Through An Evaporator, I.e., Parallel Patents (Class 62/199)
  • Patent number: 10837672
    Abstract: Certain exemplary embodiments can provide a system, machine, device, and/or manufacture that is configured for operably releasing condensate from a furnace combustion gas containment system without allowing a substantial quantity of drain air to enter the condensate producing system from a drain or a substantial quantity of combustion gas to flow through the system, machine, device, and/or manufacture.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: November 17, 2020
    Inventor: Nicholas Howard Des Champs
  • Patent number: 10816242
    Abstract: A refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are connected by pipes. The first heat exchanger includes a first refrigerant passage and a second refrigerant passage that share a plurality of fins with each other and provided in parallel in the refrigerant circuit. The apparatus further includes a high-and-low-pressure switching mechanism which is located on an inlet side of the second refrigerant passage of the first heat exchanger in flowing of refrigerant in an operation in which the first heat exchanger functions as a condenser, and which performs switching between flow directions of the refrigerant. The apparatus further includes a refrigerant blocking mechanism located on an outlet side of the second refrigerant passage of the first heat exchanger in the flowing of the refrigerant in the operation, and which blocks the flowing of the refrigerant.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: October 27, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Chitose Tanaka, Takuya Matsuda, Kosuke Tanaka
  • Patent number: 10749229
    Abstract: A system and method for heating or cooling a battery include a controller and a tempering circuit containing an auxiliary medium configured to exchange heat with a container having a latent heat storage medium, and a vehicle traction battery, a pump configured to circulate the auxiliary medium, and an activation device having a sealing element moveable to selectively expose a nucleation surface to the latent heat storage medium to trigger a phase change process and exchange heat with the auxiliary medium.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: August 18, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Thomas Zenner, Mazen Hammoud, Daniel Benjamin Kok
  • Patent number: 10718255
    Abstract: A cooling system may include a cooling pump that causes cooling fluid received from a thermal load to flow to a cooling source, a low-load valve, a high-load valve, a thermal energy store, and a mixing valve. The cooling source and the low-load valve may be downstream from the cooling pump. The high load valve and thermal energy storage may be downstream from the cooling source. The first input of the mixing valve may be downstream from the thermal energy storage. The second input of the mixing valve may be downstream from the low-load valve and the high-load valve. The thermal load may be downstream from an output of the mixing valve. The cooling system may switch between a low load mode and a high load mode with coordinated operation of the low-load valve and high-load valve.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: July 21, 2020
    Assignees: Rolls-Royce North American Technologies Inc., Rolls-Royce Corporation
    Inventors: Daniel G. Edwards, Eric E. Wilson
  • Patent number: 10712044
    Abstract: Certain exemplary embodiments can provide a system, machine, device, and/or manufacture that is configured for operably releasing condensate from a condensate-producing unit without allowing a substantial quantity of gas to enter the condensate-producing unit and/or a substantial quantity of gas to flow through the system, machine, device, and/or manufacture.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: July 14, 2020
    Inventor: Nicholas Howard Des Champs
  • Patent number: 10690383
    Abstract: A method for controlling an air conditioning system includes detecting an operation mode of the air conditioning system, an indoor temperature, an outdoor temperature, and a user-set temperature, and controlling a direction switching assembly to communicate a first pipe port to a second pipe port or a third pipe port according to the operation mode, the outdoor temperature, and a difference value between the indoor temperature and the user-set temperature.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: June 23, 2020
    Assignee: GD MIDEA AIR-CONDITIONING EQUIPMENT CO., LTD.
