With Lubricant Handling Means Patents (Class 62/468)
  • Patent number: 8359873
    Abstract: To address the problem of lubricant entrainment within the refrigerant system components such as an evaporator and suction line, a control is provided to periodically, substantially and intermittently increase the refrigerant flow through these components to thereby carry the trapped lubricant back to the compressor. The increased flow of refrigerant can be accomplished by periodically throttling and then unthrottling either an expansion device or a suction modulation valve to cause instantaneous pressure buildup within a respective section of the vapor compression system and subsequent increase of the refrigerant flow through the above-referenced components such as an evaporator and suction line. Suggested time intervals of both the throttling and unthrottling states are provided, as well as the frequency of occurrence for subsequent oil return cycles.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: January 29, 2013
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Publication number: 20130014537
    Abstract: The refrigerator includes: a cooling-water line having a cooling-water pump to thereby send water for cooling a refrigerant inside of a condenser; a lubricating-water supply line connecting the part downstream from the cooling-water pump on the cooling-water line and a compressor 4 and supplying water flowing through the cooling-water line as a lubricant to the compressor 4; and a backup portion supplying water to the lubricating-water supply line instead of supplying water from the cooling-water line when the cooling-water pump is not driven.
    Type: Application
    Filed: March 15, 2011
    Publication date: January 17, 2013
    Applicants: TOKYO ELECTRIC POWER COMPANY, INCORPORATED, CHUBU ELECTRIC POWER COMPANY, INCORPORATED, JOHNSON CONTROLS DENMARK APS, KABUSHIKI KAISHA KOBE SEIKO SHO, DANISH TECHNOLOGICAL INSTITUTE, THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Ryo Fujisawa, Masatake Toshima, Toshikatsu Kanemura, Yashihiro Nakayama, Koichiro Iizuka, Satoshi Ide, Kunihiko Suto, Kazutaka Kurashige, Ichirou Sakuraba, Daisuke Hayashi, Keiji Sugano, Shinji Shato, Hans Madsboll, Klaus Damgaard Kristensen
  • Patent number: 8349206
    Abstract: A process to lubricate a refrigerator preferably having a sliding portion which is made of an engineering plastic material, or provided thereon with an organic coating film or an inorganic coating film is provided. The process includes contacting sliding parts of the refrigerator with a refrigerating machine oil composition having a base oil containing a polyvinyl ether and/or a polyoxyalkylene glycol derivative as a main component and having a kinematic viscosity of 1 to 8 mm2/s as measured at 40° C. The refrigerating machine oil composition has a low viscosity, an improved energy saving performance, a good sealability and an excellent compatibility with a refrigerant and, therefore, the process can be suitably used in various refrigerating application fields, in particular, in closed-system refrigerators.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 8, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Masato Kaneko
  • Publication number: 20120312034
    Abstract: A refrigerating cycle apparatus and a method of operating the same are provided. For a refrigerating cycle having a plurality of compressors connected in series for multi-stage compression, an inner space of each compressor and a pipe of the refrigerating cycle may be connected via an oil collection pipe, and oil may be discharged into the refrigerating cycle by pressure reversal during a pressure balancing operation, so as to allow the discharged oil to be collected into a high-stage compressor or a low-stage compressor. Accordingly, an amount of oil may be uniformly maintained in each of the plurality of compressors to prevent losses due to friction and/or increases in power consumption due to a lack of oil in one or more of the compressors. The structure of a device and pipes for performing oil balancing between the compressors may be simplified to enhance efficiency of the compressors.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 13, 2012
    Inventors: Minkyu OH, Jangseok Lee, Myungjin Chung, Chanho Jeon, Sunam Chae, Juyeong Heo, Kwangwook Kim, Hoyoun Lee
  • Publication number: 20120304685
    Abstract: An air conditioner includes oil balancing pipes that extract lubricating oil stored in an oil separator and each of compressors in which a specified amount of the lubricating oil or more is stored, a distributor that distributes the lubricating oil led from the oil separator and the compressors to a plurality of channels, and oil return pipes that communicatively connect the distribution channels of the distributor and a refrigerant inlet pipe of each of the compressors to return the lubricating oil to each of the compressors.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: TOSHIBA CARRIER CORPORATION
    Inventor: Yukio Kiguchi
  • Patent number: 8316663
    Abstract: An expander-compressor unit (30) includes: a closed casing (1) holding an oil at a bottom portion thereof; a motor (2) provided in the closed casing (1); a compression mechanism (3) for compressing a refrigerant and discharging it into the closed casing (1), the compression mechanism (3) being disposed below the motor (2) in the closed casing (1); an expansion mechanism (4) disposed below the compression mechanism (3) in the closed casing (1); and a coupling mechanism (50) for coupling a compression mechanism side shaft (5) to an expansion mechanism side shaft (6). An oil supply passage (53) for supplying the oil to the compression mechanism (3) is formed in the compression mechanism side shaft (5). An oil suction port (53A) is provided in a portion of the compression mechanism side shaft (5), the portion being above the expansion mechanism (4).
