Plural Compressors Or Multiple Effect Compression Patents (Class 62/510)
  • Patent number: 8468843
    Abstract: An air-conditioning system for vehicle temperature control incorporates a thermostat having contacts, and a circulation contour, including a condenser, an expansion valve essentially connected with the condenser, an evaporator connected sequentially with the expansion valve, a first tee splitter connected to a common line, a second tee splitter connected to the condenser, a main compressor connected with the first tee splitter and with the second tee splitter, a supplemental compressor connected with the first tee splitter and the second tee splitter. The supplemental compressor is operatively controlled by the thermostat and powered by a supplemental battery. In embodiments, the supplemental compressor is electrically connected with the supplemental battery and operatively controlled by a control circuitry including a power relay, an air-condition relay, and the contacts of thermostat. The proposed system reduces pollutions and saves energy.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 25, 2013
    Inventors: Vladlen Futernik, Boris Futernik
  • Publication number: 20130145781
    Abstract: A refrigeration system (20) has a first compressor (24) and a second compressor (26). The second compressor has at least a first condition t least partially in parallel with the first compressor along a refrigerant flowpath. A heat rejection heat exchanger (50) is downstream of the first and second compressors along the refrigerant flowpath. An expansion device (54) is downstream of the heat rejection heat exchanger along the refrigerant flowpath. A heat absorption heat exchanger (56) is downstream of the expansion device along the refrigerant flowpath. The first compressor is a variable speed compressor coupled to a variable speed drive (32). The second compressor is a fixed speed compressor.
    Type: Application
    Filed: April 27, 2012
    Publication date: June 13, 2013
    Applicant: CARRIER CORPORATION
    Inventor: Lucy Y. Liu
  • Publication number: 20130125568
    Abstract: Systems and methods are provided for compressing a cryogenic fluid using a multi-stage compressor. Coolant in a first coolant loop cools cooling jackets of the compression stages and/or inter-stage heat exchangers and warms a pre-compression heat exchanger. The temperature of the coolant in the first heat exchanger is moderated by ambient-air heat exchange. The process fluid is electively cooled by one of the inter-stage heat exchangers after each of the compression stage if the temperature of the process fluid is above a temperature criterion. This enables the system to operate through a transient period (cool down period) without venting process fluid. The inter-stage heat exchangers are preferably bypassed when the system reaches steady-state operating temperature.
    Type: Application
    Filed: March 13, 2012
    Publication date: May 23, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: David Jonathan Chalk, David John Faerse
  • Patent number: 8443624
    Abstract: Disclosed is a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant and a refrigeration cycle apparatus in which a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant circulates through a refrigeration cycle so as to avoid occurrence of negative pressure in a low-pressure circuit. The non-azeotropic refrigerant mixture is characterized in that a mixing ratio of a high-boiling refrigerant and a low-boiling refrigerant is determined so that a saturated vapor line where pressure is 0.00 MPa is not higher than ?45° C. in a low-pressure circuit formed between the decompressor to the compressor.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 21, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuya Yamashita, Akihiro Nishida, Hirokazu Taniguchi, Takashi Okazaki, Yoshihiro Sumida, Masato Yosomiya, Kazuhiko Shiraishi
  • Publication number: 20130111935
    Abstract: A system (200; 250; 270) has a compressor (22), a heat rejection heat exchanger (30), first (38) and second (202) ejectors, first (64) and second (220) heat absorption heat exchangers, and a separator. The ejectors each have a primary inlet (40, 204) coupled to the heat rejection exchanger to receive refrigerant. A second heat absorption heat exchanger (220) is coupled to the outlet of the second ejector to receive refrigerant. The separator (48) has an inlet (50) coupled to the outlet of the first ejector to receive refrigerant from the first ejector. The separator has a gas outlet (54) coupled to the secondary inlet (206) of the second ejector to deliver refrigerant to the second ejector. The separator has a liquid outlet (52) coupled to the secondary inlet (42) of the first ejector via the first heat absorption heat exchanger to deliver refrigerant to the first ejector.
    Type: Application
    Filed: July 20, 2011
    Publication date: May 9, 2013
    Applicant: CARRIER CORPORATION
    Inventors: Jiang Zou, Hongsheng Liu, Parmesh Verma Verma, Thomas D. Radcliff, Jinliang Wang
  • Publication number: 20130104594
    Abstract: An air conditioner is provided that may include an indoor device and an outdoor device. The outdoor device may include at least one compressor, an outdoor heat exchanger, a supercooling device that supercools a refrigerant, a first refrigerant pipe that allows the supercooling device to communicate with a suction side of the compressor, a first valve disposed in or on the first refrigerant pipe, a second refrigerant pipe that connects the compressor to the first refrigerant pipe, and at least one second valve disposed in or on the second refrigerant pipe. In a first refrigerant flow mode, a refrigerant flowing into the supercooling device may be introduced into the at least one compressor through the second refrigerant pipe. In a second refrigerant flow mode, a refrigerant compressed by the at least one compressor may be discharged into the second refrigerant pipe.
