Flow Controller Or Boiling Expeditor Patents (Class 62/527)
  • Patent number: 10589598
    Abstract: Disclosed is an integrated compressor system configured to be integrated with existing air conditioning systems. The integrated compressor system generally includes a mounting assembly, a first compressor and a valve. The mounting assembly can be mounted directly on a condenser of an existing air conditioning system. The first compressor and the valve are mounted directly on the mounting assembly. The valve has a first valve inlet, a second valve inlet and a valve outlet. When assembly and integrated with an existing AC system, the first valve inlet is fluidly coupled to a compressor outlet of the first compressor, the second valve inlet is fluidly coupled to a compressor outlet of the compressor of existing AC system, and a valve outlet is fluidly connected to a condenser inlet of the condenser.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: March 17, 2020
    Assignee: BERGSTROM, INC.
    Inventors: Brett S. Connell, Terry Zeigler
  • Patent number: 10107532
    Abstract: A refrigerant evaporator includes a first evaporation unit and a second evaporation unit disposed in series in a flow direction of fluid to be cooled by evaporating refrigerant. An intermediate tank portion through which refrigerant flows is connected to an outer surface of one tank portion of the first evaporation unit and an outer surface of one tank portion of the second evaporation unit. A tank external refrigerant space through which refrigerant flows is defined by an outer wall of the one tank portion of the first evaporation unit, an outer wall of the one tank portion of the second evaporation unit, and an outer wall of the intermediate tank portion.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: October 23, 2018
    Assignee: DENSO CORPORATION
    Inventor: Norimasa Baba
  • Patent number: 9908383
    Abstract: The invention relates to an air conditioning system for conditioning the air of a passenger space of a motor vehicle, the system including a refrigerant circuit with a compressor, a first heat exchanger for the heat exchange between the refrigerant and the environment and a second heat exchanger for supplying heat from the refrigerant to the air supply to be conditioned for the passenger space. The refrigerant circuit further includes, in the flow direction of the refrigerant after the compressor, a valve arrangement. The valve arrangement comprises a branch, a first valve arranged between the branch and the second heat exchanger, and a second valve arranged between the branch and the first heat exchanger. The first valve is designed with a normally open (NO) valve characteristic and the second valve with a normally closed (NC) valve characteristic.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: March 6, 2018
    Assignee: HANON SYSTEMS
    Inventors: Peter Heyl, Dirk Schroeder, Hans Hammer, Jörg Bodewig
  • Patent number: 9410726
    Abstract: The invention relates to a valve device for a refrigerating machine that circulates a refrigerant, include at least one condenser and at least one evaporator. The valve device comprises at least one inlet, at which the refrigerant in the condenser can be fed to the valve device, at least three outlets, through which the refrigerant in the valve device can be discharged into the evaporator, and a valve element, which is rotatably arranged about an axis and can be brought into a plurality of positions. In a first position, the first outlet is connected to the inlet in order to convey refrigerant. In a second position, the second outlet is connected to the inlet in order to convey refrigerant. In a third position, the third outlet is connected to the inlet in order to convey refrigerant.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 9, 2016
    Assignee: BSH HAUSGERÄTE GMBH
    Inventor: Stefan Bassmann
  • Patent number: 9091473
    Abstract: An ice making assembly includes a reservoir holding water having a water level, at least one conductor extending into the reservoir below the water level, and a cooling device for cooling the conductor to a temperature sufficient to form an ice cube on the conductor. A heater heats the conductor to a temperature sufficient to harvest the ice cube from the conductor. A dispensing device removes harvested ice cubes from the water. Related refrigeration appliances are disclosed.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: July 28, 2015
    Assignee: General Electric Company
    Inventor: Alan Joseph Mitchell
  • Patent number: 8973394
    Abstract: In an evaporator unit, a first evaporator is coupled to an ejector to evaporate refrigerant flowing out of the ejector, a second evaporator is coupled to a refrigerant suction port of the ejector to evaporate the refrigerant to be drawn into the refrigerant suction port, a flow amount distributor is located to adjust a flow amount of the refrigerant distributed to the nozzle portion and a flow amount of the refrigerant distributed to the second evaporator, and a throttle mechanism is provided between the flow amount distributor and the second evaporator to decompress the refrigerant flowing into the second evaporator. The flow amount distributor is adapted as a gas-liquid separation portion and as a refrigerant distribution portion for distributing separated refrigerant into the nozzle portion and the second evaporator. Furthermore, the flow amount distributor and the ejector are arranged in line in a longitudinal direction of the ejector.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 10, 2015