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Atsuo Okaichi, Yasufumi Takahashi, Hiroshi Hasegawa, Masaru Matsui, Fuminori Sakima
  • Patent number: 8312732
    Abstract: A compressor and an expander are provided in a refrigerant circuit of an air conditioner. In the compressor, refrigerator oil is supplied from an oil reservoir to a compression mechanism. In the expander, the refrigerator oil is supplied from an oil reservoir to an expansion mechanism. Internal spaces of a compressor casing and an expander casing communicate with each other through an equalizing pipe. An oil pipe connecting the compressor casing and the expander casing is provided with an oil amount adjusting valve operated on the basis of an output signal of an oil level sensor. When the oil amount adjusting valve is opened, the oil reservoir in the compressor casing and the oil reservoir in the expander casing communicate with each other to allow the refrigerator oil to flow through the oil pipe.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: November 20, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Katsumi Sakitani, Masakazu Okamoto, Eiji Kumakura, Tetsuya Okamoto
  • Patent number: 8297073
    Abstract: An outdoor unit (20) including a compressor (21) and an outdoor heat exchanger (22) and an indoor unit (30) including an indoor heat exchanger (31) are provided. The outdoor unit (20) and the indoor unit (30) constitute a main circuit (43) of a refrigerant circuit (40). A sub-circuit (70) whose one end is connected to a liquid line (4a) of the main circuit (43) and another end is connected to a low-pressure gas line (4b) of the main circuit (43), and which stores refrigerant in the main circuit (43) is also provided. The sub-circuit (70) is located on a sub-passageway (71), and includes: a refrigerant regulator (72) for storing refrigerant in the main circuit (43); and a switch mechanism (73) for establishing and blocking communication between the refrigerant regulator (72) and each of the liquid line (4a) and the low-pressure gas line (4b). When the amount of refrigerant in the main circuit (43) is excessive, redundant refrigerant in the main circuit (43) is stored in the refrigerant regulator (72).
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 30, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Kawano, Shinya Matsuoka, Masahiro Oka, Kazuhide Mizutani
  • Patent number: 8276396
    Abstract: A transport refrigeration unit includes an integrally mounted unitary engine driven generator wherein the generator is cooled by the circulation of oil over the stator coils and the rotor to thereby provide a cooling system that is closed from the outside environment and capable of increased cooling efficiencies. In one embodiment, the circulation of the engine oil is integrated into the generator such that its serves the dual purpose of cooling the generator. In other embodiments, the oil is contained entirely within the generator and is circulated by various means such as by a pump and spray, a slinger or total immersion.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 2, 2012
    Assignee: Carrier Corporation
    Inventors: David R. Siegenthaler, Gary E. Dickes
  • Publication number: 20120240602
    Abstract: An apparatus and method wherein potential ozone layer-damaging chlorodifluoromethane (Refrigerant R-22) is substituted with a mix of less environmentally damaging refrigerants pentafluoroethane and tetrafluoroethane in chlorodifluoromethane-based air-cooling systems mainly in residential cooling. While less environmentally damaging than chlorodifluoromethane, the substitute refrigerant has a temperature-pressure relationship similar to that of chlorodifluoromethane, making the substitute refrigerant suitable for use with chlorodifluoromethane-based air-cooling systems. In this event, it is mixed with a relatively small percentage of a lubricating oil which is compatible with both the unit refrigerant and typical R-22 system design.
    Type: Application
    Filed: June 11, 2012
    Publication date: September 27, 2012
    Inventors: Kenneth M. Ponder, Steffan Thomas, JR.
  • Patent number: 8245529
    Abstract: A turbo compressor includes a first impeller and a second impeller, which are spaced apart at a predetermined distance from each other in a direction of an axis and are fixed such that their backs face each other, in a rotation shaft which is rotatably supported around the axis. Two angular contact ball bearings are provided between the first impeller and the second impeller to rotatably support the rotation shaft around the axis. The two angular contact ball bearings are combined such that their fronts face each other. According to this turbo compressor, robustness can be improved against the inclination of the rotation shaft, any damage of the bearings can be prevented, and the lifespan thereof can be extended.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 21, 2012
    Assignee: IHI Corporation
    Inventors: Kazuaki Kurihara, Minoru Tsukamoto
  • Patent number: 8245528
    Abstract: In a compression/expansion unit (30) serving as a fluid machine, both of a compression mechanism (50) and an expansion mechanism (60) are contained in a single casing (31). A shaft (40) coupling the compression mechanism (50) to the expansion mechanism (60) has an oil feeding channel (90) formed therein. Refrigerating machine oil accumulated at the bottom of the casing (31) is sucked up into the oil feeding channel (90) and fed to the compression mechanism (50) and the expansion mechanism (60). The refrigerating machine oil fed to the expansion mechanism (60) is discharged from the expansion mechanism (60) together with the refrigerant after expansion, flows through the refrigerant circuit and then flows back to the compression mechanism (50) in the compression/expansion unit (30).