    Inventors: Ligao Xie, Jinbo Li
  • Patent number: 10591185
    Abstract: Certain exemplary embodiments can provide a system, machine, device, and/or manufacture that is configured for operably releasing condensate from a furnace combustion gas containment system without allowing a substantial quantity of drain air to enter the condensate producing system from a drain or a substantial quantity of combustion gas to flow through the system, machine, device, and/or manufacture.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 17, 2020
    Inventor: Nicholas Howard Des Champs
  • Patent number: 10533767
    Abstract: The invention concerns predominantly enclosed spaces, typically buildings, which are at least exposed to directionally and temporally varying levels of solar electromagnetic radiation as well as temporally varying levels of ambient air temperature and ambient air flow velocity and direction. Methods for at least approximating any one or any combination of system targets of a) reducing the average energy expenditure for keeping at least one primary compartment of a building within a desired temperature range by means of active air conditioning, or b) reducing temperature variations during a typical 24-hour cycle within said at least one primary compartment of said building, or c) reducing one or both of the average temperature or the peak temperature of said at least one primary compartment of said building. Methods for at least partially increasing the typical lifetime of some components of buildings and thus reducing resources associated with maintaining at least some buildings function.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 14, 2020
    Inventors: Andreas Hieke, William Boone Daniels, II
  • Patent number: 10514179
    Abstract: The invention concerns predominantly enclosed spaces, typically buildings, which are at least exposed to directionally and temporally varying levels of solar electromagnetic radiation as well as temporally varying levels of ambient air temperature and ambient air flow velocity and direction. Methods for at least approximating any one or any combination of system targets of a) reducing the average energy expenditure for keeping at least one primary compartment of a building within a desired temperature range by means of active air conditioning, or b) reducing temperature variations during a typical 24-hour cycle within said at least one primary compartment of said building, or c) reducing one or both of the average temperature or the peak temperature of said at least one primary compartment of said building. Methods for at least partially increasing the typical lifetime of some components of buildings and thus reducing resources associated with maintaining at least some building function.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: December 24, 2019
    Inventors: Andreas Hieke, William Boone Daniels, II
  • Patent number: 10514046
    Abstract: A fan assembly includes a fan housing having an inlet and an outlet. A recess formed in the inlet is configured to receive a portion of a heat exchanger. A fan rotor is positioned within the housing and is configured to rotate about a fan axis. The fan rotor includes a hub having a plurality of fan blades mounted thereto.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: December 24, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Richie C. Stauter, Peter R. Bushnell
  • Patent number: 10457118
    Abstract: A vehicle includes a first cooling loop, a second cooling loop, and a controller. The first cooling loop includes a compressor and a chiller. The second cooling loop includes a valve and an evaporator. The second cooling loop extends from an input side to an output side of the chiller on the first loop. The controller is programmed to, responsive to operation of the chiller but not the evaporator, close and intermittently pulse open the valve each time a discharge pressure of the compressor exceeds a first threshold.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: October 29, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianqing Xu, Jasbir Jaglan, Mark G. Smith, Yinhua Zheng
  • Patent number: 10427491
    Abstract: A thermal management system and method of use are provided, the system including a heat exchanger, a refrigeration system, a coolant loop thermally coupled to the heat exchanger, and a by-pass valve that regulates the amount of coolant within the coolant loop that either passes through the heat exchanger or is diverted away from the heat exchanger. The coolant loop is thermally coupled to the battery pack of an electric vehicle.
    Type: Grant
    Filed: April 28, 2012
    Date of Patent: October 1, 2019
    Assignee: TESLA, INC.
    Inventors: Vincent George Johnston, Curt Raymond O'Donnell, Wulfer Adrijan de Bruijn, Marco Elkenkamp
  • Patent number: 10386871
    Abstract: The air conditioner has a configuration such that, in an air-warming operation: the average refrigerant exit temperature, which is obtained by averaging the temperature of the refrigerant exits of indoor heat exchangers 7 in a plurality of indoor units 10, as detected by heat-exchanger-refrigerant-exit temperature probes 34 in the indoor units 10, is determined; the temperature difference between the average refrigerant exit temperature and the refrigerant exit temperatures of the indoor heat exchangers 7 of each of the indoor units 10 is determined; and the degree to which indoor expansion valves 9 of the indoor units 10 are open is controlled such that the determined temperature difference falls within a predetermined temperature difference range.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: August 20, 2019
    Assignee: Hitachi-Johnson Controls Air Conditioning, Inc.