    Type: Application
    Filed: April 3, 2012
    Publication date: May 2, 2013
    Inventor: Jaewan LEE
  • Publication number: 20130098102
    Abstract: A heat pump system includes a heat pump circuit, a load distribution element, and a controller. The heat pump circuit includes low-stage and high-stage compression mechanisms having a fixed capacity ratio relationship. The load distribution element establishes a load distribution between first and second heat loads subjected to heating processes by heat exchange with refrigerant discharged from the low-stage and high-stage compression mechanisms, respectively. The controller performs distribution control to maintain a ratio of 1 between temperatures of the refrigerant discharged from the low-stage and high stage compression mechanisms and after heat exchange with the first and second heat loads, respectively. Alternatively, the controller performs distribution control to reduce a difference between the temperatures of the refrigerant discharged from the low-stage and high stage compression mechanisms and after heat exchange with the first and second heat loads, respectively.
    Type: Application
    Filed: July 13, 2011
    Publication date: April 25, 2013
    Inventors: Hiroshi Nakayama, Shuji Fujimoto
  • Patent number: 8424326
    Abstract: A refrigerant vapor compression system includes a flash tank economizer defining a separation chamber is disposed in the refrigerant circuit intermediate a refrigerant heat rejection heat exchanger and a refrigerant heat absorption heat exchanger. A primary expansion valve is interdisposed in the refrigerant circuit in operative association with and upstream of the refrigerant heat absorption heat exchanger and a secondary expansion valve is interdisposed in the refrigerant circuit in operative association and upstream of the flash tank economizer. A refrigerant vapor injection line establishes refrigerant flow communication between an upper portion of the separation chamber and an intermediate pressure stage of the system's compression device and a suction pressure portion of the refrigerant circuit.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 23, 2013
    Assignee: Carrier Corporation
    Inventors: Biswajit Mitra, Yu H. Chen, Jason Scarcella, Suresh Duraisamy, Lucy Yi Liu
  • Patent number: 8424339
    Abstract: A motor coolant method and system is used to cool a compressor motor (36) in a refrigeration system having a multi-stage compressor (38). The compressor includes a first compressor stage (42) and a second compressor stage (44), the first compressor stage providing compressed refrigerant to an input of the second compressor stage. The motor coolant system has a first connection with the refrigerant loop to receive refrigerant into the motor cavity for cooling, the received refrigerant provided from a system component having a high pressure, and a second connection with the refrigerant loop to return refrigerant to an intermediate pressure greater than an evaporator operating pressure. The pressure inside the motor cavity may be approximately the pressure within the first stage discharge and second stage suction to minimized seal leakage between the motor cavity and the internal pressures of the first and second stage compressors.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: April 23, 2013
    Assignee: Johnson Controls Technology Company
    Inventor: Steven T. Sommer
  • Patent number: 8418498
    Abstract: A refrigeration device includes an interior that is divided up into two refrigeration zones with each refrigeration zone having an evaporator and a compressor for supplying the evaporator with a refrigerant. A control for operating the compressors can be operated in different modes of operation depending on predetermined conditions. In a normal mode, the at least two compressors are exclusively operated at different times.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: April 16, 2013
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Georg Hausmann, Hans Ihle
  • Patent number: 8418482
    Abstract: A refrigeration system (20A) comprises an evaporator (27), a two-stage compressor (32) for compressing a refrigerant, a second compressor (34) for compressing the refrigerant, a heat rejecting heat exchanger (24) for cooling the refrigerant, a first economizer circuit (25A), and a second economizer circuit (25B). The first economizer circuit (25A) is configured to inject refrigerant into an interstage port (48) of the two-stage compressor (32). The second economizer circuit (25B) is connected to the second compressor (34).