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: August 21, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Katsumi Sakitani, Masakazu Okamoto, Eiji Kumakura, Tetsuya Okamoto
  • Patent number: 8221643
    Abstract: The present invention provides a lubricating oil composition for a compression type refrigerator, containing a base oil having a kinematic viscosity of 2 to 1,000 mm2/s at 40° C. The base oil contains the following compounds (1) to (6) each having a molecular weight of 150 to 5,000 and a tertiary or quaternary carbon: (1) an alicyclic hydrocarbon, (2) a branched carboxylic acid ester of a polyhydric alcohol, (3) an alicyclic polycarboxylic acid ester, (4) polybutene, (5) an alkyl benzene and/or an alkyl naphthalene, and (6) a paraffinic mineral oil showing a 13C-NMR spectrum in which an area of peaks at chemical shifts in the range of 30 to 100 ppm accounts for 5 to 40% of the entire peak area and/or a naphthenic mineral oil having a naphthene content of 30 to 70% by mass. The composition has excellent traction performance, lubricating properties and stability.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: July 17, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Masaki Ota, Masato Kaneko, Hitoshi Hata, Toshiyuki Tsubouchi
  • Publication number: 20120174614
    Abstract: According to the present invention, an air condition comprises: a first compressor and a second compressor which compress a refrigerant through multiple stages; a condenser which condenses the refrigerant compressed by the second compressor; a first flow channel through which a portion of the refrigerant condensed by the condenser passes, in order to be cooled; a supercooling heat exchanger having a second flow channel for exchanging heat with the first flow channel; an expansion instrument which expands the refrigerant cooled by the supercooling heat exchanger; a shell-tube-type evaporator which evaporates the refrigerant expanded by the expansion instrument, and which is connected to a location requiring cold water via a water pipe to supply cold water to said location requiring cold water; a first bypass channel which guides the refrigerant condensed in the condenser to the second flow channel; a supercooling expander installed in the first bypass channel; and a second bypass channel which interconnects th
    Type: Application
    Filed: June 10, 2010
    Publication date: July 12, 2012
    Applicant: LG ELECTRONICS INC.
    Inventor: Eun Jun Cho
  • Publication number: 20120174615
    Abstract: According to the present invention, an air conditioner comprises: a first circulation channel which drives a thermodynamic cycle while normally circulating a refrigerant; a second circulation channel which is branched from an outlet of a condenser of the first circulation channel to recover oil from the refrigerant to a compressor and to cause the refrigerant to pass through a supercooling heat exchanger; and a third circulation channel which is directly branched from an evaporator of the first circulation channel, to recover oil from the refrigerant and send the same to the compressor, and to cause the refrigerant to pass through the supercooling heat exchanger, thereby preventing the wet compression of the compressor to achieve improved reliability of the compressor, and preventing the degradation of heat-exchange performance.
    Type: Application
    Filed: June 10, 2010
    Publication date: July 12, 2012
    Applicant: LG ELECTRONICS INC.
    Inventor: Eun Jun Cho
  • Publication number: 20120167615
    Abstract: The invention relates to a heat transfer method using ternary compositions containing 2,3,3,3-tetrafluoropropene, 1,1-difluoroethane and difluoromethane, said compositions being especially interesting as a heat transfer fluid in compression refrigeration systems comprising exchangers operation in counterflow mode or in split flow mode with counterflow tendency.
    Type: Application
    Filed: August 18, 2010
    Publication date: July 5, 2012
    Applicant: Arkema France
    Inventor: Wissam Rached
  • Publication number: 20120159982
    Abstract: The invention relates to compositions containing 2,3,3,3-tetrafluoropropene and to the uses thereof as heat transfer fluid, expansion agents, solvents and aerosol. The invention specifically relates to compositions essentially containing between 10 and 90 wt. % of 2,3,3,3-tetrafluoropropene, between 5 and 80 wt. % of HFC-134a and between 5 and 10 wt. % of HFC-32.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 28, 2012
    Applicant: Arkema France
    Inventor: Wissam Rached
  • Publication number: 20120160020
    Abstract: A heat transfer device, including an evaporator, a condenser, a compressor fluidly coupled to the evaporator and the condenser. A refrigerant/oil mixture is routed to the compressor, the evaporator, and the condenser. An apparatus for moisture detection in the refrigerant/oil mixture includes the apparatus being in fluid communication with the mixture. The apparatus includes a refractive index determining device, a dielectric constant determining device, and a controller. The refractive index determining device produces a first signal representative of a refractive index of the mixture. The dielectric constant determining device produces a second signal representative of a dielectric constant of the mixture. The controller receives the first signal and the second signal. The controller determines a moisture content of the mixture dependent upon the first signal and the second signal.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventor: Roger Burger
  • Publication number: 20120151959
    Abstract: The invention relates to binary compositions of 2,3,3,3-tetrafluoropropene and difluoromethane, and especially to the uses thereof as a heat transfer fluid in compression systems with exchangers operating in counterflow mode or in split flow mode with counterflow tendency. The invention also relates to a heat transfer method.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 21, 2012
    Applicant: Arkema France
    Inventor: Wissam Rached
  • Publication number: 20120151958
    Abstract: The invention relates to the use of compositions essentially containing 2,3,3,3-tetrafluoropropene, HFC-134a and HFC-32 in compression refrigeration systems comprising exchangers operation in counterflow mode.
