Distinct Vapor Liquid Separator And Separated Liquid Recycle Patents (Class 62/512)
  • Patent number: 10113806
    Abstract: An apparatus for the treatment of infections associated with respiratory disorders in a mammal with a mixture for use as an inhalable medicament. The apparatus includes a patient interface, at least one source of helium for providing gaseous helium, at least one source of oxygen for providing gaseous oxygen, an application device for providing a mixture to the patient interface, at least one source of nitric oxide for providing gaseous nitric oxide, a gas injector for injecting the nitric oxide into the mixture, an injector for injecting a means for inhibiting growth of pulmonary pathogens, a controller programmed for controlling the gas injector, the application device and the injector.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: October 30, 2018
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Steffen Brenner, Stefan Kayser, Paul Raymond Davies
  • Patent number: 10077926
    Abstract: An air conditioner and evaporator inlet header distributor therefor are provided. The air conditioner may include an evaporator inlet header distributor to distribute a refrigerant expanded in an expansion mechanism to a plurality of refrigerant flow paths of an evaporator. The evaporator inlet header distributor may include a distributor body, a refrigerant inlet pipe to guide refrigerant expanded in the expansion mechanism to an inside of the distributor body, a plurality of refrigerant outlet pipes to discharge the refrigerant from the distributor body into the plurality of refrigerant flow paths, and a separating plate to separate the inside of the distributor body into a header flow path connected with the plurality of refrigerant outlet pipes and a refrigerant dispersing flow path connected with the refrigerant inlet pipe to guide an upper portion and a lower portion of the header flow path by dispersing the refrigerant.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: September 18, 2018
    Assignee: LG ELECTRONICS INC.
    Inventors: Hongseong Kim, Sangyeul Lee, Inbeom Cheon, Hanchoon Lee, Juhyok Kim
  • Patent number: 9851142
    Abstract: In a method for separating at least one lighter impurity of a gaseous mixture containing at least 30% mol of carbon dioxide, a liquid (101) enriched with carbon dioxide is drawn off into a vat of a distillation column (25), at least part (27) of the liquid enriched with carbon dioxide is vaporized and then heated to a first temperature higher than the boiling temperature thereof in the exchanger and leaves the exchanger at the hot end thereof, and at least part of the vaporized and heated liquid is sent from the hot end of the exchanger at the first temperature, without being cooled in the exchanger and without having been compressed, to the lower part of the distillation column, where it participates in the distillation while enriching itself.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: December 26, 2017
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Arthur Darde, Mathieu Leclerc
  • Patent number: 9810472
    Abstract: Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: November 7, 2017
    Assignee: Whirlpool Corporation
    Inventors: Alberto Regio Gomes, Stephen L. Keres, Steven J. Kuehl, Andrew D. Litch, Peter J. Richmond, Guolian Wu
  • Patent number: 9027363
    Abstract: An economizer is provided in a multistage compression refrigeration system including a refrigerant circuit in which a multistage compressor, a condenser, a multistage expansion mechanism, and an evaporator are sequentially connected. The economizer includes: a tank having an introducing portion for introducing a refrigerant of the refrigerant circuit, a liquid outlet for guiding a liquid refrigerant into the evaporator, and a gas outlet for guiding a gas refrigerant into a medium pressure portion of the multistage compressor; and a float expansion valve, which forms part of the multistage expansion mechanism and is attached to the liquid outlet, and whose throttle amount is adjusted according to a level of the liquid refrigerant in the tank. Multiple ones of the liquid outlet and multiple ones of are provided.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 12, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Yasutaka Takada, Nobuhiro Umeda, Kenji Kinokami
  • Publication number: 20150096321
    Abstract: A refrigeration apparatus uses R32 as a refrigerant, and includes a compressor, a condenser, an expansion mechanism, an evaporator, an intermediate injection channel and a suction injection channel. The intermediate injection channel guides a part of the refrigerant flowing from the condenser toward the evaporator to the compressor, causing the refrigerant to merge with intermediate-pressure refrigerant of the compressor. The suction injection channel guides a part of the refrigerant flowing from the condenser toward the evaporator to the suction passage, causing the refrigerant to merge with low-pressure refrigerant sucked into the compressor.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 9, 2015
    Inventors: Satoshi Kawano, Shinya Matsuoka, Masahiro Oka
  • Patent number: 8973394
    Abstract: In an evaporator unit, a first evaporator is coupled to an ejector to evaporate refrigerant flowing out of the ejector, a second evaporator is coupled to a refrigerant suction port of the ejector to evaporate the refrigerant to be drawn into the refrigerant suction port, a flow amount distributor is located to adjust a flow amount of the refrigerant distributed to the nozzle portion and a flow amount of the refrigerant distributed to the second evaporator, and a throttle mechanism is provided between the flow amount distributor and the second evaporator to decompress the refrigerant flowing into the second evaporator. The flow amount distributor is adapted as a gas-liquid separation portion and as a refrigerant distribution portion for distributing separated refrigerant into the nozzle portion and the second evaporator. Furthermore, the flow amount distributor and the ejector are arranged in line in a longitudinal direction of the ejector.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 10, 2015
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Tomohiko Nakamura, Gouta Ogata, Hiroshi Oshitani, Ryoko Awa, Tatsuhiko Nishino, Mika Gocho
  • Patent number: 8966934
    Abstract: A refrigeration system using CO2 as a refrigerant includes a receiver having a liquid outlet connected to expansion valves, which are connected to evaporators, which are connected to the suction side of the compressor. The receiver includes a second gas outlet connected to a second pressure reduction device, to reduce the energy consumption in CO2 cooling systems and to protect the compressors against liquid CO2 by heating the suction gas. The second pressure reduction device is connected by tubing to a first heat exchanging device, which is integrated in the receiver, so that gas that is evaporated in the top of a receiver can be used for cooling the liquid part of the same receiver.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: March 3, 2015
    Assignee: Hill Phoenix, Inc.