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Tomohiko Nakamura, Gouta Ogata, Hiroshi Oshitani, Ryoko Awa, Tatsuhiko Nishino, Mika Gocho
  • Patent number: 8966936
    Abstract: An expansion valve and an air conditioner for vehicles having the same, the expansion valve comprising a main body having an inflow channel, first and second discharge channels and first and second orifices to expand refrigerant branched from the inflow channel to the first and second discharge channels; first and second valves to control flow rates of refrigerant passing through the first and second orifices by controlling the degree of opening of the first and second orifices respectively; and a shaft slidably mounted inside the main body for varying positions of the first and second valves simultaneously so that the first and second orifices are opened or closed at the same time by the movement of the shaft.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: March 3, 2015
    Assignee: Halla Visteon Climate Control Corporation
    Inventors: Yongnam Ahn, Jaehyeong Kim, Byeonghak Min
  • Patent number: 8966923
    Abstract: The invention relates to a coupling unit (16) for connecting refrigerant lines (11) of a refrigerant circuit (10), in particular for cooling a vehicle drive module, said coupling unit including an expansion valve (20) accommodated in the coupling unit (16), said expansion valve (20) separating the refrigerant circuit (10) into a first and a second sub-areas (30, 32), said coupling unit (16) being connected directly to a refrigerant feed and a refrigerant return for an evaporator (26), said coupling unit (16) respectively comprising a coupling connection (36, 38) of the refrigerant feed and the refrigerant return, which are detachably connected to the expansion valve (20) via a common fastening device (44), and with the common fastening device (44) having at least one fastening element (48) that is accessible for connecting and disconnecting from a side of the expansion valve (20) that faces away from the coupling connections (36, 38).
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: March 3, 2015
    Assignee: Valeo Klimasysteme GmbH
    Inventor: Roland Haussmann
  • Patent number: 8944152
    Abstract: A compact evaporator including a suction baffle system is provided for use in a refrigeration system. The suction baffle system includes a suction baffle and a passageway. The suction baffle includes a plurality of walls and is adjacent to the interior wall of shell. The passageway extends below one of the walls of the suction baffle toward the lower portion of the shell and is adjacent to the interior wall of the shell. A suction tube having an inlet is attached to the evaporator shell and the inlet is adjacent to the passageway and located partially below the suction baffle. The passageway minimizes the possibility of liquid carry-over in the suction tube that feeds into the compressor.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: February 3, 2015
    Assignee: Johnson Controls Technology Company
    Inventors: Satheesh Kulankara, Michael Lee Buckley, Mustafa Kemal Yanik
  • Patent number: 8943854
    Abstract: Disclosed is a heat exchanger of a plate type comprising an evaporator having at least one inlet and at least one outlet allowing a first medium to enter into and exit from the evaporator. The evaporator comprises a plurality of interconnected evaporation chambers disposed in parallel, having at least one common inlet and at least one common outlet allowing the first medium to enter into and exit from the evaporation chambers.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: February 3, 2015
    Assignee: Danfoss Qinbao (Hangzhou) Plate Heat Exchanger Company Limited
    Inventor: Lars Persson
  • Publication number: 20150027162
    Abstract: A three-way valve switches between flow of refrigerant from a heat exchanger toward a cooling portion via a gas-liquid separator and flow of refrigerant from a heat exchanger toward the cooling portion via the gas-liquid separator. A refrigerant line provides fluid communication between the heat exchanger and the gas-liquid separator. A refrigerant line provides fluid communication between the heat exchanger and the gas-liquid separator. A selector valve switches between flow of refrigerant from the cooling portion toward the heat exchanger via a refrigerant line and flow of refrigerant from the cooling portion toward the heat exchanger via a refrigerant line.
    Type: Application
    Filed: March 12, 2013
    Publication date: January 29, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi Ohno, Kazuhide Uchida, Yoshiaki Kawakami
  • Publication number: 20150027151
    Abstract: A high-efficiency air conditioning system for conditioning a plurality of rooms within an interior of a building, the air conditioning system including: two separate rooms within a building, a single outdoor unit a refrigerant flow pathway that includes a plurality of refrigerant conduits having a common refrigerant flow path portion and at least two divergent flow path portions, a first divergent flow path where the first evaporator and second evaporator are in parallel with one another; at least one throttling device and at least a first indoor air handling unit positioned within and providing cooling to the first room and a second indoor air handling unit positioned within and providing cooling to a second room. The compressor is incapable of simultaneously supplying both the first evaporator and the second evaporator at their full cooling capacity.