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 16, 2013
    Assignee: Carrier Corporation
    Inventors: James W. Bush, Wayne P. Beagle, Biswajit Mitra
  • Patent number: 8413458
    Abstract: A device (10) for retaining beverage cooling means (11) within a vessel (12) is disclosed. The device comprises a vessel engaging portion (14) and means (16) for engaging the beverage cooling means (11), wherein the means (16) for engaging the beverage cooling means (11) permits the beverage cooling means to move in sliding relation with respect to the vessel (14) engaging portion.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: April 9, 2013
    Inventor: David Derek Grant Spratley
  • Patent number: 8402780
    Abstract: A heating/cooling system design enabling one to maintain a superheat level of more than 1 degree F. and up to 10 degrees F., incorporating a specially designed accumulator, optional special oil return means, a specially designed receiver, and, when utilized in a DX geothermal system application, a preferable sub-surface liquid refrigerant transport line insulation design, as well as a design enabling the utilization of at least two compressors to increase heat transfer temperature differentials together with special oil separators.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: March 26, 2013
    Assignee: Earth to Air Systems, LLC
    Inventor: B. Ryland Wiggs
  • Publication number: 20130055754
    Abstract: Provided is an air conditioner. The air conditioner including a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, a phase separator for separating a gaseous refrigerant from the refrigerant passing through the condenser, and an evaporator for evaporating the refrigerant passing through the phase separator includes an inflow part provided in the phase separator to introduce the refrigerant into the phase separator, a gas separation part configured to discharge the gaseous refrigerant separated by the phase separator, an injection passage configured to inject the refrigerant discharged from the phase separator into the compressor, and an internal heat-exchanger provided within the phase separator to heat-exchange a refrigerant therein with the refrigerant introduced through the inflow part.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 7, 2013
    Inventors: Beomchan Kim, Byoungjin Ryu, Yonghee Jang, Younghwan Ko, Byeongsu Kim
  • Patent number: 8375741
    Abstract: A refrigerant system is provided with at least two sequential stages of compression. An intercooler is positioned intermediate the two stages. The refrigerant flowing through the intercooler is cooled by a secondary fluid such as ambient air. A vapor/liquid injection function is also provided for the refrigerant system. The intercooler function and the vapor/liquid injection function are selectively activated on demand depending on environmental conditions and thermal load in a conditioned space. This invention is particularly important for the CO2 refrigerant systems operating in the transcritical cycle.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: February 19, 2013
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Alexander Lifson
  • Patent number: 8375740
    Abstract: An air conditioner includes a plurality of compressors, a plurality of oil separators, a plurality of oil collection pipes, a common inlet pipe, and a plurality of branch inlet pipes. The oil separators are connected to outlets of the compressors for separating a refrigerant and/or oil discharged from the compressors. The oil collection pipes are respectively connected to the oil separators for collecting oil separated by the oil separators. The common inlet pipe receives the collected oil and allows the oil to flow to the compressors. The branch inlet pipes branch off from the common inlet pipe and are respectively connected to the compressors.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: February 19, 2013
    Assignee: LG Electronics Inc.
    Inventors: Pil Hyun Yoon, Sai Kee Oh, Sung Oh Choi
  • Publication number: 20130036757
    Abstract: A refrigeration cycle apparatus 100 is provided with a refrigerant circuit 106, an injection flow passage 111, and a high-pressure supply passage 130. The refrigerant circuit 106 includes a low-pressure stage compressor 105, a high-pressure stage compressor 101, a heat radiator 102, an expander 103, a gas-liquid separator 108, and an evaporator 104. The expander 103 and the low-pressure stage compressor 105 are coupled by a power-recovery shaft 107. The refrigeration cycle apparatus 100 is further provided with a flow passage-switching mechanism that selectively connects one of the evaporator 104 and the high-pressure supply passage 130 to the low-pressure stage compressor 105. The flow passage-switching mechanism, for example, is constituted by an on-off valve 131 and a check valve 132.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 14, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Atsuo Okaichi, Takeshi Ogata, Masanobu Wada
  • Publication number: 20130031934
    Abstract: A refrigerant vapor compression system includes a compression device having at least a first compression stage and a second compression stage, a refrigerant heat rejection heat exchanger disposed downstream with respect to refrigerant flow of the second compression stage, and a refrigerant intercooler disposed intermediate the first compression stage and the second compression stage. The refrigerant intercooler is disposed downstream of the refrigerant heat rejection heat exchanger with respect to the flow of a secondary fluid. A second refrigerant heat rejection heat exchanger may be disposed downstream with respect to refrigerant flow of the aforesaid refrigerant heat rejection heat exchanger, and a second refrigerant intercooler may be disposed intermediate the first compression stage and the second compression stage and downstream with respect to refrigerant flow of the aforesaid refrigerant intercooler.