    Inventor: Kim G. Christensen
  • Patent number: 8959951
    Abstract: A refrigerating apparatus, where refrigerant reaches a supercritical state in at least part of a refrigeration cycle, includes at least one expansion mechanism, an evaporator connected to the expansion mechanism, first and second sequential compression elements, a radiator connected to the discharge side of the second compression element, a first refrigerant pipe interconnecting the radiator and the expansion mechanism, a heat exchanger arranged to cause heat exchange between the first refrigerant pipe and another refrigerant pipe. Preferably, a heat exchanger switching mechanism is switchable so that refrigerant flows in the first refrigerant pipe through the first heat exchanger or in a heat exchange bypass pipe connected to the first refrigerant pipe.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: February 24, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Takahiro Yamaguchi, Toru Inazuka, Kazuhiro Furusho, Mitsuharu Uchida, Hidehiko Kataoka
  • Patent number: 8955343
    Abstract: A system has a compressor. A heat rejection heat exchanger is coupled to the compressor to receive refrigerant compressed by the compressor. An ejector has a primary inlet coupled with heat rejection heat exchanger to receive refrigerant, a secondary inlet, and an outlet. The system has a heat absorption heat exchanger. The system includes means for providing at least of a 1-10% quality refrigerant to the heat absorption heat exchanger and an 85-99% quality refrigerant to at least one of the compressor and, if present, a suction line heat exchanger.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: February 17, 2015
    Assignee: Carrier Corporation
    Inventors: Parmesh Verma, Jinliang Wang, Frederick J. Cogswell, Hans-Joachim Huff, Alexander Lifson, Richard G. Lord
  • Patent number: 8881546
    Abstract: An absorption heat pump including a generator or desorber which generates vapour from a first fluid fed to a first condenser, an evaporator provided downstream of the condenser, an outlet of the evaporator connected by a third line to an inlet of a mixer of a low pressure absorber connected to a suction side of a pump feeding solution to the generator. The generator having a poor solution outlet connected by a sixth line provided with at least one lamination valve to a poor solution inlet feeding the absorber. The second line is brought into heat exchange contact with the low pressure absorber and opens into a liquid/vapour separator feeding the evaporator via a third line, the vapour outlet of the separator opening into an intermediate pressure absorber unit.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: November 11, 2014
    Inventor: Marco Guerra
  • Publication number: 20140238067
    Abstract: In an integration valve, a body, in which a vapor-liquid separating space is provided, includes a fixed throttle decompressing liquid-phase refrigerant, a liquid-phase refrigerant side valve body member opening or closing a liquid-phase refrigerant passage, and a vapor-phase refrigerant side valve body member opening or closing a vapor-phase refrigerant passage. Further, the vapor-phase refrigerant side valve body member is configured by a differential pressure regulating valve operated based on a pressure difference between a refrigerant pressure at a side of the vapor-phase refrigerant passage and a refrigerant pressure at a side of the liquid-phase refrigerant passage. The vapor-phase refrigerant side valve body member is movable when the liquid-phase refrigerant side valve body member is moved by a solenoid. Therefore, a cycle configuration of a heat pump cycle configuring a gas injection cycle can be simplified.