    Type: Application
    Filed: April 30, 2014
    Publication date: January 29, 2015
    Applicant: WHIRLPOOL CORPORATION
    Inventors: NIHAT O. CUR, TIMOTHY A. KEE, JAMES W. KENDALL, Steven J. Kuehl, JEFFREY A. MILLER, VERNE H. MYERS, GUOLIAN WU, HENG TONG PIT
  • Patent number: 8904819
    Abstract: An evaporator includes a vaporization chamber having a monomer inlet and a vapor outlet. There is a vapor nozzle in the vapor outlet. The evaporator also includes a collar positioned between the vaporization chamber and the vapor nozzle which increases the pressure in the evaporation chamber while the conductance through the nozzle is substantially unchanged.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: December 9, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Damien Boesch, Martin Rosenblum
  • Publication number: 20140326018
    Abstract: A system may include first and second compressors and first, second and third heat exchangers. The first heat exchanger may receive working fluid discharged from the first and second compressors. The second heat exchanger may be disposed downstream of the first heat exchanger and may provide working fluid to the first compressor. The third heat exchanger may be disposed between the first and second heat exchangers and may include an inlet and first and second outlets. The first outlet may provide working fluid to the second heat exchanger. The second outlet may provide working fluid to the second compressor.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 6, 2014
    Applicant: Emerson Climate Technologies, Inc.
    Inventor: Kirill M. IGNATIEV
  • Patent number: 8820106
    Abstract: A heat source-side refrigerant circuit A including a compressor 11, an outdoor heat exchanger 13, a first refrigerant branch portion 21 connected to the compressor 11, a second refrigerant branch portion 22 and a third refrigerant branch portion 23 connected to the outdoor heat exchanger 13, a first refrigerant flow rate control device 24 provided between branch piping 40 and the second refrigerant branch portion 22, intermediate heat exchangers 25n connected at one side thereof to the first refrigerant branch portion 21 and the third refrigerant branch portion 23 via three-way valves 26n and connected at the other side thereof to the second refrigerant branch portion 22, and second refrigerant flow rate control devices 27n provided between the respective intermediate heat exchangers 25n and the second refrigerant branch portion 22, and user-side refrigerant circuits Bn having indoor heat exchangers 31n connected respectively to the intermediate heat exchangers 25n are provided, and at least one of water and
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 2, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichi Wakamoto, Koji Yamashita, Takashi Okazaki, Naoki Tanaka, Keisuke Hokazono, Hiroyuki Morimoto, Yuji Motomura, Takeshi Hatomura, Tomohiko Kasai, Naofumi Takenaka, Yusuke Shimazu
  • Publication number: 20140223957
    Abstract: A refrigeration system having: a heat source that provides heat energy; a power generator that contains the heat source to heat a refrigerating medium, to increase the temperature and pressure and vaporize the refrigerating medium; a condenser into which flows the liquid refrigerating medium from the power generator under the pressure difference resulted from heating in the power generator, and in which the liquid refrigerating medium temperature is decreased; a throttle valve that jets the liquid refrigerating medium into an evaporator to decrease its pressure and absorb heat; an evaporator to exchange heat from the refrigerating medium with a refrigeration output; and a liquid working medium return unit through which the liquid working medium accumulated on the bottom of the evaporator flows by gravity back freely to the power generator, wherein the evaporator, liquid working medium return unit, and power generator are arranged from top to bottom vertically.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 14, 2014
    Inventors: Zhiming Wang, Chengwei Wang
  • Patent number: 8789382
    Abstract: A heat pump including at least two refrigerant injection flow paths into a scroll compressor and a main circuit. The main circuit includes a scroll compressor, a condenser, an expansion valve, a phase separator, and an evaporator for evaporating refrigerant. The scroll compressor is provided with a first refrigerant injection port between an inlet of the scroll compressor and an outlet of the scroll compressor, and a second refrigerant injection port between the inlet and the first refrigerant injection port. A first refrigerant injection flow path is bypassed from the phase separator. An internal heat exchanger is installed between the phase separator and the evaporator. A second refrigerant injection flow path is bypassed between the phase separator and the internal heat exchanger. The second refrigerant injection flow path is passed through the internal heat exchanger.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 29, 2014
    Assignee: LG Electronics Inc.
    Inventors: Younghwan Ko, Sangkyoung Park, Yonghee Jang, Bumsuk Kim
  • Patent number: 8783057
    Abstract: A refrigerant distributor is described and which includes a tank defining an internal cavity for receiving a source of refrigerant; an inlet conduit for delivering the source of the refrigerant to the internal cavity of the tank; a contaminant collection container coupled in fluid receiving relation relative to the internal cavity of the tank and in disposal fluid receiving relation relative to the inlet conduit; and a plurality of refrigerant distributor conduits coupled in fluid flowing relation relative to the internal cavity of the tank and which have a multiplicity of apertures having variable diametral dimensions and which facilitate a variable flow of the source of refrigerant out through the refrigerant distributor conduits as the volume of the refrigerant in the tank increases.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: July 22, 2014
    Assignee: Colmac Coil Manufacturing, Inc.