    Type: Application
    Filed: August 18, 2010
    Publication date: June 21, 2012
    Applicant: Arkema France
    Inventor: Wissam Rached
  • Publication number: 20120137723
    Abstract: The present invention relates to an air conditioner, more particularly, it returns the oil from the shell and tube type of evaporator or directs the returned oil from the oil separator of the compressor into the compressor to reuse. And, it comprises an oil recovery flow path passing a condenser so that the oil and the refrigerant mixed with the oil is superheated or supercooled by using the heat discharged from heat-exchange units of the fin and tube type of condenser. Therefore, it is possible to improve the heat exchange performance of the evaporator.
    Type: Application
    Filed: May 10, 2010
    Publication date: June 7, 2012
    Applicant: LG Electronics Inc.
    Inventor: Eun Jun Cho
  • Publication number: 20120131947
    Abstract: An object of the present invention is to provide a refrigeration cycle apparatus having a compressor that is not easily heated to high temperature by sliding heat and thus higher in reliability. Provided is a refrigeration cycle apparatus having a cost-effective compressor in the configuration in which a piston 9 eccentrically revolving, as driven by a shaft 4, is placed in a cylinder 6 and the circular terminal region 10a of a vane 10 partitioning the cylinder 6 into a suction chamber 12 and a compression chamber 13 is connected slidably to the external surface of the piston 9 in surface contact, which can reduce the sliding heat and is thus resistant to deterioration in reliability by reaction of the operating refrigerant.
    Type: Application
    Filed: September 16, 2010
    Publication date: May 31, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Masao Nakano, Noboru Iida, Daisuke Funakoshi, Tsuyoshi Karino
  • Patent number: 8186179
    Abstract: An the expander-compressor unit (100) includes a closed casing (1) in which an oil can be stored in its bottom part, a compression mechanism (2) disposed in an upper part of the closed casing (1), an expansion mechanism (3) disposed in a lower part of the closed casing (1), a shaft (5) for coupling the compression mechanism (2) and the an expansion mechanism (3) to each other, and an oil pump (6), disposed between the compression mechanism (2) and the expansion mechanism (3), for supplying the oil (26) filling a surrounding space of the expansion mechanism (3) to the compression mechanism (2).
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 29, 2012
    Assignee: Panasonic Corporation
    Inventors: Yasufumi Takahashi, Hiroshi Hasegawa, Masaru Matsui, Atsuo Okaichi, Takeshi Ogata
  • Patent number: 8181478
    Abstract: A refrigeration system can incorporate a liquid-injection system that can provide a cooling liquid to an intermediate-pressure location of the compressor. The cooling liquid can absorb the heat of compression during the compression of the refrigerant flowing therethrough. The refrigeration system can include an economizer circuit that injects a refrigerant vapor into an intermediate-pressure location of the compressor in conjunction with the injection of the cooling liquid. The incorporation of the vapor injection in conjunction with the cooling-liquid injection can advantageously increase the cooling capacity and/or efficiency of the refrigeration system and the performance of the compressor.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: May 22, 2012
    Assignee: Emerson Climate Technologies, Inc.
    Inventor: Kirill Ignatiev
  • Publication number: 20120117996
    Abstract: A cascade refrigeration system includes an upper portion having at least one modular chiller unit that provides cooling to at least one of a low temperature subsystem having a plurality of low temperature loads, and a medium temperature subsystem having a plurality of medium temperature loads. The modular chiller unit includes a refrigerant circuit having at least a compressor, a condenser, an expansion device, and an evaporator. An ammonia refrigerant mixed with a soluble oil circulates within the refrigerant circuit. A control device may be programmed to modulate the position of the expansion device so that a superheat temperature of the ammonia refrigerant near an outlet of the evaporator fluctuates within a substantially predetermined superheat temperature range to positively return soluble oil from the evaporator to the compressor.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Inventors: David K. Hinde, John D. Bittner, Shitong Zha, Joseph R. Poland
  • Publication number: 20120096878
    Abstract: Disclosed is a refrigeration circuit in which a scroll compressor is used as a compressor, an unsaturated fluorinated hydrocarbon refrigerant is used as a refrigerant, and an ether-based lubricant such as a polyalkylene glycol is used as a refrigeration machine oil, and wherein a wax-like solid material, which causes clogging of the refrigeration circuit or deterioration of the refrigeration performance, is prevented from being generated. Specifically, a wax-like solid material is prevented from being generated in a refrigeration circuit by adding a lubricant type component having no polyoxyalkylene structure such as an ester-based lubricant, an alcohol-based friction modifier, an olefin-based friction modifier, a polyolefin-based lubricant, an alkyl aromatic lubricant or a silicone-based lubricant, or a metal deactivation agent such as benzotriazole to an ether-based lubricant such as a polyalkylene glycol.