    Type: Application
    Filed: March 25, 2011
    Publication date: February 7, 2013
    Applicant: Carrier Corporation
    Inventors: Hans-Joachim Huff, KeonWoo Lee, Lucy Yi Liu, Suresh Duraisamy, Zvonko Asprovski, Kursten Lamendola, Alexander Lifson
  • Patent number: 8366406
    Abstract: A multi-stage compressor is provided that reliably prevents liquid compression in a higher stage compression mechanism and also prevents compression efficiency degradation resulting from overheating of injection refrigerant and from the lubricating oil being raised up together with the injection refrigerant. An injection circuit is branched into a plurality of circuits. A first circuit thereof is communicatively connected to an inside space of a closed housing that is at the same side as the higher stage compression mechanism with respect to an electric motor, and a second circuit is communicatively connected to an inside space of the closed housing that is opposite from the higher stage compression mechanism with respect to the electric motor. The first circuit and the second circuit are provided with a switching mechanism for switching the injection circuit to the first circuit or the second circuit according to the dryness of the injection refrigerant.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: February 5, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hajime Sato, Yoshiyuki Kimata
  • Patent number: 8356489
    Abstract: A refrigerant system incorporates an expander. At least a portion of refrigerant bypasses an evaporator and is injected into the compression process to cool main refrigerant vapor flow and compressor elements. In disclosed embodiments, the injected refrigerant may be partially expanded in the expander and routed either into the compressor suction or to an intermediate point in the compression process. A valve may control the amount of the injected refrigerant to achieve desired operational characteristics for the refrigerant system.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: January 22, 2013
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 8356490
    Abstract: A refrigeration apparatus uses a refrigerant that operates in a supercritical range. The refrigeration apparatus includes a compression mechanism, a heat source-side heat exchanger, an expansion mechanism, a usage-side heat exchanger, a switching mechanism, an intercooler which functions as a cooler of refrigerant discharged from a first-stage compression element of the compression mechanism and drawn into a second-stage compression element of the compression mechanism, and an intercooler bypass tube. The switching mechanism is configured to switch between cooling and heating operation states in which refrigerant is circulated differently. When a defrosting operation for defrosting the heat source-side heat exchanger is performed, refrigerant flows to the heat source-side heat exchanger and the intercooler. After defrosting of the intercooler is detected as being complete, the intercooler bypass tube is used to ensure that the refrigerant does not flow to the intercooler.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 22, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Atsushi Yoshimi, Shuji Fujimoto
  • Publication number: 20130000338
    Abstract: A natural coolant refrigerating plant comprising a motor-driven compressor with two compression stages, at least one jacket for heating and/or cooling a product being processed, an intercooler located upstream of the second compression stage and a gas-cooler located downstream of the outlet from the second compression stage. Moreover, the plant comprises a first branch, connecting the outlet of the gas-cooler with the inlet of the first stage of the motor-driven compressor for recovering a predetermined quantity of coolant.
    Type: Application
    Filed: June 21, 2012
    Publication date: January 3, 2013
    Applicant: ALI S.p.A. - CARPIGIANI GROUP
    Inventors: Andrea COCCHI, Roberto LAZZARINI
  • Patent number: 8327662
    Abstract: A refrigeration apparatus uses a refrigerant that operates in a supercritical range. The refrigeration apparatus includes a compression mechanism, a heat source-side heat exchanger, an expansion mechanism, a usage-side heat exchanger, a switching mechanism, an intercooler, a bypass tube, and an injection tube. The switching mechanism is configured to switch between cooling and heating operation states. When the switching mechanism is switched to the cooling operation state to allow refrigerant to flow to the heat source-side heat exchanger and a reverse cycle defrosting operation for defrosting the heat source-side heat exchanger is performed, the refrigerant is caused to flow to the heat source-side heat exchanger, the intercooler and the injection tube. After the defrosting of the intercooler is detected as being complete, the bypass tube is used so as to ensure that the refrigerant does not flow to the intercooler and the injection valve is controlled so that the opening degree is increased.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: December 11, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Atsushi Yoshimi, Shuji Fujimoto
  • Patent number: 8327651
    Abstract: A cooling system includes a compressor for compressing a refrigerant from a subcritical state to a supercritical state, a cooler for transferring heat from the refrigerant, an expander for expanding the refrigerant in the supercritical state, an expansion valve for expanding the refrigerant from the supercritical state to the subcritical state and an evaporator for transferring heat from a cooling fluid to the refrigerant in the subcritical state. Work extracted by the expander provides power to the compressor. A method for cooling a vehicle includes compressing a refrigerant from a subcritical state to a supercritical state, cooling the refrigerant, expanding the refrigerant in the supercritical state where work produced by expanding the refrigerant is used to compress the refrigerant, expanding the refrigerant from the supercritical state to the subcritical state, cooling a cooling fluid with the refrigerant in the subcritical state and cooling vehicle components with the cooling fluid.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: December 11, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Adam M. Finney, Young K. Park, Scott F. Kaslusky, Daniel R. Sabatino
  • Patent number: 8327661
    Abstract: A refrigeration apparatus uses a refrigerant that operates in a region including critical processes, and includes a compression mechanism having first and second compressors, a heat-source-side heat exchanger, an expansion mechanism, a utilization-side heat exchanger, an intercooler, and an intermediate refrigerant pipe. The first compressor has a first low-pressure compression element and a first high-pressure compression element to increase pressure of refrigerant more than the first low-pressure compression element. The second compressor has a second low-pressure compression element and a second high-pressure compression element to increase pressure of refrigerant more than the second low-pressure compression element. The intermediate refrigerant pipe causes refrigerant discharged by the first and second low-pressure compression elements to pass through the intercooler and be sucked into first and second high-pressure the compression elements.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: December 11, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Patent number: 8322150
    Abstract: A refrigeration system (20A) comprises an evaporator (27) for evaporating a refrigerant, a two-stage compressor (32) for compressing the refrigerant, a single-stage compressor (34) for compressing the refrigerant, a heat rejecting heat exchanger (24) for cooling the refrigerant, a first economizer circuit (25A), and a second economizer circuit (25B). The first economizer circuit (25A) is configured to inject refrigerant into an interstage port (48) of the two-stage compressor (32). The second economizer circuit (25B) is configured to inject refrigerant into a suction port (52) of the single-stage compressor (34). The single-stage compressor (34) is configured to discharge into the interstage port (48) of the two-stage compressor (32).