    Inventors: Mikihito Tokudi, Kazuhiko Tani, Yoshiyuki Akiyama, Masami Inaba, Takafumi Ota
  • Patent number: 10352606
    Abstract: A cooling system comprises a refrigeration circuit (1) circulating a refrigerant and comprising in the flow direction of the refrigerant at least one compressor (2a, 2b, 2c, 2d); at least one condenser (4); at least one expansion device (8, 10); and at least one evaporator (11) for providing a cooling capacity.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 16, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Sascha Hellmann, Hans-Joachim Huff
  • Patent number: 10203139
    Abstract: The present invention provides precise temperature control of a cooling chamber and comprises: a cooling chamber; a refrigeration circuit having a compressor, a condenser installed at the outlet side of the compressor, an evaporator, installed between the outlet side of the condenser and the inlet side of the compressor, for cooling the cooling chamber, and a decompression means installed at the inlet side of the evaporator; and a refrigerant control unit which has a refrigerant control valve installed between the condenser and the evaporator, and which adjusts the refrigerant flow rate that flows into the evaporator by controlling the opening/closing time of the refrigerant control valve.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: February 12, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Makoto Kobayashi, Tomoharu Iwamoto, Manabu Motegi, Ryota Aoki, Isamu Takatsuki
  • Patent number: 10180257
    Abstract: A high-efficiency air conditioning system for conditioning a plurality of rooms within an interior of a building, the air conditioning system including: two separate rooms within a building, a single outdoor unit a refrigerant flow pathway that includes a plurality of refrigerant conduits having a common refrigerant flow path portion and at least two divergent flow path portions, a first divergent flow path where the first evaporator and second evaporator are in parallel with one another; at least one throttling device and at least a first indoor air handling unit positioned within and providing cooling to the first room and a second indoor air handling unit positioned within and providing cooling to a second room. The compressor is incapable of simultaneously supplying both the first evaporator and the second evaporator at their full cooling capacity.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: January 15, 2019
    Assignee: Whirlpool Corporation
    Inventors: Nihat O. Cur, Timothy A. Kee, Steven J. Kuehl, Guolian Wu
  • Patent number: 10168068
    Abstract: An air-conditioning apparatus includes: a first bypass pipe connected to an inlet-side passage of an accumulator through a second expansion device, a second passage of a subcooling heat exchanger for exchanging heat between refrigerant flowing through the second passage of the subcooling heat exchanger and refrigerant flowing through a first passage of the subcooling heat exchanger, and a first opening and closing device; a second bypass pipe branched from the first bypass pipe between the subcooling heat exchanger and the first opening and closing device and connected to an injection port of a compressor through a second opening and closing device; and a third bypass pipe branched from a refrigerant pipe between a heat source-side heat exchanger and a use-side heat exchanger and connected to a refrigerant pipe between an inlet side of the compressor and an outlet side of the accumulator through a third expansion device.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 1, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventor: Koji Yamashita
  • Patent number: 10107533
    Abstract: An air-conditioning apparatus includes a refrigerant circuit formed by connecting, with pipes, a compressor to compress refrigerant and discharge the compressed refrigerant, a first heat exchanger, a subcooling heat exchanger exchanges heat between a portion of the refrigerant flowing in a first flow passage and another portion of the refrigerant flowing in a second flow passage to subcool the portion of refrigerant flowing in the first flow passage, a first expansion device to decompress the refrigerant, a second heat exchanger, and an accumulator connected to a suction side of the compressor and configured to store excess refrigerant, so that the refrigerant is circulated through the refrigerant circuit. The air-conditioning apparatus is configured to prevent the discharge temperature of the compressor from being excessively increased irrespective of the operation mode and therefore prevent damage to the compressor.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: October 23, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yamashita, Katsuhiro Ishimura, Takeshi Hatomura, Soshi Ikeda, Shinichi Wakamoto, Naofumi Takenaka
  • Patent number: 10098260
    Abstract: A refrigeration system for electronics includes a compressor disposed on a main line and configured to compress a refrigerant in the refrigeration system and a condenser disposed downstream of the compressor on the main line. An evaporator line is in fluid communication with the main line downstream of the condenser and has an evaporator configured to receive heat into the refrigerant from an external heat source. The system also includes an immersion line in fluid communication with main line downstream of the condenser. The immersion line includes an immersion cooling container that is configured to at least partially house electronics such that the electronics are in direct fluid communication with the refrigerant to cool the electronics.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: October 9, 2018
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Scott R. Bouras, Kris H. Campbell, Shin Katsumata, Charles Shepard
  • Patent number: 10088205
