Solidification Patents (Class 62/629)
  • Patent number: 11421873
    Abstract: A gas separation and utilization method includes the steps of: (a) providing an ascending flow of a liquid containing carbon dioxide gas and methane gas; (b) extracting at least a fraction of the methane gas from the liquid to provide a methane enriched gas; (c) extracting at least a fraction of the carbon dioxide gas from the liquid to provide a carbon dioxide enriched gas, which is extracted from the ascending flow of the liquid downstream of the methane enriched gas; (d) collecting the methane enriched gas; (e) feeding the carbon dioxide enriched gas as a fuel into an oxyfuel power generation system; (f) generating power from the oxyfuel power generation system; and (g) expelling an exhaust from the oxyfuel power generation system, wherein the exhaust comprises carbon dioxide and water vapor. A system configured to perform the method and a grid balancing method using the system are also disclosed.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 23, 2022
    Assignee: Harper Biotech LLC
    Inventor: Charles L. Harper, Jr.
  • Patent number: 10365037
    Abstract: A method and a system for feeding a feed gas including methane (CH4) and carbon dioxide (CO2) to a cryogenic distillation column are provided herein. The method includes flowing a freeze zone CO2 vapor stream into a freezing section of the column to produce an overhead stream that exits the column. The method includes heating the overhead stream via a heating component to reduce or prevent solidification of the CO2 in the overhead stream.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 30, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jaime A. Valencia, Ransdall K. Smith, E. Lawrence Kimble, Scott D. Kelman
  • Patent number: 9945605
    Abstract: The invention relates to a process for the removal of CO2 from acid gas by cryogenic distillation performed in two steps. The feed mixture is first distilled at high pressure (at least 45 bar) in a first distillation column. The top product or a part thereof is then, after heating, subjected to a second distillation step at a lower pressure (lower than 45 bar). The top product of the second distillation step is methane of high purity (more than 99 mol. %). The bottom product of the second distillation step is recycled back to the first distillation column. The method according to the invention allows complete separation of methane also at higher level of acidic components, is economical and does not result in solid CO2 build-up, which is a common problem in cryogenic distillation.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: April 17, 2018
    Assignees: TECNIMONT S.P.A.
    Inventor: Laura Annamaria Pellegrini
  • Patent number: 9934959
    Abstract: A method of purifying a cleaning agent is provided. The method includes heating a first mixed solution including an etching agent, a first cleaning agent, and a second cleaning agent at or below a first temperature and distilling the etching agent and the first cleaning agent and removing the second cleaning agent. The method includes condensing or compressing the etching agent and the first cleaning agent forming a second mixed solution including the etching agent and the first cleaning agent. The method includes heating the second mixed solution at a temperature lower than a second temperature, redistilling the etching agent and extracting the first cleaning agent. The second temperature is lower than the first temperature.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: April 3, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-Jhin Cho, Jung-Min Oh, Yongmyung Jun, Yongsun Ko, Kuntack Lee, Hyosan Lee
  • Patent number: 9192876
    Abstract: A process for recovering a light hydrocarbon, such as ethane, from a sour hydrocarbon gas. The process involves mixing the sour hydrocarbon gas with an azeotrope inhibitor and then passing the mixture into a first distillation column. The first distillation column is operated under a set of temperature and pressure conditions in which the light hydrocarbon is substantially separated from the mixture as an overhead vapor product. The sour species in the mixture can be recovered by passing the bottoms liquid product into a second distillation column under a second set of temperature and pressure conditions in which the sour species is separated as a second overhead vapor product.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: November 24, 2015
    Assignee: IOR Technology PTY Ltd.
    Inventors: Robert Amin, Ahmed Barifcani
  • Patent number: 8312738
    Abstract: The present invention relates to methods and apparatuses for the operation of a distillation tower containing a controlled freezing zone and at least one distillation section. The process and tower design are utilized for the additional recovery of hydrocarbons from an acid gas. In this process, a separation process is utilized in which a multi-component feedstream is introduced into an apparatus that operates under solids forming conditions for at least one of the feedstream components. The freezable component, although typically CO2, H2S, or another acid gas, can be any component that has the potential for forming solids in the separation system. A dividing wall is added to at least a portion of the lower distillation section of the apparatus to effect the separation of at least some fraction of the hydrocarbons in that portion of the tower.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: November 20, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Vikram Singh, Edward J. Grave, Paul Scott Northrop, Narasimhan Sundaram
  • Patent number: 7152431
    Abstract: A process for removing contaminants from a natural gas feed stream including water and sour species is provided, which process comprises the steps of cooling the natural gas feed stream in a first vessel (12) to a first operating temperature at which hydrates are formed and removing from the first vessel (12) a stream of dehydrated gas (34); and cooling the dehydrated gas in a second vessel (14) to a second operating temperature at which solids of the sour species are formed or at which the sour species dissolve in a liquid and removing from the second vessel (14) a stream of dehydrated sweetened gas (62).
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: December 26, 2006
    Assignee: Shell Oil Company
    Inventors: Robert Amin, Casper Krijno Groothuis
  • Patent number: 6962061
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: November 8, 2005
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Rateman, Gary L. Palmer, Kerry M. Klinger, John J. Vranicar
  • Publication number: 20030192343
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 16, 2003
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Raterman, Gary L. Palmer, Kerry M. Klingler, John J. Vranicar
  • Publication number: 20020174678
    Abstract: An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
    Type: Application
    Filed: February 27, 2002
    Publication date: November 28, 2002
    Inventors: Bruce M. Wilding, Dennis N. Bingham, Michael G. McKellar, Terry D. Turner, Kevin T. Raterman, Gary L. Palmer, Kerry M. Klingler, John J. Vranicar