    Type: Application
    Filed: June 16, 2010
    Publication date: April 26, 2012
    Inventors: Hiromitsu Kamishima, Tomoaki Matsuzaki, Yuuichi Matsumoto
  • Publication number: 20120079839
    Abstract: Refrigerant processing equipment is provided. The refrigerant processing equipment may include: a vacuum pump; an outlet for draining vacuum pump lubricating oil from the vacuum pump; a fluid container; and a conduit configured to provide a fluid connection between the outlet and the container. A method for draining oil from a vacuum pump from refrigerant processing equipment is provided. The method may include connecting an outlet for oil on the vacuum pump with a container; and providing a valve between the outlet and the container to selectively provide fluid communication between the outlet and an the container.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 5, 2012
    Applicant: SPX Corporation
    Inventor: Mark McMasters
  • Patent number: 8137577
    Abstract: The present invention provides a refrigerator oil composition comprising a base oil which is at least one member selected from mineral oils and synthetic oils, and at least one imide compound, said imide compound in an amount of 0.01 to 5% by mass based on the total amount of the refrigerator oil composition, and also provides a compressor and a refrigeration apparatus using the refrigerator oil composition. The refrigerator oil composition and the compressor and the refrigeration apparatus using the refrigerator oil composition satisfy both sludge dispersibility and prevention of wear and seizing of a sliding part made of aluminum and/or iron.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: March 20, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Masato Kaneko, Hiroaki Koshima
  • Publication number: 20120055193
    Abstract: The motor-driven compressor includes a housing, a compression mechanism, a rotary shaft and an electric motor all disposed in the housing, and a resin film. The housing has a suction port and a discharge port. The compression mechanism is adapted to compress refrigerant drawn into the housing through the suction port and to discharge the compressed refrigerant out of the housing through the discharge port. The electric motor is adapted to rotate the rotary shaft to drive the compression mechanism. The electric motor has a rotor fixed on the rotary shaft and a stator supported by the housing. The rotor has a rotor body, a permanent magnet and an end plate. The rotor body has a magnet hole in which the permanent magnet is inserted. The end plate closes an opening of the magnet hole. The resin film coats an outer surface of the rotor.
    Type: Application
    Filed: August 29, 2011
    Publication date: March 8, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventor: Hiroshi FUKASAKU
  • Publication number: 20120055182
    Abstract: A CO2 refrigeration system comprises a refrigeration circuit in which circulates CO2 refrigerant between a compression stage in which the CO2 refrigerant is compressed. A condensation stage is provided in which the CO2 refrigerant releases heat and is accumulated in a condensation reservoir. An evaporation stage is provided in which the CO2 refrigerant is expanded to a gaseous state to absorb heat from a fluid for refrigeration, with at least a portion of CO2 refrigerant exiting the evaporation stage being directed to a supra-compression circuit comprising a supra-compression stage in which the portion of CO2 refrigerant is compressed. A heat exchanger is provided by which the compressed CO2 refrigerant is in a heat-exchange relation with a secondary-refrigerant circuit, such that the compressed CO2 refrigerant releases heat to a secondary refrigerant used for heating purposes. Pressure-regulating means control a pressure of the compressed CO2 refrigerant being returned to the condensation stage.
    Type: Application
    Filed: October 23, 2009
    Publication date: March 8, 2012
    Inventor: Serge Dubé
  • Patent number: 8127567
    Abstract: An oil supply passage (68) is formed inside a rotating shaft (56) of a compression mechanism (21). An oil supply passage (38) is formed inside a rotating shaft (36) of an expansion mechanism (22). A boss portion (81) is provided at a lower end of the rotating shaft (56). A shaft portion (82) that is engaged in the boss portion (81) is provided at an upper end of the rotating shaft (36). The circumference of a coupling part (80), which includes the boss portion (81) and the shaft portion (82) is covered by an upper bearing (42) of the expansion mechanism (22). The upper bearing (42) supports both the rotating shaft (36) and the rotating shaft (56).
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: March 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Takeshi Ogata, Hiroshi Hasegawa, Masaru Matsui, Atsuo Okaichi, Tomoichiro Tamura, Masanobu Wada
  • Patent number: 8122735
    Abstract: A refrigerant circuit (11) of an air conditioner (10) includes a compressor (20) and an expander (30). In the compressor (20), refrigerator oil is supplied from an oil reservoir (27) to a compression mechanism (21). In the expander (30), the refrigerator oil is supplied from an oil reservoir (37) to an expansion mechanism (31). The inner pressures of the compressor casing (24) and the expander casing (34) are the high pressure and the low pressure of the refrigeration cycle, respectively. An oil adjusting valve (52) is provided in an oil pipe (42) connecting the compressor casing (24) and the expander casing (34). The oil amount adjusting valve (52) is operated on the basis of an output signal of an oil level sensor (51). When the oil amount adjusting valve (52) is opened, the refrigerator oil flows from the oil reservoir (27) in the compressor casing (24) toward the oil reservoir (37) in the expander casing (34) through the oil pipe (42).
