a controller (90). A heating control section (91) of the controller (90) feeds electric current in an open phase state to an electric motor (62) of a compressor (30) to heat the compressor (30) in operation stop of the air conditioner (10). The heating control section (91) monitors the detection value of an outdoor air temperature sensor (72) during the operation stop of the air conditioner (10) and keeps on stopping feeding the electric current to the electric motor (62) during the time when the detection value decreases.Type: GrantFiled: August 3, 2007Date of Patent: August 19, 2014Assignee: Daikin Industries, Ltd.Inventors: Junichi Shimoda, Hidehiko Kinoshita
-
Patent number: 8733116Abstract: An oil level detecting device for a compressor and an air conditioning system having the same are provided. The oil level detecting device may be provided in a compressor including a compression device that introduces and compresses a working fluid, a driving device mechanically connected to the compression device that operates the compression device, and a case that accommodates the compression device and the driving device thereinside and having an oil storage space that stores oil at a lower portion thereof. The oil level detecting device may include a detector including a supporting portion configured to be attached to the case and a detecting portion that protrudes inside the case. At least one property of the detecting portion may vary according to an oil level inside the case. The oil level detecting device may also include a signal processor including an electronic element having at least one reference property.Type: GrantFiled: December 2, 2010Date of Patent: May 27, 2014Assignee: LG Electronics Inc.Inventors: Inho Won, Seheon Choi, Byeongchul Lee
-
Patent number: 8720212Abstract: When a compressor is in a stopped state and an outside air temperature change rate Tah exceeds zero, a first heating operation is started, and a heating capacity of a compressor heating portion is set in a range not more than a heating capacity upper limit Pmax based on the outside air temperature change rate Tah. A remaining refrigerant liquid amount Ms condensed in the compressor that had not been evaporated is acquired based on the outside air temperature change rate Tah and the heating capacity. If the outside air temperature change rate Tah is zero or below and the remaining refrigerant liquid amount Ms exceeds zero while the compressor is in a stopped state, a second heating operation is started, the compressor heating portion 10 is controlled based on the remaining refrigerant liquid amount Ms, and the refrigerant condensed in the compressor 1 is evaporated.Type: GrantFiled: September 15, 2011Date of Patent: May 13, 2014Assignee: Mitsubishi Electric CorporationInventors: Naoki Wakuta, Yohei Kato, Shinya Matsushita, Takanori Omori, Hirokuni Shiba
-
Patent number: 8640470Abstract: The present invention relates to a control method of a refrigerator which operates a cooling cycle including two storage compartments, a compressor, a condenser, a valve, fans, and evaporators for cooling the respective storage compartments, with one of the fans (5) corresponding to the storage compartment for storing items at relatively low temperatures being activated for a set amount of time even after the compressor is deactivated at the completion of cooling of the storage compartment for storing items at relatively low temperatures.Type: GrantFiled: November 4, 2008Date of Patent: February 4, 2014Assignee: LG Electronics Inc.Inventors: Dong-Seok Kim, Sung-Hee Kang, Jong-Min Shin, Chulgi Roh, Deok-Hyun Youn
-
Patent number: RE46091Abstract: An oil level detecting device for a compressor and an air conditioning system having the same are provided. The oil level detecting device may be provided in a compressor including a compression device that introduces and compresses a working fluid, a driving device mechanically connected to the compression device that operates the compression device, and a case that accommodates the compression device and the driving device thereinside and having an oil storage space that stores oil at a lower portion thereof. The oil level detecting device may include a detector including a supporting portion configured to be attached to the case and a detecting portion that protrudes inside the case. At least one property of the detecting portion may vary according to an oil level inside the case. The oil level detecting device may also include a signal processor including an electronic element having at least one reference property.Type: GrantFiled: May 13, 2015Date of Patent: August 2, 2016Assignee: LG ELECTRONICS INC.Inventors: Inho Won, Seheon Choi, Byeongchul Lee