    Inventor: Bruce I. Nelson
  • Patent number: 8769984
    Abstract: A decompression device includes an upstream throttle portion, a middle passage portion and a downstream throttle portion, which are arranged within a body portion. The upstream throttle portion is a variable throttle including an upstream throttle passage in which the refrigerant is decompressed and expanded, and a valve body having an open degree adjusting portion configured to adjust an open degree of the upstream throttle passage. The downstream throttle portion is a fixed throttle for decompressing and expanding refrigerant flowing from the middle passage portion. Furthermore, a refrigerant passage defined from the upstream throttle portion to the downstream throttle portion through the middle passage portion is provided in the body portion, and is bent at least at a bent portion in which the refrigerant flow is bent in the body portion.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 8, 2014
    Assignee: Denso Corporation
    Inventors: Tetsuya Itou, Teruyuki Hotta, Atsushi Inaba
  • Patent number: 8763419
    Abstract: A motor-operated valve configured to control the flow rate during a normal flow and pass the fluid so as to minimize pressure loss during a reverse flow, and a refrigeration cycle using the same, are provided. It is configured such that during a normal flow, the fluid is made to flow only from between the main valve member and the orifice to perform flow rate control, and during a reverse flow, all or a majority of the fluid is made to flow to a bypass channel without being passed through the orifice to decrease pressure loss as much as possible. A check valve member which closes the bypass channel during a normal flow and opens it during a reverse flow is provided in the valve main body.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: July 1, 2014
    Assignee: Fujikoki Corporation
    Inventor: Takeshi Suganama
  • Publication number: 20140137581
    Abstract: A pumped two phase fluid routing system includes an evaporator. The evaporator includes a base portion having an input liquid port for receiving a working fluid and an output liquid port for expelling a liquid. The evaporator also includes a wick portion including a plurality of vapor grooves and a plurality of vapor vents for providing a vapor flow path of a vapor formed within the evaporator. The evaporator further includes a lid portion disposed in close proximity to the wick portion and receiving heat for formation of the vapor, the lid portion having a vapor port for expelling the vapor. The fluid routing system also includes a first liquid line in fluid communication with the base portion for receiving the expelled liquid. The fluid routing system further includes a vapor line in fluid communication with the lid portion for receiving the expelled vapor.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 22, 2014
    Inventor: Wei-Lin Cho
  • Publication number: 20140123698
    Abstract: Disclosed is an automobile air-conditioning system, which comprises an evaporator and an electrical expansion valve in communication via pipes, with the electrical expansion valve comprising a coil and a valve body, the coil being fixedly mounted on the valve body; the system also comprises a support, the support comprising a heat-sinking bridge and a cooling ring, with the evaporator provided on one side of the heat-sinking bridge and the cooling ring provided on the other side of the heat-sinking bridge; the heat-sinking bridge and the cooling ring are formed in one piece or are connected with each other fixedly, and the coil is provided within the cooling ring. The automobile air-conditioning system has the advantages of a compact structural design, is capable of effectively cooling the electrical expansion valve, and has high system strength, stable transmission of coolant, and high security.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 8, 2014
    Applicant: Hangzhou Sanhua Research Institute Co., Ltd.
    Inventors: Rongrong Zhang, Edwin J. Stanke, Longzhou Xu
  • Publication number: 20140060108
    Abstract: A distributor assembly for a space conditioning system comprising a sealed expansion device and a sealed distributor housing. The expansion device has a first opening, a second opening and an interior chamber there-between. The interior chamber contains an orifice housing, wherein the orifice housing has a through-hole orifice therein. The orifice housing is configured to move between the first opening and the second opening within the interior chamber. An outer surface of the orifice housing forms a fluid stop around the first opening such that a refrigeration fluid of the space conditioning system delivered through the second opening can substantially only pass through the through-hole orifice to the first opening. The distributor housing has a largest opening that is permanently sealed to the first opening of the sealed expansion device and a plurality of smaller openings configured to be fluidly connected to a heat-exchange coil of the space conditioning system.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: Allied Air Enterprises, Inc
    Inventor: Hany Roman
  • Patent number: 8650905
    Abstract: An evaporator for use in a refrigeration system includes a shell and a tube bundle, the tube bundle having a plurality of tubes extending substantially horizontally in the shell. A hood is disposed over and laterally surrounds substantially all of the plurality of tubes of the tube bundle. A distributor is positioned between the hood and the tube bundle. The hood is asymmetrically disposed within the evaporator.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: February 18, 2014
    Assignee: Johnson Controls Technology Company
    Inventors: Paul De Larminat, Luc Le Cointe, Satheesh Kulankara
  • Patent number: 8615327