    Abstract: An air-conditioning apparatus includes: a first bypass pipe connected to an inlet-side passage of an accumulator through a second expansion device, a second passage of a subcooling heat exchanger for exchanging heat between refrigerant flowing through the second passage of the subcooling heat exchanger and refrigerant flowing through a first passage of the subcooling heat exchanger, and a first opening and closing device; a second bypass pipe branched from the first bypass pipe between the subcooling heat exchanger and the first opening and closing device and connected to an injection port of a compressor through a second opening and closing device; and a third bypass pipe branched from a refrigerant pipe between a heat source-side heat exchanger and a use-side heat exchanger and connected to a refrigerant pipe between an inlet side of the compressor and an outlet side of the accumulator through a third expansion device.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 2, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventor: Koji Yamashita
  • Patent number: 9970667
    Abstract: A high-efficiency air conditioning system for conditioning a plurality of zones within an interior of a building that includes: at least two independent ductwork systems within a building wherein each independent ductwork system directs heating and cooling to one zone within the building; a single outdoor unit a refrigerant flow pathway having a common refrigerant flow path portion, a first divergent flow path, and a second divergent flow path; at least one throttling device and at least a first indoor air handling unit providing cooling to a first independent ductwork system and a second indoor air handling unit providing cooling to a second indoor ductwork system. The compressor is incapable of simultaneously supplying both the first evaporator and the second evaporator at their full cooling capacity.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: May 15, 2018
    Assignee: Whirlpool Corporation
    Inventors: Nihat O. Cur, Steven J. Kuehl, Guolian Wu
  • Patent number: 9970702
    Abstract: A defrosting apparatus includes: an evaporator; a defrosting heater removing frost formed on the evaporator; and a controller controlling the defrosting heater until defrosting for the evaporator is completed when a driving start command for the defrosting apparatus is input, wherein the controller controls the defrosting heater to have an idle section in which the defrosting heater is not operated between a point in time in which the driving start command is input and a point in time in which the defrosting is completed.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: May 15, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-beom Ahn, Yang-gyu Kim, Sinn-bong Yoon, Jong-hoon Kim, Yong-sun Song, Han-sol Choi
  • Patent number: 9873826
    Abstract: This chemical heat pump includes two reaction sections R1 and R2 containing a thermal storage medium; an evaporation-condensation section D containing water or steam; and two fluid channels individually disposed so as to correspond to the reaction sections. A “first state in which R1 is set to a heat-storing state and R2 is set to a heat-release state” and a “second state in which R1 is set to a heat-release state and R2 is set to a heat-storing state” are alternately applied every time after a first period elapses. For each reaction section, in the heat-release state, a fluid is caused to flow from a first side to a second side of the corresponding fluid channel over a first period; and, in the heat-storing state, a fluid is caused to flow from the second side to the first side of the corresponding fluid channel over a second period.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 23, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Shigeru Hanzawa, Kouji Ogura
  • Patent number: 9738505
    Abstract: A cooling system for a beverage comprises an enclosure for housing a beverage container, a cold plate through which the beverage flows, and a refrigeration system that controllably cools the enclosure and the cold plate in a differential manner. In preferred embodiments, preference is given during normal operation to cooling the cold plate, and only cooling the enclosure when the cold plate is determined to be at or below a desired temperature. In some embodiments a special defrost cycle warms the cold plate while continuing to cool the enclosure. Controls can be mechanical, electronic or any combination of the two, and preferably utilizes information from both pressure and temperature sensors.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 22, 2017
    Assignee: Cleland Sales Corporation
    Inventors: James M. Cleland, Adam Cleland
  • Patent number: 9739514
    Abstract: Chiller apparatus performs temperature-control operation without placing excessive load on an electric compressor even when temperature difference between set and work temperatures are small; little temperature difference between refrigerant intake side and refrigerant discharge side of an evaporator in freezing-cycle, at time of temperature-control setting with small temperature difference between set and work temperatures; PCB2 performs PID operation on refrigerant detection temperature by sensor near the side of refrigerant inflow of a heating apparatus in a refrigerant-cycle; a PCB1 performs serial communication of a drive control signal for an inverter generated based on a result, and controls the compressor rotational speed according to work temperature within range.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: August 22, 2017
    Assignee: SHINWA CONTROLS CO., LTD
    Inventors: Atsushi Seki, Shigeo Aoki, Fumiyuki Hosoi
  • Patent number: 9638455
    Abstract: A refrigerator including an evaporator to carry out heat exchange, a frost sensing unit to sense an amount of frost formed on the frost sensing unit, and a heater to be operated for removing the frost from the frost sensing unit is provided. The heater is operated in at least a portion of a defrosting section. Methods for operating the refrigerator are also provided.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: May 2, 2017
    Assignee: LG Electronics Inc.