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: February 28, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Katsumi Sakitani, Tetsuya Okamoto, Masakazu Okamoto, Eiji Kumakura
  • Patent number: 8109116
    Abstract: A refrigeration air conditioner includes a first equalizer pipe connecting a bottom portion of a first hermetic vessel, which contains a main compression mechanism and lubricating oil, to a bottom portion of a second hermetic vessel, which contains an expansion mechanism, a sub-compression mechanism, and lubricating oil. A second equalizer pipe connects a side of the second hermetic vessel at a position higher than a minimum oil level to a suction side of the main compression mechanism. The space within the second hermetic vessel is isolated from the expansion mechanism and the sub-compression mechanism, and the pressure within the second hermetic vessel is not dependent upon the pressure within the expansion mechanism and the pressure within the sub-compression mechanism.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 7, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shin Sekiya, Masayuki Kakuda, Toshihide Koda, Masahiro Sugihara
  • Publication number: 20120024007
    Abstract: A refrigerating machine oil including a refrigerating machine oil basis such as polyol ester oil and an additive polyol ester oil is mixed to a refrigerant including 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene or the like. A compressor for refrigeration and air-conditioning including the mixture charged therein is used. The composition of the additive polyol ester oil is 1 to 30 wt %. The wear resistance of the compressor is improved, and the efficiency of a refrigerating and air-conditioning apparatus using the compressor is enhanced.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Inventors: Ryo OTA, Tsuneji Sugano, Kuninari Araki
  • Patent number: 8104307
    Abstract: An expander-integrated compressor (5A) has a compression mechanism (21) for compressing a refrigerant and an expansion mechanism (22) for expanding the refrigerant. The compression mechanism (21) is located above the expansion mechanism (22) inside a closed casing (10) and shares a rotating shaft (36) with the expansion mechanism (22). An oil pump (37) is provided at the lower end of the rotating shaft (36). The oil pump (37) is immersed in oil in an oil reservoir (15). Usually, the oil is placed in the oil reservoir (15) in such a manner that the oil level (OL) is located above a lower end portion (34e) of a vane (34a) of a first expansion section (30a). More preferably, the oil is placed in such a manner that the expansion mechanism (22) is immersed in the oil. An oil supply passage (38) for guiding the oil to the compression mechanism (21) is formed inside the rotating shaft (36). A suction port (37a) of the oil pump (37) is provided below the lower end portion (34e) of the vane (34a).
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: January 31, 2012
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Hasegawa, Takeshi Ogata, Masaru Matsui, Atsuo Okaichi, Masanobu Wada, Yasufumi Takahashi
  • Publication number: 20120017464
    Abstract: An apparatus includes a mechanical refrigeration cycle arrangement in turn including an evaporator, a condenser, a compressor, and an expansion device, cooperatively interconnected. A drum is provided to receive clothes to be dried. An auxiliary heater is included, as is a duct and fan arrangement configured to pass air over the condenser and the heater, and through the drum. A sensor is located to sense high side temperature and/or high side pressure of the mechanical refrigeration cycle arrangement. A controller is coupled to the sensor and the auxiliary heater, and is operative to: activate the auxiliary heater during a startup transient of the mechanical refrigeration cycle arrangement; monitor the high side temperature and/or high side pressure, during the startup transient; and de-activate the auxiliary heater in response to the high side temperature and/or high side pressure reaching a first predetermined value.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Inventors: David G. BEERS, Brent Alden JUNGE, Nicholas OKRUCH, JR., Amelia Lear HENSLEY
  • Publication number: 20120006041
    Abstract: A refrigerating device that forms a refrigerating cycle in which a plurality of outdoor machines 1a and 1b provided at least with compressors 2a and 2b, condensers 4a and 4b, and accumulators 5a and 5b respectively and an indoor machine 20 provided with decompressing means 21 and an evaporator 22 are connected in parallel by piping, having oil return pipes 13a and 13b that return refrigerator oil stored in the accumulators into the compressors, an oil equalizing pipe 10 that connects the accumulators to each other, and a controller 30 that controls an operation of the compressor and on/off of an electromagnetic valve 12a deposed on the oil equalizing pipe.
    Type: Application
    Filed: March 11, 2010
    Publication date: January 12, 2012
    Inventors: Takashi Ikeda, Tomotaka Ishikawa, Hiroshi Sata, Fumitake Unezaki
  • Publication number: 20110314845
    Abstract: A refrigerant system operates with tandem compressors. As is known, one or more of the tandem compressors can be shut down at part-load operating conditions when lower refrigerant system capacity is required. A control periodically engages at least one shut down tandem compressor for a short period of time. This increases the refrigerant mass flow of refrigerant throughout the refrigerant system to ensure that oil travels through the system and is not retained in the system.