    Abstract: A humidity estimation device connected with an air-conditioner includes a charge airflow rate estimation (CARE) unit, a charge air absolute humidity estimation (CAAHE) unit, an indoor generated vapor amount estimation (IGVAE) unit, and an indoor absolute humidity estimation (IAHE) unit. The CARE unit calculates an estimated charge airflow rate (ECAR) of the air-conditioner based on operation control information of the charge fan and a preset fan differential pressure. The CAAHE unit calculates an estimated charge air absolute humidity (ECAAH) of the air-conditioner based on a charge air temperature and a preset charge air relative humidity. The IGVAE unit calculates an estimated indoor generated vapor amount (EIGVA) based on an indoor temperature, the number of persons in the room and activity index values of the persons. The IAHE unit calculates an estimated absolute humidity in the room based on the ECAR, the ECAAH and the EIGVA.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: December 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuo Takagi, Koichi Ikeda, Yukio Hiraoka, Hisashi Kobayashi, Akihiro Fujii
  • Patent number: 8596552
    Abstract: A valve (4) for a refrigeration system. Comprises two diaphragms (8, 10) being operatively connected. One diaphragm (8) is in contact with the refrigerant, the other (10) is in contact with the filling fluid. The two diaphragms (8, 10) may have different active areas. In combination with the connection between the two diaphragms (8, 10) this provides a ‘pressure gearing’ between the filling fluid and the refrigerant. Allows the pressure of the filling fluid to be relatively low even when the pressure of the refrigerant is high, while ensuring that the valve (4) can function properly. Particularly suitable for high pressure refrigeration systems, such as CO2 systems.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: December 3, 2013
    Assignee: Danfoss A/S
    Inventors: Holger Nicolaisen, Jens Erik Rasmussen, Torben Funder-Kristensen, Joergen Trelle-Pedersen, Torben Matzon, Anders Vestergaard, Lars Mou Jessen
  • Patent number: 8596081
    Abstract: A valve assembly (1) comprising an inlet opening, a distributor and an outlet part comprising at least two outlet openings. The distributor comprises an inlet part (5) fluidly connected to the inlet opening, and is arranged to distribute fluid medium received from the inlet opening to at least two parallel flow paths, preferably of a heat exchanger (3). The valve assembly (1) further comprises a first valve part and a second valve part arranged movable relative to each other in such a manner that the mutual position of the valve parts determines the fluid flow from the inlet opening to each of the outlet openings of the outlet part. Finally, the valve assembly (1) comprises a header (2) forming an integral part of the valve assembly (1).
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: December 3, 2013
    Assignee: Danfoss A/S
    Inventors: Leo Bram, Claus Thybo, Lars Finn Sloth Larsen
  • Patent number: 8590338
    Abstract: An evaporator includes a vaporization chamber having a monomer inlet and a vapor outlet. There is a vapor nozzle in the vapor outlet. The evaporator also includes a collar positioned between the vaporization chamber and the vapor nozzle which increases the pressure in the evaporation chamber while the conductance through the nozzle is substantially unchanged.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: November 26, 2013
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Damien Boesch, Martin Rosenblum
  • Patent number: 8561426
    Abstract: A flow restriction or metering device for a refrigerant system includes a crimped or otherwise formed tubular insert that is installed within a standard flare fitting. The flare fitting can be similar to those used for coupling two refrigerant lines, or the fitting can be part of a service valve, such as those used for charging, discharging, or servicing refrigerant systems. The insert provides a fixed orifice having a predetermined flow coefficient. The insert is removably clamped within the fitting and extends into a refrigerant line that connects to the fitting.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: October 22, 2013
    Assignee: Trane International Inc.
    Inventor: Roger J. Voorhis
  • Patent number: 8549875
    Abstract: The invention provides a valve comprising a house and a drum rotatable in the house. The house comprises a plurality of substantial identical tubular mid-section house members, a bottom house member, and a top house member. When connecting the house members to each other, a continuous outer wall surrounding a house cavity, a port, and a plurality of nozzles being in fluid communication with the house cavity is provided. The drum comprises a plurality of substantial identical tubular mid-section drum members, a bottom drum member, and a top drum member. When connecting the drum members to each other, an inner wall having an outer surface being adapted for rotation in contact with a corresponding inner surface of the outer wall, the inner wall comprising a plurality of conduits is provided. During rotation of the drum, the conduits can be brought into and out off fluid communication with the nozzles in order to provide passages between the port and the nozzles.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: October 8, 2013
    Assignee: Danfoss A/S
    Inventors: Allan Juhl Moustgaard, Sune Prytz, Hans Kurt Petersen
  • Patent number: 8468849
    Abstract: A multi-port device such as a thermal expansion valve for an air conditioning system includes a seal structure with a first seal portion and a second seal portion. The first seal portion includes a metal material adapted to provide a primary seal. The second seal portion is attached to a free edge of the first seal portion and adapted to provide a secondary seal. The multi-port device with seal structure militates against leakage during operation of the air conditioning system.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 25, 2013
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Eric William Kesler, Fred Georg Schroeder
  • Publication number: 20130118200
    Abstract: The invention relates to a heating, ventilation and/or air conditioning loop (8) inside of which flows a coolant, and including a compressor (9), an outer heat exchanger (15), a restitution heat exchanger (12, 32) and a first expansion member (17) provided downstream from the restitution heat exchanger (12, 32) in the flow direction (11) of the coolant in the heating, ventilation and/or air conditioning loop (8). The heating, ventilation and/or air conditioning loop (8) includes means (20) for bypassing the inner heat exchanger (12) and the first expansion member (17). The present invention also relates to a heating, ventilation and/or air conditioning equipment (1) including such a heating, ventilation and/or air conditioning loop (8).