    Inventors: Seojung Kim, Yonghwan Eom, Kyeongyun Kim
  • Patent number: 9612047
    Abstract: An internal heat exchanger and a first flow control valve are connected in series between a condenser and a refrigerant inlet of an ejector. A gas refrigerant outlet of a gas-liquid separator is connected to a suction port of a compressor. A first bypass circuit connects a refrigerant outlet of the condenser to an intermediate pressure portion of the compressor via a second flow control valve and the internal heat exchanger. A second bypass circuit connects a refrigerant outlet of the internal heat exchanger to the liquid refrigerant outlet of the gas-liquid separator via a third flow control valve. While the second flow control valve is opened such that the refrigerant flows through the first bypass circuit, the fourth flow control valve is switched to be opened or closed, and the third flow control valve is switched to be closed or opened.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 4, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinya Higashiiue, Takashi Okazaki, So Nomoto, Hirokazu Minamisako
  • Patent number: 9523522
    Abstract: In some embodiments, a refrigeration device includes: walls substantially forming a liquid-impermeable container configured to hold phase change material internal to a refrigeration device; at least one active refrigeration unit including a set of evaporator coils positioned within an interior of the liquid-impermeable container; walls substantially forming a storage region; and a heat transfer system including a first group of vapor-impermeable structures with a hollow interior connected to form a condenser in thermal contact with the walls substantially forming a liquid-impermeable container, a second group of vapor-impermeable structures with a hollow interior connected to form an evaporator in thermal contact with the walls substantially forming a storage region, and a connector with a hollow interior affixed to both the condenser and the evaporator, the connector forming a liquid and vapor flow path between the hollow interior of the condenser and the hollow interior of the evaporator.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: December 20, 2016
    Assignee: Tokitae LLC
    Inventors: Fong-Li Chou, Philip A. Eckhoff, Lawrence Morgan Fowler, William Gates, Jennifer Ezu Hu, Muriel Y. Ishikawa, Fridrik Larusson, Shieng Liu, Nathan P. Myhrvold, Brian L. Pal, Nels R. Peterson, David Keith Piech, Maurizio Vecchione, Lowell L. Wood, Jr., Victoria Y. H. Wood, David J. Yager
  • Patent number: 9513034
    Abstract: A multi-type air conditioner includes an outdoor unit disposed at an exterior space, a plurality of indoor units disposed at interior spaces, and a mode conversion unit connected to the outdoor unit and the plurality of indoor units through refrigerant pipes to circulate a refrigerant between the outdoor unit and the plurality of indoor units. The mode conversion unit includes a plurality of subcooling units which are configured to subcool a refrigerant before the refrigerant is introduced to the plurality of indoor units, using a subcooling refrigerant pipe which sequentially passes through at least one of the plurality of subcooling units, so that a refrigerant after having passed through the subcooling unit, is in a state of pure gas while ensuring a desired subcooling degree that is suitable for each indoor unit.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: December 6, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Suk Ho Lee, Min Chang
  • Patent number: 9372015
    Abstract: A heat pump system includes a liquid receiver valve that adjusts the amount of a refrigerant stored in a liquid receiver so that a circulation amount of the refrigerant that circulates the heat pump system can be adjusted according to a driving speed of a compressor and performance of the compressor and the heat pump system can be further improved. Also, since a plurality of liquid receiver refrigerant outlets can be selectively opened using a pressure difference between an inlet and an outlet of the compressor, active control can be performed.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: June 21, 2016
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gil Bong Lee, Young Soo Lee, Min Sung Kim, Ki Chang Chang, Jun Hyun Cho, Ho Sang Ra
  • Patent number: 9310105
    Abstract: The temperatures in a refrigerating chamber and freezing chamber are monitored with sensors. An amount of change in a refrigerating chamber temperature, or an amount of change of a freezing chamber temperature is calculated per time period. A load corresponding driving is executed if the amount of change in a current time period differs from an amount of change in a previous time period.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 12, 2016
    Assignee: LG ELECTRONICS INC.