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: December 4, 2012
    Assignee: Carrier Corporation
    Inventors: Biswajit Mitra, Wayne P. Beagle, James W. Bush
  • Patent number: 8316664
    Abstract: A fluid machine (10) includes a closed casing (11) in which an oil reservoir (16) for holding oil is formed in a bottom part.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Hasegawa, Masaru Matsui, Takeshi Ogata, Shingo Oyagi, Masanobu Wada
  • Patent number: 8312737
    Abstract: A refrigeration system includes a compressor. A heat rejection heat exchanger is downstream of the compressor along a refrigerant primary flowpath. An expansion device is downstream of the heat rejection heat exchanger along the primary flowpath. A heat absorption heat exchanger is downstream of the expansion device along the primary flowpath. An economizer heat exchanger is between the heat rejection heat exchanger and the expansion device along the primary flowpath. The economizer heat exchanger includes a first portion configured to provide heat transfer from the primary flowpath to a first economizer flowpath. The economizer heat exchanger includes a second portion configured to provide heat transfer from the primary flowpath to a second economizer flowpath.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 20, 2012
    Assignee: Carrier Corporation
    Inventors: James W. Bush, Wayne P. Beagle
  • Patent number: 8312732
    Abstract: A compressor and an expander are provided in a refrigerant circuit of an air conditioner. In the compressor, refrigerator oil is supplied from an oil reservoir to a compression mechanism. In the expander, the refrigerator oil is supplied from an oil reservoir to an expansion mechanism. Internal spaces of a compressor casing and an expander casing communicate with each other through an equalizing pipe. An oil pipe connecting the compressor casing and the expander casing is provided with an oil amount adjusting valve operated on the basis of an output signal of an oil level sensor. When the oil amount adjusting valve is opened, the oil reservoir in the compressor casing and the oil reservoir in the expander casing communicate with each other to allow the refrigerator oil to flow through the oil pipe.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: November 20, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Katsumi Sakitani, Masakazu Okamoto, Eiji Kumakura, Tetsuya Okamoto
  • Patent number: 8276400
    Abstract: For the supply of refrigeration oil accumulated in an oil return compressor (90a) into a higher stage compression mechanism (11), an oil sump in a discharge pressure space defined in the casing of the oil return compressor (90a) and the downstream side of an oil separator (94) are connected together through an oil return passageway (97). And, a pressure reducing means (93) for the reduction in pressure of refrigerant flowing towards the oil separator (94) from the oil return compression mechanism (90a) is disposed in place between the oil return compressor (90a) and the oil separator (94) in a discharge pipe (85) of a lower stage compression mechanism (90).
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: October 2, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoru Sakae, Kouichi Kita, Hiroto Nakajima
  • Publication number: 20120240606
    Abstract: The present invention relates to refrigerant compositions containing trans-chloro-3,3,3-trifluoropropene (1233zd(E)) useful for chiller applications and processes using 1233zd(E).