    Type: Application
    Filed: October 2, 2012
    Publication date: August 28, 2014
    Applicant: DENSO CORPORATION
    Inventors: Tetsuya Itou, Teruyuki Hotta, Atsushi Inaba, Yukihiko Takeda, Shigeji Ohishi, Keiichi Yoshii
  • Patent number: 8806888
    Abstract: An air conditioning system includes a phase separator separating a gaseous refrigerant and a liquid refrigerant from a flowing refrigerant, an evaporator evaporating the liquid refrigerant separated by the phase separator, and at least one compressor including a first compressing part receiving the refrigerant via the evaporator and a second compressing part receiving both of the gaseous refrigerant separated by the phase separator and the refrigerant via the first compressing part.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 19, 2014
    Assignee: LG Electronics Inc.
    Inventors: Young Hwan Ko, Hyuk Soo Lee, Bum Suk Kim, Sang Kyoung Park, Byung Soon Kim
  • Patent number: 8783050
    Abstract: A time for loading a refrigerant is shortened when a utilization unit of an air conditioner is installed. A heat source unit 1 includes a compressor 100; a heat-source-side heat exchanger 200; a refrigerant regulator 61 storing a refrigerant; an introducing pipe 62 which is a pipe that is branched off from a discharge-side pipe 110 of the compressor 100 and connected to the refrigerant regulator 61, and introduces the refrigerant discharged from the compressor 100 into the refrigerant regulator 61; and a lead-out pipe 63 which is a pipe that is connected from the refrigerant regulator 61 to an intake-side pipe 120 of the compressor 100, and leads out the refrigerant stored in the refrigerant regulator 61 into the intake-side pipe 120.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: July 22, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Atsushi Okamoto, Shinya Matsuoka, Takuya Kotani
  • Patent number: 8733125
    Abstract: The invention relates to a refrigerant accumulator combined with a heat exchanger for a motor vehicle air conditioning unit. The accumulator includes a collector chamber having a liquid disposed therein and a neighboring flow chamber. The collector chamber includes a valve which selectively permits a flow of the liquid from the collector chamber into the flow chamber.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: May 27, 2014
    Assignee: Halla Visteon Climate Control Corporation
    Inventors: Roman Heckt, Marc Graaf, Stephan Koster
  • Publication number: 20140130534
    Abstract: A refrigeration circuit is disclosed circulating a refrigerant and comprising in the direction of flow of the refrigerant a compressor (2); at least one condenser (14, 16) for rejecting heat to ambient air; an expansion device (8); and an evaporator (10). The refrigeration circuit further comprises a collecting container (12), the output of which being connected to the expansion device (8); a heat rejecting heat exchanger (4) for heat exchange of the refrigerant to a heat pump system, the output of the heat rejecting heat exchanger (4) being connected to the collecting container (12); and means (V1, V2) for connecting the heat rejecting heat exchanger (4) or at least one of the condenser(s) (14, 16) to the output of the compressor (2) depending on the availability of cooling power at the heat rejecting heat exchanger (4).
    Type: Application
    Filed: July 5, 2011
    Publication date: May 15, 2014
    Applicant: Carrier Corporation
    Inventors: Christian Scheumann, Sascha Hellmann
  • Patent number: 8720224
    Abstract: Disclosed is a gravity flooded evaporator for use with commercial or industrial heating, air conditioning, and ventilation systems, and which does not require integration or use of a conventional, separately field-piped, surge vessel and associated subsystem.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 13, 2014
    Assignee: REJ Enterprises, LLP
    Inventor: Justin Marc Brown
  • Patent number: 8671704
    Abstract: A refrigeration system includes a compressor; a condenser connected to a first inlet of a separator which has: a vapor outlet connected to the compressor and a liquid outlet connected to an evaporator; a selecting valve having: a first vapor inlet connected to the evaporator; a second vapor inlet connected to the separator; and a vapor outlet connected to the compressor, the selecting valve being operated to selectively and alternatively communicate its first and second vapor inlets with its vapor outlet, so as to allow the compressor to draw vapor from the separator and from the evaporator; and a control unit for controlling the operation of the selecting valve.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: March 18, 2014
    Assignees: Whirlpool S.A., Universidade Federal de Santa Catarina (UFSC), Autarquia Federal de Regime Especial
    Inventors: Augusto Jose Pereira Zimmermann, Gustavo Portella Montagner, Joaquim Manoel Goncalves
  • Patent number: 8631666
    Abstract: A cascade CO2 refrigeration system includes a medium temperature loop for circulating a medium refrigerant and a low temperature loop for circulating a CO2 refrigerant. The medium temperature loop includes a heat exchanger having a first side and a second side. The first side evaporates the medium temperature refrigerant. The low temperature loop includes a discharge header for circulating the CO2 refrigerant through the second side of the heat exchanger to condense the CO2 refrigerant, a liquid-vapor separator collects liquid CO2 refrigerant and directs vapor CO2 refrigerant to the second side of the heat exchanger. A liquid CO2 supply header receives liquid CO2 refrigerant from the liquid-vapor separator. Medium temperature loads receive liquid CO2 refrigerant from the liquid supply header for use as a liquid coolant at a medium temperature. An expansion device expands liquid CO2 refrigerant from the liquid supply header into a low temperature liquid-vapor mixture for use by the low temperature loads.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: January 21, 2014
    Assignee: Hill Phoenix, Inc.