    Inventors: Hoyoun Lee, Sung Jhee, Sunam Chae
  • Patent number: 9217594
    Abstract: A method of controlling a cooling device capable of stably cooling a heat source is provided. A cooling device includes a first passage through which a coolant discharged from a compressor flows into a cooling unit for cooling EV equipment; a second passage through which the coolant is circulated between a heat exchanger and the cooling unit; a switching valve switching communication of the first passage and communication of the second passage; and a liquid storage container storing a liquid coolant condensed in the heat exchanger. The control method includes the steps of: increasing an amount of the liquid coolant stored in the liquid storage container; and switching the switching valve so as to block the first passage and allow communication of the second passage.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: December 22, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiaki Kawakami, Yuki Jojima, Eizo Takahashi, Kousuke Sato
  • Patent number: 9182161
    Abstract: An object is to provide a turbo-refrigeration-unit control device capable of achieving stable operation and reducing the amount of refrigerant. Provided is a control device for controlling a turbo refrigeration unit that includes a centrifugal compressor, a first-non-refrigerant pump for supplying a first non-refrigerant, a condenser that performs heat exchange between the first non-refrigerant and a refrigerant, an expansion valve that expands the refrigerant, a second-non-refrigerant pump for supplying a second non-refrigerant, an evaporator that performs heat exchange between the second non-refrigerant and the refrigerant, a bypass circuit that is used to inject part of the refrigerant from a discharge port of the centrifugal compressor into a suction port of the centrifugal compressor, and a bypass-circuit control valve that controls the flow rate of the refrigerant.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 10, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Noriyuki Matsukura, Kenji Ueda, Seiichi Okuda, Tatsuru Nagai
  • Patent number: 9140478
    Abstract: Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: September 22, 2015
    Assignee: Whirlpool Corporation
    Inventors: Alberto Regio Gomes, Stephen L. Keres, Steven J. Kuehl, Andrew D. Litch, Peter J. Richmond, Guolian Wu
  • Patent number: 9127873
    Abstract: A secondary loop temperature control circuit for a temperature-controlled region in a compartment of a refrigerator is shown. The secondary loop temperature control circuit has a reservoir, configured to have a medium flow there through. A first heat exchanger is in flow communication with the reservoir and is configured to have the medium flow there through. The first heat exchanger is in thermal communication with the temperature-controlled region.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Ronald Scott Tarr, Matthew William Davis, Alvaro Delgado, Omar Haidar, Alexander Pinkus Rafalovich, Toby Whitaker, Martin Mitchell Zentner
  • Patent number: 9065317
    Abstract: A fixing structure for an electrical component includes a heat removing member for removing heat from the electrical component. The heat removing member has a receiving portion for receiving the electrical component. The fixing structure for an electrical component further includes a separation member that is coupled to the electrical component to separate the electrical component from the heat removing member. The separation member is coupled to the heat removing member. The fixing structure for an electrical component includes a soft material member that is accommodated in the receiving portion to contact the receiving portion and the electrical component. Heat of the electrical component is transmitted to the heat removing member via the soft material member.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 23, 2015
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shingo Enami, Ken Suitou, Yusuke Kinoshita
  • Patent number: 9046290
    Abstract: An energy management system for use with a temperature controlled unit for food or beverages. A sensor is provided that comprises means to measure a temperature in the temperature controlled unit, and means to transmit wirelessly the measured temperature to a controller. The controller comprising a memory for storing data, and a processor arranged to control electric power to the temperature controlled unit on the basis of a combination of the measured temperature and the stored data. The stored data defines at least two time periods in which a first temperature is required in the first time period, and a second, different temperature is required during the second time period.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: June 2, 2015
    Assignee: DFX Technology Limited
    Inventors: Alan Wyn-Davies, Simon Hopewell
  • Patent number: 8978412
    Abstract: Provided is a refrigerant cycle of an air conditioner for vehicles, and more particularly, a refrigerant cycle of an air conditioner for vehicles having a first evaporating unit and a second evaporating unit disposed upstream and downstream in a direction in which air blown from a single blower flows to control an amount of the refrigerant supplied to each evaporating unit, thereby making it possible to obtain optimal radiating performance (cooling performance) and cooling efficiency (COP) through the design of the optimal refrigerant flow ratio depending on the cooling load.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: March 17, 2015
    Assignee: Halla Visteon Climate Control Corporation
    Inventors: Yong Nam Ahn, Tae Young Park, Yong Jun Jee, Jae Won Jeong, Eun Gi Min, Hae Jun Lee
  • Patent number: 8973384
    Abstract: To provide a heat pump apparatus, such as a heat pump water heating apparatus, capable of efficiently supplying high-temperature water by increasing a condensation capacity to a maximum if the outside air temperature is low. The heat pump water heating apparatus is configured to include a first refrigeration cycle and a second refrigeration cycle. The first refrigeration cycle is configured to connect in series a main compressor, a first water-refrigerant heat exchanger, an internal heat exchanger, a first pressure reducing device, and an air heat exchanger. The second refrigeration cycle diverges from the first refrigeration cycle between the first water-refrigerant heat exchanger and the first pressure reducing device, and joins the first refrigeration cycle between the main compressor and the first water-refrigerant heat exchanger.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 10, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Makoto Saito
  • Patent number: 8861148
    Abstract: A surge protector, an HVAC unit including the surge protector and a method of testing electrical equipment employing the surge protector is disclosed. In one embodiment, the surge protector includes: (1) a first lead, a second lead and a third lead and (2) a protective network having three surge protection units with one of the three surge protection units coupled between each distinct combination of the first, second and third leads, the protective network configured to provide simultaneous surge protection between each of the distinct combinations.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 14, 2014
    Assignee: Lennox Industries Inc.