    Type: Application
    Filed: December 14, 2009
    Publication date: September 27, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Hulse, Rajiv Ratna Singh, Mark W. Spatz
  • Patent number: 8273219
    Abstract: A distillation column is disclosed. The column includes a plurality of rectification zones and corresponding stripping zones. Each rectification zone is linked to a heat pump or a stage of a heat pump. Overhead material from the top rectification zone is compressed and used to heat bottoms liquid from the bottom stripping zone. Similarly, overhead material from a lower rectification zone is compressed and used to heat liquid taken from the uppermost or top stripping zone. Optionally, overhead material from a middle rectification zone is compressed and used to heat liquid from a middle stripping zone. A single multiple stage heat pump compressor may be utilized as opposed to a plurality of heat pumps. Because the heat exchanger from each rectification-stripping zone pair has a lower duty, economical stab-in heat exchangers may be utilized.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 25, 2012
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Patent number: 8245531
    Abstract: A fluid machine (10) includes: a closed casing (11) having an oil reservoir (16) in its bottom portion; a main compression mechanism (3) supplied with oil contained in an upper portion (16a) of the oil reservoir; a rotation motor (8); a main compression mechanism side shaft (38) for coupling the main compression mechanism (3) and the rotation motor (8); a mechanical power recovery mechanism (5) disposed below the upper portion (16a) and recovering mechanical power from a working fluid; a sub-compression mechanism (2) disposed below the upper portion (16a); a mechanical power recovery shaft (16) for coupling the mechanical power recovery mechanism (5) and the sub-compression mechanism (2); and a heat-insulating structure (80) located between the upper portion (16a) and the mechanical power recovery mechanism (5) and restricting flow of oil between the upper portion (16a) of the oil reservoir (16) and a lower portion (16b) of the oil reservoir in which the mechanical power recovery mechanism (5) is provided.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: August 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Yasufumi Takahashi, Hiroshi Hasegawa
  • Publication number: 20120204596
    Abstract: A heat pump capable of operating in a high COP state even if influx temperature of a medium to be heated flowing into the radiators has increased. The heat pump includes a compressor, a first radiator, a second radiator, an expansion valve, and an evaporator sequentially connected by refrigerant piping to form a first refrigeration cycle, in which a first refrigerant circulates in the first refrigeration cycle, and in which the first radiator and the second radiator are serially connected. A first heat exchange unit that heats the first refrigerant is provided in a refrigerant piping at a refrigerant inlet side of the second radiator, and a second heat exchange unit that cools the first refrigerant is provided in a refrigerant piping at a refrigerant outlet side of the second radiator.
    Type: Application
    Filed: October 27, 2009
    Publication date: August 16, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Naofumi Takenaka, Shinichi Wakamoto, Koji Yamashita, Hiroyuki Morimoto, Takeshi Hatomura, Yusuke Shimazu
  • Publication number: 20120186295
    Abstract: An air conditioner includes a plurality of compressors, a condenser that condenses a refrigerant compressed in the plurality of the compressors, an expansion device that expands the refrigerant discharged from the condenser, and an evaporator that evaporates the refrigerant expanded in the expansion device. A first path diverges between the condenser and the evaporator to supply a portion of the refrigerant discharged from the condenser to at least one of the plurality of compressors. A second path diverges between the condenser and the evaporator to supply a portion of the refrigerant discharged from the condenser to a path between the plurality of compressors.
    Type: Application
    Filed: September 23, 2011
    Publication date: July 26, 2012
    Applicant: LG Electronics Inc.
    Inventors: Pilhyun Yoon, Yongcheol Sa
  • Publication number: 20120186284
    Abstract: A refrigerant system, includes: an air conditioner configured to condition air in a building by using a first refrigerant cycle; a cooler configured to cool air in a storage compartment of the building by using a second refrigerant cycle; and a refrigerant heat exchanger configured to exchange heat between a refrigerant of the air conditioner and a refrigerant of the cooler, wherein the cooler includes a main compressor and an auxiliary compressor configured to backup the main compressor.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 26, 2012
    Inventors: Jaeheuk CHOI, Taehee Kwak, Yoonho Yoo, Doyong Ha
  • Patent number: 8225624
    Abstract: A compressor (20) is provided with compression mechanisms (61, 62) to have four compression chambers (61, 62, 63, 64) in total. In the compressor (20), the first compression chamber (61) and the second compression chamber (62) differ in the phase of capacity changing cycle from each other by 180° and the third compression chamber (63) and the fourth compression chamber (64) also differ in the phase of capacity changing cycle from each other by 180°. In a cylinder nonoperating mode, refrigerant is compressed in a single stage in each of the first compression chamber (61) and the second compression chamber (62) while the refrigerant compression operation is halted in the third compression chamber (63) and the fourth compression chamber (64). In a two-stage compression mode, refrigerant compressed in a single stage in each of the first compression chamber (61) and the second compression chamber (62) is further compressed in the third compression chamber (63) and the fourth compression chamber (64).