    Inventors: David K. Hinde, Lin Lan, Shitong Zha, J. Scott Martin, John M. Gallaher
  • Patent number: 8505331
    Abstract: A flash tank is provided and may include a shell having an inner volume. A first port may be in fluid communication with the inner volume and may be positioned relative to a surface of the inner volume such that fluid flows therebetween in a direction that is substantially tangent to the surface.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: August 13, 2013
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Hung M. Pham, Jean-Luc M. Caillat, Ronald L. Van Hoose, Roy J. Doepker
  • Publication number: 20130192295
    Abstract: Described is a structural unit composed of a heat exchanger and a liquid separator, in particular for separating droplets from evaporated refrigerant, in particular for refrigeration and air conditioning systems, which structural unit is of compact design. According to the invention, in a pressure vessel (1) in which heat transfer plates (2) are arranged in a lower region and in which an upper region as a space for the separation of droplets from evaporated refrigerant is formed above the heat transfer plates (2) as a result of the arrangement of the heat transfer plates (2) in the lower region, the heat transfer plates are arranged substantially parallel to the longitudinal axis of the pressure vessel.
    Type: Application
    Filed: October 12, 2011
    Publication date: August 1, 2013
    Inventor: Martin Kolbe
  • Publication number: 20130174602
    Abstract: Multiple designs and methods for aerodynamic separation nozzles and systems for integrating multiple aerodynamic separation nozzles into a single system are disclosed herein. These aerodynamic separation nozzles utilize a combination of aerodynamic forces and separation nozzle structure to induce large centrifugal forces on the fluids that in combination with the structure of the nozzle are used to separate heavier constituents of the fluid from lighter constituents, and more particularly to separate a first or liquid phase from gaseous phases. In some embodiments a number of separation nozzles are combined into a single system suitable for dynamic processing of a process gas. In other embodiments the separation nozzles are temperature controlled to condition the incoming gas to a temperature in order to encourage a phase change in certain constituents of the gas to occur within the nozzle to further enhance separation.
    Type: Application
    Filed: November 23, 2012
    Publication date: July 11, 2013
    Applicant: Tenoroc LLC
    Inventor: Tenoroc LLC
  • Patent number: 8443624
    Abstract: Disclosed is a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant and a refrigeration cycle apparatus in which a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant circulates through a refrigeration cycle so as to avoid occurrence of negative pressure in a low-pressure circuit. The non-azeotropic refrigerant mixture is characterized in that a mixing ratio of a high-boiling refrigerant and a low-boiling refrigerant is determined so that a saturated vapor line where pressure is 0.00 MPa is not higher than ?45° C. in a low-pressure circuit formed between the decompressor to the compressor.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 21, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuya Yamashita, Akihiro Nishida, Hirokazu Taniguchi, Takashi Okazaki, Yoshihiro Sumida, Masato Yosomiya, Kazuhiko Shiraishi
  • Publication number: 20130111930
    Abstract: A system (170) has a compressor (22). A heat rejection heat exchanger (30) is coupled to the compressor to receive refrigerant compressed by the compressor. A non - controlled ejector (38) has a primary inlet coupled to the heat rejection exchanger to receive refrigerant, a secondary inlet, and an outlet. The system includes means (172, e.g., a nozzle) for causing a supercritical-to-subcritical transition upstream of the ejector.