    Inventor: Joe Ray Powell
  • Patent number: 8820106
    Abstract: A heat source-side refrigerant circuit A including a compressor 11, an outdoor heat exchanger 13, a first refrigerant branch portion 21 connected to the compressor 11, a second refrigerant branch portion 22 and a third refrigerant branch portion 23 connected to the outdoor heat exchanger 13, a first refrigerant flow rate control device 24 provided between branch piping 40 and the second refrigerant branch portion 22, intermediate heat exchangers 25n connected at one side thereof to the first refrigerant branch portion 21 and the third refrigerant branch portion 23 via three-way valves 26n and connected at the other side thereof to the second refrigerant branch portion 22, and second refrigerant flow rate control devices 27n provided between the respective intermediate heat exchangers 25n and the second refrigerant branch portion 22, and user-side refrigerant circuits Bn having indoor heat exchangers 31n connected respectively to the intermediate heat exchangers 25n are provided, and at least one of water and
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 2, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai, Naofumi Takenaka, Yusuke Shimazu
  • Patent number: 8769983
    Abstract: The present invention provides a refrigeration cycle apparatus using a first compressor and a second compressor driven by an expander and including a high and low pressure heat exchanger, in which a low-pressure-side outlet of the high and low pressure heat exchanger is bypassed to a low pressure portion or an intermediate pressure portion to adjust an inlet density at the expander and thereby provide high efficiency. The high and low pressure heat exchanger of the refrigeration cycle apparatus of the present invention changes an amount of heat exchange between a high-pressure refrigerant and a reduced-pressure refrigerant branched from the high-pressure refrigerant at an inlet portion of the high and low pressure heat exchanger and reduced in pressure to adjust the density of the refrigerant flowing in the expander so that power recovered by the expander and power required by the second compressor match.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takashi Okazaki
  • Patent number: 8769976
    Abstract: A method for controlling a refrigerant distribution in a vapour compression system, such as a refrigeration system, e.g. an air condition system, comprising at least two evaporators. The refrigerant distribution determines the distribution of the available amount of refrigerant among the evaporators. While monitoring a superheat, SH, at a common outlet for the evaporators, the distribution of refrigerant is modified in such a manner that a mass flow of refrigerant to a first evaporator is altered in a controlled manner. The impact on the monitored SH is then observed, and this is used for deriving information relating to the behaviour of the first evaporator, in the form of a control parameter. This is repeated for each evaporator, and the refrigerant distribution is adjusted on the basis of the control parameters. The impact may be in the form of a significant change in SH.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 8, 2014
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Rafael Wisniewski
  • Patent number: 8769975
    Abstract: A refrigeration-cycle apparatus is provided that includes a plurality of evaporators having various temperature bands, along with a refrigerator including a plurality of cooling compartments to enable stable and even cooling operations in various temperature bands using the plurality of evaporators. The refrigeration-cycle apparatus and the refrigerator enable individual operation of a portion of the plurality of evaporators, thereby reducing consumption of energy and enabling accurate control of an interior temperature of the refrigerator. The refrigeration-cycle apparatus includes a compressor that compresses and discharges a refrigerant, a condensing device including at least one condenser that condenses the refrigerant discharged from the compressor, a distributor that distributes the refrigerant condensed in the condensing device, and a cold air generator including a plurality of evaporators that evaporates the refrigerant distributed by the distributor.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: July 8, 2014
    Assignee: LG Electronics Inc.