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: July 24, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Takahiro Yamaguchi, Satoshi Ishikawa, Masahiro Yamada, Kazuhiro Furusho
  • Publication number: 20120174614
    Abstract: According to the present invention, an air condition comprises: a first compressor and a second compressor which compress a refrigerant through multiple stages; a condenser which condenses the refrigerant compressed by the second compressor; a first flow channel through which a portion of the refrigerant condensed by the condenser passes, in order to be cooled; a supercooling heat exchanger having a second flow channel for exchanging heat with the first flow channel; an expansion instrument which expands the refrigerant cooled by the supercooling heat exchanger; a shell-tube-type evaporator which evaporates the refrigerant expanded by the expansion instrument, and which is connected to a location requiring cold water via a water pipe to supply cold water to said location requiring cold water; a first bypass channel which guides the refrigerant condensed in the condenser to the second flow channel; a supercooling expander installed in the first bypass channel; and a second bypass channel which interconnects th
    Type: Application
    Filed: June 10, 2010
    Publication date: July 12, 2012
    Applicant: LG ELECTRONICS INC.
    Inventor: Eun Jun Cho
  • Publication number: 20120167602
    Abstract: A refrigerant system includes at least one compressor (54, 56) that compresses refrigerant and delivers it downstream to a heat rejection heat exchanger (26). The heat rejection heat exchanger is a microchannel heat exchanger. Refrigerant passes from the heat rejection heat exchanger downstream to an expansion device (60), from the expansion device through an evaporator (66), and from the evaporator back to the at least one compressor. A control (58) operates at least one compressor and the expansion device to reduce pressure spikes at transient conditions.
    Type: Application
    Filed: October 14, 2010
    Publication date: July 5, 2012
    Inventors: Michael F. Taras, Alexander Lifson
  • Patent number: 8205469
    Abstract: There is provided a two-stage screw compressor including a first-stage compressor that compresses a fluid, a second-stage compressor that further compresses the fluid compressed by the first-stage compressor, a motor that drives the first-stage compressor and the second-stage compressor, and a box body that serves as a flow passage connecting an outlet of the first-stage compressor and an inlet of the second-stage compressor, and also forms a connection space storing a transmission mechanism for transmitting a rotation force from the motor to the first-stage compressor and to the second-stage compressor, wherein the connection space is sealed by the casing of the motor, and the connection space and an internal space of the casing of the motor communicate with each other.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: June 26, 2012
    Assignee: Kobe Steel, Ltd.
    Inventor: Noboru Tsuboi
  • Patent number: 8185251
    Abstract: A generator set including a prime mover, a generator coupled to the prime mover, and a controller that is associated with a temperature controlled space and operates the generator set in one of a start/stop mode and a continuous mode depending on a demand defined at least in part by contents within the temperature controlled space.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 22, 2012
    Assignee: Thermo King Corporation
    Inventors: Randy S. Burnham, David J. Renken
  • Publication number: 20120117988
    Abstract: A refrigeration system (20A) comprises an evaporator (27), a plurality of compressors (32, 34, 35) for compressing a refrigerant, a heat rejecting heat exchanger (24) for cooling the refrigerant, and a plurality of economizer heat exchangers (28A, 28B). Each of the economizer heat exchangers (28A, 28B) is configured to inject a portion of the refrigerant into a suction port (52, 56) of one of the compressors (34, 35).
    Type: Application
    Filed: March 27, 2006
    Publication date: May 17, 2012
    Applicant: Carrier Corporation
    Inventors: Biswajit Mitra, Wayne P. Beagle, James W. Bush
  • Publication number: 20120111040
    Abstract: Systems for limiting pressure differences in dual compressor chillers are provided. To achieve the efficiency benefits of series flow chillers within a single unit, an evaporator and/or a condenser may be partitioned into separate chambers by a baffle. Process fluid may then flow through one chamber of the evaporator and/or condenser prior to entering the other. This configuration creates a pressure differential between chambers which may reduce compressor head and result in greater chiller efficiency. However, to maintain the structural integrity of the evaporator and/or condenser baffle, a system for limiting this pressure differential may be employed. This system may include an evaporator pressure equalization valve, a common liquid line, or an equalizing line between separate liquid lines. Methods of operating dual compressor chillers using these systems are also provided.
    Type: Application
    Filed: June 9, 2010
    Publication date: May 10, 2012
    Applicant: JOHNSON CONTROLS TECHNOLOGY COMPANY
    Inventors: Jay A. Kohler, Mark A. Adams
  • Publication number: 20120111050
    Abstract: An air conditioner may be provided that includes a plurality of compressors compressing a refrigerant, a first heat exchanger for condensing the refrigerant compressed in the compressors, a first expansion valve for expanding the condensed refrigerant, a second expansion valve for expanding the refrigerant emerging from the first expansion valve, and a second heat exchanger for evaporating the refrigerant emerging from the second expansion valve. The refrigerant from the first expansion valve may be guided such that a portion of the refrigerant is introduced into one of the compressors after bypassing the second expansion valve and the second heat exchanger, and a remaining portion of the refrigerant may be introduced into another one of the compressors after passing through the second expansion valve and second heat exchanger.