    Type: Application
    Filed: October 10, 2007
    Publication date: December 29, 2011
    Applicant: CARRIER CORPORATION
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 8082751
    Abstract: A heating/cooling system has improved operating efficiencies due to low superheat provisions and a specially configured compressor oil return. For certain systems, such as direct exchange geothermal heating/cooling applications having sub-surface heat exchanges extending at least 100 feet below the surface and using R-410A refrigerant, a specific compressor oil may be used to further improve efficiency.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: December 27, 2011
    Assignee: Earth to Air Systems, LLC
    Inventor: B. Ryland Wiggs
  • Patent number: 8082745
    Abstract: A refrigeration cycle system is disclosed. A compression unit 11 for compressing the refrigerant by the drive force of a vehicle engine 4 is arranged in a housing 10 of a compressor 1. The flow rate of the refrigerant discharged from the compression unit 11 is detected by a flow rate sensor 15 including a throttle portion 15b and a pressure difference detection mechanism 15a. The throttle portion 15b reduces the flow rate of the refrigerant discharged from the compression unit 11. The pressure difference detection mechanism 15a detects the pressure difference between the upstream side and the downstream side of the throttle portion 15b in the refrigerant flow thereby to detect the flow rate of the refrigerant discharged from the compression unit 11. An oil separator 12 for separating the lubricating oil from the refrigerant discharged from the compression unit 11 is interposed between the compression unit 11 and the flow rate sensor 15.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: December 27, 2011
    Assignee: Denso Corporation
    Inventors: Yoshikatsu Sawada, Yasutane Hijikata
  • Publication number: 20110308272
    Abstract: A refrigerating air-conditioning apparatus, at least provided with no possibility that a foreign material returns to a compressor from an accumulator at a time of the pipeline-cleaning operation firstly, and provided with a possibility to perform a collecting operation for the foreign material in a short time secondary, is provided. The heat-source side unit includes an accumulator provided with a function to separate and collect the foreign material in an existing pipeline, a collecting container for collecting the foreign material separated by the accumulator, and an oil return pipeline for returning refrigerating machine oil to the compressor via a flow amount adjusting device, installed at a lower portion of the accumulator, and at a time of ordinary cooling or heating operation, the refrigerating machine oil is caused to flow into the oil return pipeline, and at a time of pipeline cleaning and foreign material-collecting operations, the flow amount adjusting device is fully closed.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masaki TOYOSHIMA, Susumu Yoshimura, Shinichi Wakamoto, Osamu Morimoto
  • Publication number: 20110308273
    Abstract: A refrigerating air-conditioning apparatus, at least provided with no possibility that a foreign material returns to a compressor from an accumulator at a time of the pipeline-cleaning operation firstly, and provided with a possibility to perform a collecting operation for the foreign material in a short time secondary, is provided. The heat-source side unit includes an accumulator provided with a function to separate and collect the foreign material in an existing pipeline, a collecting container for collecting the foreign material separated by the accumulator, and an oil return pipeline for returning refrigerating machine oil to the compressor via a flow amount adjusting device, installed at a lower portion of the accumulator, and at a time of ordinary cooling or heating operation, the refrigerating machine oil is caused to flow into the oil return pipeline, and at a time of pipeline cleaning and foreign material-collecting operations, the flow amount adjusting device is fully closed.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masaki TOYOSHIMA, Susumu Yoshimura, Shinichi Wakamoto, Osamu Morimoto
  • Publication number: 20110302954
    Abstract: A rotary-type fluid machine (10A) includes: a closed casing (1) having a bottom portion utilized as an oil reservoir, a rotary-type fluid mechanism (expansion mechanism) (15) that is provided in an upper portion of the closed casing (1) and in which working chambers (32, 33) in cylinders (22, 24) are partitioned into a suction side working chamber and a discharge side working chamber by vanes (28, 29), a shaft (5) having therein an oil supply passage (51) for supplying oil to the fluid mechanism (15), the shaft being connected to the fluid mechanism (15) and extending an oil reservoir (45), an oil pump (52) provided at a lower portion of the shaft (5), an oil retaining portion (65) for retaining oil, which is pumped up by the oil pump (52) and supplied through the oil supply passage (51), in a surrounding region around the fluid mechanism (15) to allow the partitioning members of the fluid mechanism (15) to be lubricated, the oil retaining portion formed so that the liquid level of the oil retained therein is
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Atsuo OKAICHI, Hiroshi HASEGAWA, Masaru MATSUI, Tomoichiro TAMURA, Takeshi OGATA
  • Publication number: 20110289959