    Type: Application
    Filed: July 20, 2011
    Publication date: May 9, 2013
    Applicant: Carrier Corporation
    Inventors: Thomas D. Radcliff, Parmesh Verma, Jinliang Wang, Frederick J. Cogswell
  • Patent number: 8424338
    Abstract: A vapor compression refrigerating cycle apparatus includes a compressor, a radiator, first and second throttle devices, a flow distributor, an ejector, a suction passage, and first and second evaporators. The flow distributor separates refrigerant decompressed through the first throttle device into a first passage and a second passage. The first passage is in communication with a nozzle portion of the ejector. The second passage is in communication with a suction portion of the ejector through the suction passage. The second throttle device and the second evaporator are disposed on the suction passage. The flow distributor is configured to be capable of adjusting a ratio of a flow rate of refrigerant passing through the second passage to a flow rate of refrigerant passing through the first passage in accordance with a heat load of at least one of the radiator, the first evaporator and the second evaporator.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 23, 2013
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Gouta Ogata, Mika Gocho, Kenta Kayano
  • Patent number: 8347644
    Abstract: An air conditioning system includes a first circulation module and a second circulation module. Two circulation modules are joined by a heat exchanger. The first circulation is a modular refrigeration system includes a compressor, expansion device, and heat exchangers. The second circulation module includes a main liquid refrigerant tank, a number of distributed liquid refrigerant tanks, liquid pumps and a plurality of indoor units which includes a heat exchange device and a vapor propelling device. The heat exchange device is connected to the main liquid tank. The vapor propelling device propels the working fluid in a saturated vapor state to the first heat exchanger, thus forming a working fluid loop. It can be switched between the heating and cooling modes.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: January 8, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Che Liu, Ling-Yu Chao, Hsu-Cheng Chiang, Chia-Hung Liu
  • Publication number: 20120291462
    Abstract: A system has a compressor. A heat rejection heat exchanger is coupled to the compressor to receive refrigerant compressed by the compressor. An ejector has a primary inlet coupled with heat rejection heat exchanger to receive refrigerant, a secondary inlet, and an outlet. The system has a heat absorption heat exchanger. The system includes means for providing at least of a 1-10% quality refrigerant to the heat absorption heat exchanger and an 85-99% quality refrigerant to at least one of the compressor and, if present, a suction line heat exchanger.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 22, 2012
    Applicant: CARRIER CORPORATION
    Inventors: Parmesh Verma, Jinliang Wang, Frederick J. Cogswell, Hans-Joachim Huff, Alexander Lifson, Richard G. Lord
  • Patent number: 8276398
    Abstract: A muffling apparatus (100) is provided for placement within an oil separator of refrigeration or cooling system, wherein the apparatus has a non-straight shape and a lumen (160) defined therein to allow for noise-creating pressure pulsations/waves to come into contact with absorbing material (110) of the muffling apparatus in order to attenuate the energy of the pressure waves/pulsations into heat and thus reduce oil separator vibrations caused thereby.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: October 2, 2012
    Assignee: Carrier Corporation
    Inventors: Michal Karol Grabon, Xavier Girod, Eric Voluet
  • Publication number: 20120180518
    Abstract: A gas refrigerant separator-cum-refrigerant flow divider includes an inlet chamber having a circular cross section, a speed increasing chamber having a circular cross section, and an outlet chamber having a circular cross section, which are coaxially arranged in series. The outlet chamber introduces refrigerant from a refrigerant inlet port and guides and swirls the refrigerant along an inner wall surface of the outlet chamber. The speed increasing chamber increases the speed of a swirling refrigerant flow sent from the inlet chamber and jets the swirling refrigerant flow into the outlet chamber through a communication port, which is formed at the distal end of the speed increasing chamber. The diameter of the outlet chamber is greater than the diameter of the communication port at the distal end of the speed increasing chamber. The gas refrigerant separator-cum-refrigerant flow divider further has a gas refrigerant extracting pipe.
    Type: Application
    Filed: September 21, 2010
    Publication date: July 19, 2012
    Inventor: Toru Yukimoto
  • Publication number: 20120137724
    Abstract: A dual evaporator refrigerator appliance is disclosed. The appliance includes a first evaporator, a second evaporator, and at least one refrigerant stream combining device. Refrigerant flow control techniques are provided whereby a compressor in the refrigerator appliance that receives a resulting refrigerant stream is required to do less work to raise the pressure of the stream, and thus the refrigerator appliance is more energy efficient.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Inventors: Brent Alden Junge, Michael Kempiak, Martin Christopher Severance
  • Patent number: 8181478
    Abstract: A refrigeration system can incorporate a liquid-injection system that can provide a cooling liquid to an intermediate-pressure location of the compressor. The cooling liquid can absorb the heat of compression during the compression of the refrigerant flowing therethrough. The refrigeration system can include an economizer circuit that injects a refrigerant vapor into an intermediate-pressure location of the compressor in conjunction with the injection of the cooling liquid. The incorporation of the vapor injection in conjunction with the cooling-liquid injection can advantageously increase the cooling capacity and/or efficiency of the refrigeration system and the performance of the compressor.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: May 22, 2012
    Assignee: Emerson Climate Technologies, Inc.
    Inventor: Kirill Ignatiev
  • Patent number: 8166771
    Abstract: A heat source side circuit (14) includes a gas-liquid separator (35) for the separation of refrigerant flowing therein from an expander (31) into liquid refrigerant and gas refrigerant and a cooling means (36, 45, 53, 55) for the cooling of liquid refrigerant heading from the gas-liquid separator (35) to a utilization side circuit (11). Since the refrigerant exiting the gas-liquid separator (35) is in a saturated liquid form, it always changes state to a subcooled state whenever cooled by the cooling means (36, 45, 53, 55).