    Type: Application
    Filed: March 21, 2011
    Publication date: May 16, 2013
    Inventors: Bernard Aoun, Regis Beauvis, Muriel Porto, Maurizio Alessio
  • Patent number: 8434324
    Abstract: An integrated unit is formed by integrally assembling an ejector, a first evaporator that evaporates refrigerant discharged from the ejector, a second evaporator that evaporates the refrigerant drawn into the ejector, a refrigerant dividing portion that adjusts a flow amount of refrigerant flowing in and divided to the nozzle portion and the second evaporator, and a joint in which a refrigerant inlet and a refrigerant outlet are formed. In the joint, there is formed a gas-liquid separation portion that causes refrigerant flowing therein to swirl to separate it into gas and liquid. The ejector, refrigerant dividing portion and joint are arranged in a longitudinal direction of the ejector.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 7, 2013
    Assignee: Denso Corporation
    Inventors: Tatsuhiko Nishino, Tomohiko Nakamura, Hiroshi Oshitani, Hirofumi Futamata
  • Patent number: 8297071
    Abstract: A shut-off valve mounting structure is for holding shut-off valves in place in an outdoor unit of an air conditioner, and includes bases, and a fixing portion. The shut-off valves are connected to an indoor unit of the air conditioner via refrigerant communication pipes. The bases extend upwards from a bottom frame of the outdoor unit (2). The fixing portion is continuous with the bases, and holds the shut-off valves in place such that a space exists below the shut-off valves.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: October 30, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Kazuhiro Shioyama, Satoru Ohkura, Tadashi Sao, Ikuji Ishii, Keiji Ishida
  • Publication number: 20120137714
    Abstract: The present invention relates to an air conditioner using hot water heated by a solar heating system, the air conditioner comprising: a heater 10 that has a vacuous interior and a plurality of hot water branch pipes 13 immersed in the refrigerant; a condenser 30 connected with the heater 10 through a steam pipe L1; an ejector 20 mounted to the steam pipe L1; a flow regulator 40 installed on the exit side of the condenser 30; a refrigerant return line L2 connected to the flow regulator 40 to return the refrigerant to the heater 10; an evaporator 50 connected to the flow regulator 40 to receive condensate; a first steam supply line L4 connected with the evaporator 50 to supply the evaporated refrigerant to the ejector 20; and a second steam supply line L5 that is branched from the first steam supply line L4 and then connected with the steam pipe L1 and has a vacuum pump P2 installed therein.
    Type: Application
    Filed: August 12, 2010
    Publication date: June 7, 2012
    Inventors: Sang-Woo Roh, Bong-Woo No
  • Publication number: 20120111033
    Abstract: A space-saving cooling system for an aircraft may include an evaporator in an enclosure with an accumulation region in the enclosure for a liquid mixture of liquid refrigerant and lubricating oil. Space saving may be achieved through a combining of evaporator functions and accumulator functions in a single enclosure. A heat exchanger may be interposed between the evaporator and the compressor for heating refrigerant emerging from the evaporator so that liquid refrigerant does not reach an inlet of the compressor.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: RANJIT DARKE, PETER ZHENG, RICKY GOV
  • Patent number: 8122737
    Abstract: A refrigerating device comprising a tubular evaporator which is connected to a compressor by means of a suction line. A coolant pipe of the tubular evaporator forms a plurality of serially connected tubular loops and one ascending outlet tube connecting the tubular loop that lies the furthest downstream to the suction pipe. The tubular loops have a course that ascends in the direction of the flow of the coolant for a distance that corresponds at least to the length of the outlet tube.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 28, 2012
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventor: Wolfgang Nuiding
  • Patent number: 8113270
    Abstract: An inlet header (22) of a microchannel heat pump heat exchanger has a tube (34) disposed therein and extending substantially the length of the inlet header (22), with the tube (34) having a plurality of openings (36) therein. During cooling mode operation, refrigerant is caused to flow into an open end of the tube (34) and along its length to thereby flow from the plurality of openings (36) into the inlet header (22) prior to entering the microchannels (24) to thereby provide a uniform flow of two-phase refrigerant thereto. A bi-flow expansion device (41) placed at the inlet end of the tube (34) allows for the expansion of liquid refrigerant into the tube (34) during periods in which the heat exchanger operates as an evaporator and allows the refrigerant to flow directly from the header (22) and around the tube (34) during periods in which the heat exchanger operates as a condenser coil.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: February 14, 2012
    Assignee: Carrier Corporation
    Inventors: Arturo Rios, Allen C. Kirkwood
  • Publication number: 20110259042
    Abstract: An integrated unit is formed by integrally assembling an ejector, a first evaporator that evaporates refrigerant discharged from the ejector, a second evaporator that evaporates the refrigerant drawn into the ejector, a refrigerant dividing portion that adjusts a flow amount of refrigerant flowing in and divided to the nozzle portion and the second evaporator, and a joint in which a refrigerant inlet and a refrigerant outlet are formed. In the joint, there is formed a gas-liquid separation portion that causes refrigerant flowing therein to swirl to separate it into gas and liquid. The ejector, refrigerant dividing portion and joint are arranged in a longitudinal direction of the ejector.