    Type: Application
    Filed: June 17, 2011
    Publication date: May 10, 2012
    Inventors: Yonghee JANG, Byeongsu Kim
  • Patent number: 8171747
    Abstract: A refrigeration device includes a compression mechanism, a radiator, a first expansion mechanism (15), a liquid receiver (16), a second expansion mechanism, an evaporator, a temperature detector, a first pressure storing unit (23a), and a second pressure determining unit, a pressure detector, and a control unit (23c). The first pressure storing unit stores an upper limit and lower limit of an intermediate pressure. The second pressure determining unit determines an upper limit and lower limit of a high pressure based on the upper limit and lower limit of the intermediate pressure and on a temperature in a vicinity of an exit of the radiator. The control unit controls the first expansion mechanism and the second expansion mechanism so that a pressure detected by the pressure detector will be equal to or less than the upper limit and equal to or greater than the lower limit of the high pressure.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: May 8, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Toshiyuki Kurihara, Shinichi Kasahara
  • Patent number: 8141376
    Abstract: An air conditioning system including an outdoor heat-exchanging unit, at least one indoor heat-exchanging unit, a gaseous refrigerant line connected between the outdoor heat-exchanging unit and the indoor heat-exchanging unit, to allow a refrigerant in a gaseous state to flow between the outdoor heat-exchanging unit and the indoor heat-exchanging unit, and a pressure compensation device for increasing a pressure of the gaseous refrigerant flowing through the gaseous refrigerant line. The pressure compensation device is located along the gaseous refrigerant line at a position closer to the indoor heat-exchanging unit than to the outdoor heat-exchanging unit. A pressure compensation device for use in an air conditioning system is also provided.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: March 27, 2012
    Assignee: LG Electronics Inc.
    Inventors: Song Choi, Baik Young Chung, Yun Ho Ryu
  • Publication number: 20120067080
    Abstract: A refrigerant circuit includes a first compression stage for compressing a mixed refrigerant gas, the first compression stage including at least a first compressor body and a second parallel compressor body, each compressor body including a suction inlet and an outlet, a first distribution means for splitting the flow of refrigerant gas to the first stage of compression across the at least two parallel compressor bodies, such that a first stream of refrigerant gas is fed to the suction inlet of the first compressor body and a second stream of refrigerant gas is fed to the suction inlet of the second compressor body, a second compression stage for compressing the mixed refrigerant gas, and a first merging means for recombining the first stream of refrigerant gas with the second stream of refrigerant gas downstream of the first compression stage for delivery to the second compression stage.
    Type: Application
    Filed: March 16, 2011
    Publication date: March 22, 2012
    Applicant: WOODSIDE ENERGY LIMITED
    Inventors: Geoffrey Brian Byfield, Prabhu Pandalaneni
  • Patent number: 8118563
    Abstract: A compressor system including a first compressor and a second compressor. The first and second compressors each include a shell, a compression mechanism disposed within the shell, and a drive member adapted to drive the compression mechanism. A discharge tube assembly interconnects the first compressor and the second compressor, and the discharge tube assembly includes an inlet portion adjacent the first compressor that is inclined relative to another inlet portion adjacent the second compressor. The inlet portion that is inclined is adapted to prevent a backflow of oil through the discharge tube assembly.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 21, 2012
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Jianxiong Chen, Eric P. Cavender, Bobby Kalloor
  • Patent number: 8109116
    Abstract: A refrigeration air conditioner includes a first equalizer pipe connecting a bottom portion of a first hermetic vessel, which contains a main compression mechanism and lubricating oil, to a bottom portion of a second hermetic vessel, which contains an expansion mechanism, a sub-compression mechanism, and lubricating oil. A second equalizer pipe connects a side of the second hermetic vessel at a position higher than a minimum oil level to a suction side of the main compression mechanism. The space within the second hermetic vessel is isolated from the expansion mechanism and the sub-compression mechanism, and the pressure within the second hermetic vessel is not dependent upon the pressure within the expansion mechanism and the pressure within the sub-compression mechanism.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 7, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shin Sekiya, Masayuki Kakuda, Toshihide Koda, Masahiro Sugihara
  • Patent number: RE43312
    Abstract: It is an object of the present invention to reduce the constraint that the density ratio is constant as small as possible, and to obtain high power recovering effect in a wide operation range. A refrigeration cycle apparatus uses carbon dioxide as refrigerant and has a compressor, an outdoor heat exchanger evaporator, an expander and an indoor heat exchanger a radiator. An injection circuit for introducing high pressure refrigerant is provided in a halfway of an expansion process of said expander.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: April 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Kazuo Nakatani, Yoshikazu Kawabe, Yuji Inoue, Noriho Okaza, Akira Hiwata