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: May 1, 2012
    Assignee: Daikin Industries, Ltd.
    Inventor: Masakazu Okamoto
  • Publication number: 20120079846
    Abstract: The present invention relates to a liquid receiver combined with a liquid separator for a refrigeration cycle and a manufacturing method thereof; and more particularly, to a liquid receiver combined with a liquid separator for a vapor-compression refrigeration cycle and a manufacturing method thereof, by which manpower and working hours are reduced and the defect rate is reduced, thereby improving the productivity.
    Type: Application
    Filed: May 4, 2010
    Publication date: April 5, 2012
    Inventor: Kum Su Jin
  • Patent number: 8104308
    Abstract: In a refrigerant cycle device with an ejector, a branch portion is located at an upstream side of a nozzle portion of the ejector so that the refrigerant flowing out of an exterior heat exchanger is branched into first and second streams in a cooling operation mode. A passage switching portion is configured such that the refrigerant of the first stream flows through the nozzle portion of the ejector, and the refrigerant of the second stream flows through the decompression unit, the using-side heat exchanger, and the refrigerant suction port of the ejector, in the cooling operation mode. In contrast, the refrigerant discharged from the compressor flows into the nozzle portion after passing through the using-side heat exchanger, and the refrigerant flowing out of the exterior heat exchanger flows into the refrigerant suction port of the ejector, in the heating operation mode.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: January 31, 2012
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Makoto Ikegami, Etsuhisa Yamada, Haruyuki Nishijima, Hiroshi Oshitani, Yukikatsu Ozaki
  • Patent number: 8051675
    Abstract: A thermal system (100) includes a main pump (104) which pumps refrigerant to a device under test evaporator cluster (124). A system condenser (130) converts the gaseous refrigerant into liquid and the condenser liquid return is provided to a vapor/liquid separation and storage column (142). The thermal system (100) further includes a sump vaporizer (118) which forms part of a sump discharge line loop.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: November 8, 2011
    Assignee: EADS North America, Inc.
    Inventors: Gary Carlson, Frank Landon, Joseph Talbert
  • Publication number: 20110219817
    Abstract: A heat exchanger includes a refrigerant condensing part including tubes and fins. A refrigerant is to flow in the tubes to exchange heat between the refrigerant and an external gas to flow outside the tubes. The fins are connected to the tubes. A gas/liquid separating part is to separate the refrigerant into gas and liquid. A refrigerant supercooling part is to exchange heat between the refrigerant and the external gas. The refrigerant supercooling part includes an inlet and an outlet. The refrigerant is to flow into the refrigerant supercooling part from the inlet. The refrigerant is to flow out of the refrigerant supercooling part from the outlet. The refrigerant flows through the refrigerant condensing part, the gas/liquid separating part, and the refrigerant supercooling part in this order. The external gas flows around the refrigerant supercooling part and then flows around the refrigerant condensing part.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 15, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Hidenori ESAKI
  • Publication number: 20110174014
    Abstract: A refrigerant vapor compression system includes a flash tank disposed in the refrigerant circuit intermediate a refrigerant heat rejection heat exchanger and a refrigerant heat absorption heat exchanger. The flash tank has a shell defining an interior volume having an upper chamber, a lower chamber and a middle chamber. A first fluid passage establishes fluid communication between the middle chamber and the upper chamber and a second fluid passage establishing fluid communication between the middle chamber and the lower chamber. An inlet port opens to the middle chamber. A first outlet port opens to the upper chamber and a second outlet port opens to the lower chamber.
    Type: Application
    Filed: September 29, 2009
    Publication date: July 21, 2011
    Applicant: CARRIER CORPORATION
    Inventors: Jason Scarcella, Yu H. Chen
  • Publication number: 20110146313
    Abstract: A refrigeration circuit has a mono- or multi-component refrigerant, especially CO2, circulating therein, said refrigeration circuit enabling an transcritical operation, said refrigeration circuit comprising, in the direction of refrigerant flow, a compressor unit, a condenser/gascooler, a high pressure control valve, a collecting container, and at least one evaporator having an expansion device connected upstream thereof, wherein a flashgas line having a medium pressure control valve arranged therein is provided between an upper portion of the collecting container and the suction line leading to the compressor unit, wherein a temperature, pressure or liquid level sensor is provided in or at the collecting container, wherein a bypass line having a medium pressure holding valve arranged therein is provided connecting the line between the condenser/gascooler and the high pressure control valve to the line between the collecting container and the expansion device(s), and wherein a control unit is provided said co
    Type: Application
    Filed: July 2, 2009
    Publication date: June 23, 2011
    Applicant: CARRIER CORPORATION
    Inventors: Oliver Finckh, Tobias H. Sienel, Markus Hafkemeyer, Christoph Kren, Rainer Schrey
  • Publication number: 20110126560
    Abstract: Surged vapor compression heat transfer systems, devices, and methods are disclosed having refrigerant phase separators that generate at least one surge of vapor phase refrigerant into the inlet of an evaporator after the initial cool-down of an on cycle of the compressor. This surge of vapor phase refrigerant, having a higher temperature than the liquid phase refrigerant, increases the temperature of the evaporator inlet, thus reducing frost build up in relation to conventional refrigeration systems lacking a surged input of vapor phase refrigerant to the evaporator.