    Type: Application
    Filed: March 24, 2011
    Publication date: October 27, 2011
    Applicant: DENSO CORPORATION
    Inventors: Tatsuhiko Nishino, Tomohiko Nakamura, Hiroshi Oshitani, Hirofumi Futamata
  • Publication number: 20110259039
    Abstract: A thermally driven heat pump includes a low temperature evaporator for evaporating cooling fluid to remove heat A first heat exchanger located at an outlet of a converging/diverging chamber of a first ejector receives a flow of primary fluid vapor and cooling fluid vapor ejected from the first ejector for condensing a portion of the cooling fluid vapor An absorber located in the first heat exchanger absorbs cooling fluid vapor into an absorbing fluid to reduce the pressure in the first heat exchanger A second heat exchanger located at an outlet of a converging/diverging chamber of a second ejector receives primary fluid vapor and cooling fluid vapor ejected from the second ejector for condensing the cooling fluid vapor and the primary fluid vapor A separator in communication with the second ejector, the low temperature evaporator and the primary fluid evaporator separates the primary fluid from the cooling fluid.
    Type: Application
    Filed: November 26, 2008
    Publication date: October 27, 2011
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Hongbin Ma, Joseph A. Boswell, Peng Cheng
  • Patent number: 8001798
    Abstract: The invention relates to an expansion valve, in particular for a vehicle air-conditioning system operated with cooling medium, with a valve seat (37) and a valve-closing element (39), which closes a passage opening (44) between a cooling medium inlet opening (14) and a cooling medium outlet opening (16), and with an actuating device (46) which acts on the valve-closing element (39) and opens and closes the passage opening (44), a shortened maximum working lift for opening the valve-closing element (39) out of the valve seat (37) being provided, at which a ball seat cross section formed between valve-closing element (39) and valve seat (37) is designed to be smaller than an annular gap cross section formed between a transmission pin (47) of the actuating device (46) and a passage opening (44).
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 23, 2011
    Assignee: Otto Egelhof GmbH & Co. KG
    Inventors: Siegfried Roth, Albrecht Waldenburg, Uta Andrä
  • Patent number: 7992395
    Abstract: A method and system of controlling the temperature of a refrigeration system. In an embodiment, an expansion valve for a refrigeration system comprises an entry portion, an exit portion, and a flow control portion including a piezo material. The entry portion is configured to allow refrigerant to flow into the expansion valve. The exit portion is configured to allow refrigerant to flow from the expansion valve. The flow control portion is disposed between the entry portion and the exit portion, and is configured to control a volume of refrigerant that passes through the expansion valve.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: August 9, 2011
    Assignees: Hussmann Corporation, Omega Piezo Technologies, Inc.
    Inventors: Ming Zhang, Sesha C. Madireddi, Byeongchul Na
  • Publication number: 20110154854
    Abstract: An evaporator includes a vaporization chamber having a monomer inlet and a vapor outlet. There is a vapor nozzle in the vapor outlet. The evaporator also includes a collar positioned between the vaporization chamber and the vapor nozzle which increases the pressure in the evaporation chamber while the conductance through the nozzle is substantially unchanged.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Applicant: VITEX SYSTEMS, INC.