    Abstract: An air conditioning system having an improved internal heat exchanger (IHX) assembly. The IHX assembly includes an elongated cavity for low pressure refrigerant flow from an evaporator and an interior tube disposed within the cavity for high pressure refrigerant flow from a condenser, and a pressure equalization passage between the low and high pressure sides. The passage is large enough to allow pressures to equalize between the condenser and evaporator while the air conditioning system is inactive, so as to prevent the pressure differential that would otherwise enable the loss of refrigerant oil from the compressor, and small enough not to effect the operation of the air conditioning system. The pressure equalization passage may be a by-pass valve assembly having a reed portion that is normally open when the air conditioning system is inactive and closed when the air conditioning system is active for maximum cooling efficiency.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Edward Wolfe, IV, Prasad Shripad Kadle, James Alan Bright, Mingyu Wang
  • Patent number: 8062543
    Abstract: Provided is a refrigerating machine oil which contains a base oil mainly containing at least one substance selected from the group consisting of a mineral oil, a synthetic alicyclic hydrocarbon compound, and a synthetic aromatic hydrocarbon compound and having a kinematic viscosity at 40° C. of 1 to 8 mm2/s. The refrigerating machine oil is applied to refrigerators including a sliding part formed of an engineering plastic or including an organic coating film or an inorganic coating film. The refrigerating machine oil enables to improve energy-saving performance due to its low viscosity, has a low frictional coefficient and good sealing property, and is suitably used in various refrigeration applications, especially in closed-type refrigerators.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: November 22, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Masato Kaneko
  • Patent number: 8043523
    Abstract: The present invention provides a refrigerator oil composition which satisfies both sludge dispersibility and prevention of wear and seizing of sliding parts made of aluminum and/or iron, and a compressor and a refrigeration apparatus using the refrigerator oil composition. The refrigerator oil composition is characterized by comprising a base oil which is at least one member selected from mineral oils and synthetic oils, and at least one polyamide compound having two or more amide groups in the molecule and being present in an amount of 0.01 to 5% by mass based on the total amount of the refrigerator oil composition.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 25, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Masato Kaneko
  • Publication number: 20110252825
    Abstract: The present invention provides a refrigerator oil composition which satisfies both sludge dispersibility and prevention of wear and seizing of sliding parts made of aluminum and/or iron, and a compressor and a refrigeration apparatus using the refrigerator oil composition. The refrigerator oil composition is characterized by comprising a base oil which is at least one member selected from mineral oils and synthetic oils, and at least one polyamide compound having two or more amide groups in the molecule and being present in an amount of 0.01 to 5% by mass based on the total amount of the refrigerator oil composition.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventor: Masato KANEKO
  • Patent number: 8033135
    Abstract: A rotary-type fluid machine (10A) includes: a closed casing (1) having a bottom portion utilized as an oil reservoir, a rotary-type fluid mechanism (expansion mechanism) (15) that is provided in an upper portion of the closed casing (1) and in which working chambers (32, 33) in cylinders (22, 24) are partitioned into a suction side working chamber and a discharge side working chamber by vanes (28, 29), a shaft (5) having therein an oil supply passage (51) for supplying oil to the fluid mechanism (15), the shaft being connected to the fluid mechanism (15) and extending an oil reservoir (45), an oil pump (52) provided at a lower portion of the shaft (5), an oil retaining portion (65) for retaining oil, which is pumped up by the oil pump (52) and supplied through the oil supply passage (51), in a surrounding region around the fluid mechanism (15) to allow the partitioning members of the fluid mechanism (15) to be lubricated, the oil retaining portion formed so that the liquid level of the oil retained therein is
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventors: Atsuo Okaichi, Hiroshi Hasegawa, Masaru Matsui, Tomoichiro Tamura, Takeshi Ogata
  • Publication number: 20110232306
    Abstract: An absorptive refrigeration method and refrigerant/absorbant pairs comprising fluorinated organic compounds, such as fluorinated organic compounds having from one to eight carbon atoms (C1-C8), including hydrofluoroolefin and/or hydrochlorofluoroolefin compounds. In certain embodiments, a fluorinated organic compound, including certain hydrofluoroolefin and/or hydrochlorofluoroolefin compounds (e.g. C2-C4 hydrofluoroolefin and/or hydrochlorofluoroolefin compounds) is/are utilized as the refrigerant, with the absorbant portion either being a fluorinated organic compound or a non-fluorinated oil.
    Type: Application
    Filed: March 30, 2011
    Publication date: September 29, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: RYAN HULSE, CHRISTOPHER J. SEETON, MARK W. SPATZ, RAJIV R. SINGH
  • Patent number: 8020394
    Abstract: Disclosed here is an air conditioner and the control method thereof comprising an outdoor unit having an outdoor heat exchanger for the heat exchanging of the outdoor air and refrigerant; at least one indoor unit corresponding to the outdoor unit and having indoor heat exchanger for the heat exchanging of the room air and refrigerant; an expansion valve installed on the refrigerant pipe connecting the outdoor heat exchanger and the indoor heat exchanger, and expanding the refrigerant; and a control device controlling the opening speed of the expansion valve in accordance with the operation modes of the indoor unit.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: September 20, 2011
    Assignee: LG Electronics Inc.
    Inventors: Jong Ho Hong, Nam Soo Lee, Shin Jeong Kang, Gyu Sang Choe