    Type: Application
    Filed: October 28, 2010
    Publication date: June 2, 2011
    Applicant: XDX INNOVATIVE REFRIGERATION, LLC
    Inventor: David Wightman
  • Publication number: 20110120180
    Abstract: A heat pump controls heating and/or cooling using a refrigeration cycle unit and a booster module, The refrigeration cycle unit includes a compressor to compress a coolant, a first heat exchanger to condense the coolant compressed in the compressor, an expansion mechanism to expand the coolant condensed in the first heat exchanger, and a second heat exchanger to evaporate the coolant expanded in the expansion mechanism. The booster module separates a gaseous coolant from the coolant flowing from the first heat exchanger to the expansion mechanism and then allows for compression of the separated gaseous coolant or coolant evaporated in the second heat exchanger.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 26, 2011
    Inventors: Sim Won CHIN, Yong Hee JANG, Bum Suk KIM, Byoung Jin RYU
  • Publication number: 20110120179
    Abstract: A heat pump type cooling/heating apparatus comprises a coolant injection path and a gaseous coolant adjustment valve. The coolant injection path may be split between a cascade heat exchanger and an evaporator of a low-temperature refrigeration cycle to inject coolant into a low pressure side compressor, or between a water coolant heat exchanger and cascade heat exchanger to inject coolant into a high pressure side compressor of a high temperature refrigeration cycle.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 26, 2011
    Inventors: Sim Won Chin, Eung Yul Lee, Bum Suk Kim, Sang Kyoung Park
  • Publication number: 20110113804
    Abstract: A heat pump according to the present invention comprises a plurality of the compression chambers, and compresses refrigerant with multistage, and injects vapor refrigerant into the space between the plurality of the compression chambers by using the first refrigerant injection flow path and the second refrigerant injection flow path. Performance and efficiency of the heat pump can be improved compared with non-injection, as flow rate of the refrigerant circulating the indoor heat exchanger is increased. Thus heating performance can be improved also in the extremely cold environmental condition such as the cold area by increasing the injection flow rate. Also, because the heat pump according to the present invention comprises the first refrigerant injection flow path and the second refrigerant injection flow path, refrigerant is injected twice. Thus, as the injection flow rate of the refrigerant is increased, heating capacity can be improved.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 19, 2011
    Inventors: Simwon Chin, Eungyul Lee, Younghwan Ko, Sangkyoung Park
  • Publication number: 20110113808
    Abstract: The heat pump according to the present invention comprises a scroll compressor, and injects refrigerant to the scroll compressor by using the first refrigerant injection flow path and the second refrigerant injection flow path. By injecting refrigerant, an efficiency of the heat pump can be improved as compared with non-injection. Thus, a heating performance can be improved also in the extremely cold environmental condition such as the cold area. Also, because refrigerant is injected twice by using the first refrigerant injection flow path and the second refrigerant injection flow path, heating performance can be improved by increasing the injection flow rate.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 19, 2011
    Inventors: Younghwan Ko, Sangkyoung Park, Yonghee Jang, Bumsuk Kim
  • Patent number: 7930899
    Abstract: An accumulator is provided which is installed between a compressor and an evaporator of a refrigeration cycle system. The accumulator includes an inlet pipe through which refrigerant is introduced from the evaporator, an outlet pipe through which the evaporated refrigerant is delivered to the compressor, and a chamber which is connected to the inlet and outlet pipes and formed with a floor surface at a lower level than connecting portions of the chamber connected to the inlet and outlet pipes. Further, the inlet and outlet pipes are horizontally connected to the chamber.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: April 26, 2011
    Assignee: LG Electronics Inc.