    Inventors: Moo Yeon Lee, Jong Jin Park, Myung Ryul Lee
  • Patent number: 8726687
    Abstract: In an air conditioning unit for a car, which air conditioning unit has a refrigerant circuit with a primary consumer branch having a compressor, condenser, and an evaporator, which air conditioning unit also has at least one auxiliary consumer branch that is connected parallel to the primary consumer branch and has a cold accumulator and its own evaporator, a stop valve is arranged in front of each evaporator. After operational phases charging the cold accumulator, the stop valve of the primary consumer branch is regularly opened for only a predetermined opening time that depends on particular operating parameters. The substantial operating parameters are the air inlet temperature and the air mass flow at the evaporator of the primary consumer branch.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: May 20, 2014
    Assignee: Valeo Klimasysteme GmbH
    Inventor: Roland Haussmann
  • Patent number: 8677779
    Abstract: An air conditioning system has one expansion valve supplying refrigerant to two evaporators. A vapor quality of a refrigerant has an initial value at a primary inlet of a primary evaporator, and has a resultant value at the primary outlet. The primary evaporator has a bypass inlet at a first location where the vapor quality of the refrigerant is less than about 80% of the resultant value. A secondary evaporator has a secondary inlet receiving a bypass portion of the metered flow of refrigerant split-off at a second location of the primary evaporator between the first location and the expansion valve. The secondary outlet is connected to the bypass inlet. Thus, cooling can be achieved for two different zones using only one expansion valve.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Steven L. Lambert
  • Patent number: 8616271
    Abstract: The invention relates to a thermal control device intended to dissipate the heat generated by a payload on a spacecraft, comprising a number of surfaces and including means for circulating a refrigerant. An evaporation zone (Z1) comprises means for circulating the refrigerant, a compression zone (Z2), a condensation zone (Z3) comprising at least one radiating panel, linked to a part of the means for circulating the refrigerant, including several branches and comprising means to allow or inhibit the circulation of the refrigerant within these branches so as to vary the area of the heat exchange surface in the condensation zone, a pressure reduction zone (Z4) comprising means for circulating the refrigerant. Such a device is particularly well adapted to thermal problems encountered in telecommunications satellites.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: December 31, 2013
    Assignee: Thales
    Inventors: Julien Hugon, Thierry Dargent, Isabelle Nann, Paul De Larminat
  • Patent number: 8534093
    Abstract: A unit for an ejector-type refrigeration cycle includes an ejector, first and second evaporators connected in parallel to a downstream side of the ejector and configured to evaporate the refrigerant discharged from the outlet of the ejector, and a refrigerant distributor configured to distribute the refrigerant discharged from an outlet of the ejector to a side of the first evaporator and a side of the second evaporator. The ejector draws refrigerant from a refrigerant suction port by a high-velocity refrigerant flow jetted from a nozzle portion, and mixes the refrigerant injected from the nozzle portion with the refrigerant drawn from the refrigerant suction port so as to discharge the mixed refrigerant from the outlet of the ejector. The ejector and the refrigerant distributor are connected to each other such that the refrigerant discharged from the outlet of the ejector directly flows into the refrigerant distributor.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: September 17, 2013
    Assignee: Denso Corporation
    Inventors: Takayuki Sugiura, Hirotsugu Takeuchi
  • Patent number: 8532832
    Abstract: In a temperature control system using a controlled mix of high temperature pressurized gas and a cooled vapor/liquid flow of the same medium to cool a thermal load to a target temperature in a high energy environment, particular advantages are obtained in precision and efficiency by passing at least a substantial percentage of the cooled vapor/liquid flow through the thermal load directly, and thereafter mixing the output with a portion of the pressurized gas flow. This “post load mixing” approach increases the thermal transfer coefficient, improves control and facilities target temperature change. Ad added mixing between the cooled expanded flow and a lesser flow of pressurized gas also is used prior to the input to the thermal load. A further feature, termed a remote “Line Box”, enables transport of the separate flows of the two phase medium through a substantial spacing from pressurizing and condensing units without undesired liquefaction in the transport lines.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: September 10, 2013
    Assignee: BE Aerospace, Inc.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn Zubillaga
  • Patent number: 8522568
    Abstract: An air conditioner (1) includes a refrigerant circuit (10) configured to perform a supercritical refrigeration cycle and including: an outdoor circuit (21) including a compressor (22), an outdoor heat exchanger (23), and an outdoor expansion valve (24); and two indoor circuits (31a, 31b) including indoor heat exchangers (33a, 33b) and indoor expansion valves (34a, 34b). The air conditioner (1) further includes a controller (50) configured to control outlet refrigerant temperatures of the indoor heat exchangers (33a, 33b).
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: September 3, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Tetsuya Okamoto, Shinichi Kasahara