    Inventors: Damien Boesch, Martin Rosenblum
  • Publication number: 20110100022
    Abstract: Various embodiments are directed to pulse tube coolers and components thereof. A pulse tube cooler may comprise a compressor, a regenerator, a pulse tube and a reservoir. A network of phase control devices may be placed in a fluid path between a hot end of the pulse tube and the reservoir. The network of phase control devices may have at least one flow resistance device and at least one inertance device.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicant: The Aerospace Corporation
    Inventors: Sidney W. K. Yuan, Ed Fong, David G. T. Curran
  • Patent number: 7934386
    Abstract: According to one embodiment of the disclosure, a cooling system for a heat generating structure comprises a first cooling segment and a second cooling segment. The first cooling segment and the second cooling segment each respectively comprise a cooling segment conduit and at least one cooling segment tube. The cooling segment conduits are operable to receive a fluid coolant and dispense of the fluid coolant after the fluid coolant has received thermal energy. The at least one cooling segment tubes are in thermal communication with both the cooling segment conduits and the heat generating structure. The at least one cooling segment tubes have a cooling fluid operable to transfer thermal energy from the heat generating structure to the cooling segment conduits. The cooling segment conduits transfer thermal energy from the cooling fluid to the fluid coolant. A heat transfer rate associated with the first cooling segment is substantially similar to a heat transfer rate associated with the second cooling segment.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: May 3, 2011
    Assignee: Raytheon Company
    Inventors: Kerrin A. Rummel, Kevin W. Chen
  • Patent number: 7931073
    Abstract: A heat exchanger includes a first header and a second header and a plurality of heat exchange tubes extending therebetween. Each heat exchange tube has an inlet end opening to one of the headers and an outlet opening to the other header. Each heat exchange tube has a plurality of channels extending longitudinally in parallel relationship from its inlet end to its outlet end, each channel defining a discrete refrigerant flow path. The inlet end of each of the plurality of heat exchange tubes is positioned with the inlet opening to the channels disposed in spaced relationship with and facing an opposite inside surface of the header thereby defining a relatively narrow gap between the inlet opening to the channels and the facing opposite inside surface of the header. The gap may function either as a primary expansion device or as a secondary expansion device.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: April 26, 2011
    Assignee: Carrier Corporation
    Inventors: Mikhail B. Gorbounov, Parmesh Verma, Michael F. Taras, Robert A. Chopko, Allen C. Kirkwood
  • Patent number: 7921671
    Abstract: A refrigerant flow divider is made up of an inlet pipe 12 through which refrigerant Xin flows in, a main body 11 of which the inside is a cavity, and a plurality of branching pipes 13 through which refrigerant Xout flows out. When the length of the above described main body 11 of the flow divider is L mm and the inner diameter of the above described main body 11 of the flow divider is D2 mm, the relationship 2?L/D2?8 holds, and thus, a flow divider can be gained, where discrepancy (variation) in the flow rate ratio in the respective paths for the flow discharged from the outlet of the flow divider and entering the heat exchanger is small and pressure loss is small when there is a change of approximately ±10° in the installation angle, a change in the dryness of the refrigerant at the inlet (0.2 to 0.4) or a change in the flow rate of the refrigerant (50% to 100%).
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: April 12, 2011
    Assignee: Daikin Industries, Ltd.
    Inventors: Shun Yoshioka, Makio Takeuchi, Kazushige Kasai
  • Publication number: 20110056221
    Abstract: A closed loop refrigerant expansion system with a tube and shell condenser is provided with a control which, upon shutdown, causes the flow of refrigerant to reverse from the evaporator to the condenser to thereby both reduce the amount of refrigerant vapor passing to the condenser and increase the amount of liquid refrigerant in the condenser to thereby reduce the maximum temperature load in the condenser. Reverse flow can be made to occur either by reversing the direction of the refrigerant pump or opening a bypass valve around the pump.
    Type: Application
    Filed: May 7, 2008
    Publication date: March 10, 2011
    Applicant: United Technologies Corporation
    Inventors: Lance D. Woolley, Peter S. Matteson
  • Patent number: 7900468
    Abstract: A cooling system is provided that comprises: a refrigerant loop having a pump; an evaporator heat exchanger thermally coupled to a heat source, the evaporator plumbed in the loop; a condensing heat exchanger and a receiver plumbed in the loop; and an equalizing conduit plumbed between an inlet to the condenser and the receiver and comprising a flow regulating valve.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: March 8, 2011
    Assignee: Liebert Corporation
    Inventor: Ian Spearing
  • Publication number: 20110041528
    Abstract: A distributor (12) for an evaporator (22) in a vapor-compression circuit (10) comprises an elongate body (50A. 50B) defining an inlet portion (56A) and first and second distal ends (58A, 58B). The body (50A) being positionable along an interior sidewall (42) of the evaporator (22). The inlet portion (56A) positionable opposite an inlet port (38) of the evaporator (22) such that refrigerant entering the evaporator (22) engages the inlet portion (56A) of the distributor (12). The first and second distal ends (58A, 58B) extending outwardly towards opposing side ends (34A, 34B) of the evaporator (22).
    Type: Application
    Filed: March 4, 2009
    Publication date: February 24, 2011
    Applicant: CARRIER CORPORATION
    Inventors: Rahhal Charbel, Hsihua Li, Wen Tao Du, Jing Li