    Inventor: Kim Lyun-Su
  • Publication number: 20110088421
    Abstract: A heat source-side refrigerant circuit A including a compressor 11, an outdoor heat exchanger 13, a first refrigerant branch portion 21 connected to the compressor 11, a second refrigerant branch portion 22 and a third refrigerant branch portion 23 connected to the outdoor heat exchanger 13, a first refrigerant flow rate control device 24 provided between branch piping 40 and the second refrigerant branch portion 22, intermediate heat exchangers 25n connected at one side thereof to the first refrigerant branch portion 21 and the third refrigerant branch portion 23 via three-way valves 26n and connected at the other side thereof to the second refrigerant branch portion 22, and second refrigerant flow rate control devices 27n provided between the respective intermediate heat exchangers 25n and the second refrigerant branch portion 22, and user-side refrigerant circuits Bn having indoor heat exchangers 31n connected respectively to the intermediate heat exchangers 25n are provided, and at least one of water and
    Type: Application
    Filed: October 29, 2008
    Publication date: April 21, 2011
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai, Naofumi Takenaka, Yusuke Shimazu
  • Publication number: 20110083456
    Abstract: A refrigeration cycle device 100 where a combustible refrigerant circulates includes a bypass pipe 5 that is connected so that part of the refrigerant that flows through a circulation pipe extending from a condenser 2 to a flow control valve 3 bypasses the flow control valve 3 and an evaporator 4; a bypass flow control valve 6 that controls the amount of the refrigerant flowing through the bypass pipe 5; a heat exchanger 7 that allows heat exchange between the refrigerant that flows through the bypass pipe 5 after flowing out of the bypass flow control valve 6 and the refrigerant that flows through the circulation pipe after flowing out of the condenser 2; and a subcooling degree sensor T73 that detects the subcooling degree of the refrigerant at the inlet of the flow control valve 3.
    Type: Application
    Filed: November 11, 2008
    Publication date: April 14, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinichi Wakamoto, Fumitake Unezaki, Takeshi Kuramochi, Hitoshi Iijima
  • Publication number: 20110079042
    Abstract: Disclosed is a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant and a refrigeration cycle apparatus in which a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant circulates through a refrigeration cycle so as to avoid occurrence of negative pressure in a low-pressure circuit. The non-azeotropic refrigerant mixture is characterized in that a mixing ratio of a high-boiling refrigerant and a low-boiling refrigerant is determined so that a saturated vapor line where pressure is 0.00 MPa is not higher than ?45° C. in a low-pressure circuit formed between the decompressor to the compressor.
    Type: Application
    Filed: June 12, 2009
    Publication date: April 7, 2011
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tetsuya Yamashita, Akihiro Nishida, Hirokazu Taniguchi, Takashi Okazaki, Yoshihiro Sumida, Masato Yosomiya, Kazuhiko Shiraishi
  • Publication number: 20110048055
    Abstract: A refrigeration apparatus includes a multi-stage compression mechanism, heat source-side and usage side heat exchangers each operable as a radiator/evaporator, a switching mechanism switchable between cooling and heating operation states, a second-stage injection tube, an intermediate heat exchanger and an intermediate heat exchanger bypass tube. The intermediate heat exchanger bypass tube ensures that refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element is not cooled by the intermediate heat exchanger during a heating operation. Injection rate optimization controls a flow rate of refrigerant returned to the second-stage compression element through the second-stage injection tube so that an injection ratio is greater during the heating operation than during a cooling operation.
    Type: Application
    Filed: April 30, 2009
    Publication date: March 3, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Publication number: 20110005270
    Abstract: A refrigeration apparatus includes a compression mechanism, a heat source-side heat exchanger, a usage-side heat exchanger, a switching mechanism and an intermediate heat exchanger. Refrigerant discharged from a first-stage compression element is sequentially compressed by a second-stage compression element. Each of the heat source-side heat exchanger and the usage-side heat exchanger functions an evaporator or radiator. The switching mechanism is configured to switch between a cooling operation state and a heating operation state. The intermediate heat exchanger is configured to cool refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element when the switching mechanism has been set to the cooling operation state, and to evaporate refrigerant whose heat is radiated in the usage-side heat exchanger when the switching mechanism has been set to the heating operation state.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 13, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi Yoshimi, Shuji Fujimoto, Masakazu Okamoto
  • Publication number: 20110005244
    Abstract: A cooling system includes a compressor for compressing a refrigerant from a subcritical state to a supercritical state, a cooler for transferring heat from the refrigerant, an expander for expanding the refrigerant in the supercritical state, an expansion valve for expanding the refrigerant from the supercritical state to the subcritical state and an evaporator for transferring heat from a cooling fluid to the refrigerant in the subcritical state. Work extracted by the expander provides power to the compressor. A method for cooling a vehicle includes compressing a refrigerant from a subcritical state to a supercritical state, cooling the refrigerant, expanding the refrigerant in the supercritical state where work produced by expanding the refrigerant is used to compress the refrigerant, expanding the refrigerant from the supercritical state to the subcritical state, cooling a cooling fluid with the refrigerant in the subcritical state and cooling vehicle components with the cooling fluid.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 13, 2011
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Adam M. Finney, Young K. Park, Scott F. Kaslusky, Daniel R. Sabatino