Separating Or Preventing Formation Of Undesirables Patents (Class 62/85)
  • Patent number: 12038209
    Abstract: A marine air conditioning unit, according to various embodiments, can include a base plate having one or more mounting holes. A main unit is supported on the base plate comprising an evaporator, a compressor, a compressor driver, a condenser, an electronic expansion valve, a blower, an electrical pressure sensor and a condensation pan operatively coupled together. The compressor can be a variable speed inverter brushless direct current (BLDC) compressor. The electronic expansion valve can be located in a refrigerant line connecting the condenser to the evaporator. A controller can constantly receive and, using an algorithm, analyze sensor information from multiple sensors positioned within the main unit. Based on the sensor information, the controller can transmit a control signal to various components and further adjust the electronic expansion valve to control the precise amount of refrigerant to pass to the evaporator.
    Type: Grant
    Filed: October 1, 2023
    Date of Patent: July 16, 2024
    Assignee: Archer Power Solutions Inc.
    Inventor: Onat Dogruer
  • Patent number: 11989893
    Abstract: Systems and methods are provided for generating alignment parameters for processing data associated with a vehicle. In one embodiment, a method includes: receiving image data associated with an environment of the vehicle; receiving lidar data associated with the environment of the vehicle; processing, by a processor, the image data to determine data points associated with at least one pole identified within image data; processing, by the processor, the lidar data to determine data points associated with at least one pole identified within the lidar data; selectively storing the data points as data point pairs in a data buffer; iteratively processing, by the processor, the data point pairs with a plurality of perturbations to determine a transformation matrix; generating, by the processor, alignment data based on the transformation matrix; and processing future data based on the alignment parameters.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: May 21, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yousef Omar, Wende Zhang, Hao Yu
  • Patent number: 11911724
    Abstract: A heat pump includes a vapor compression system and a cooling unit thermally coupled to the vapor compression system. A purge system is arranged in fluid communication with the vapor compression system. The purge system includes at least one separator operable to separate contaminants from a refrigerant purge gas provided to the purge system from the vapor compression system.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 27, 2024
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Yinshan Feng, Parmesh Verma
  • Patent number: 11913693
    Abstract: A method of purging contaminants from a refrigerant of a heat pump via a purge system includes generating a driving force across a separator, providing refrigerant including contaminants to the separator, separating the contaminants from the refrigerant within the separator, monitoring one or more parameters of the purge system and the heat pump, and actively controlling an operational parameter of the purge system in response to monitoring one or more parameters of the purge system and the heat pump.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 27, 2024
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Yinshan Feng, Parmesh Verma, Michael A. Stark
  • Patent number: 11808501
    Abstract: A determination device able to determine a cause of generation of gas with a simple configuration is provided. The determination device includes a pressure gauge that detects pressure in a gas storage chamber that stores non-condensable gas generated in an absorber of an absorption refrigerator, and a hydrogen sensor that detects an amount of hydrogen discharged from the gas storage chamber. Further, a determining unit determines a cause of generation of the non-condensable gas stored in the gas storage chamber based on a detection result of the hydrogen sensor and a detection result of the pressure gauge.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: November 7, 2023
    Assignee: YAZAKI ENERGY SYSTEM CORPORATION
    Inventor: Tomohiko Hashimoto
  • Patent number: 11807796
    Abstract: The position of the stabilizer container 7 in the circulation route is not limited. The stabilizer container 7 is preferably disposed between the evaporator and the condenser between which the refrigerant flows in the circulation route as a liquid refrigerant. Specifically, the stabilizer container 7 is preferably disposed between the outdoor heat exchanger 4 and the expansion mechanism 5 or between the indoor heat exchanger 6 and the expansion mechanism 5. During cooling, the outdoor heat exchanger 4 functions as a condenser and the indoor heat exchanger 6 functions as an evaporator. During heating, the outdoor heat exchanger 4 functions as an evaporator and the indoor heat exchanger 6 functions as a condenser.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: November 7, 2023
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Tatsumi Tsuchiya, Kouhei Koba, Masaru Tanaka
  • Patent number: 11774616
    Abstract: According certain aspects, embodiments of the invention consider the problem of microseismic event localization from a parameter estimation perspective, and include a method and system for computing and displaying characteristics of event localization errors. According to certain other aspects, embodiments of the invention include techniques for deriving aggregate statistics from a set of event location estimates, including methods for computing and displaying the probability that an event occurred in any given volume, and methods for describing and displaying the smallest volume that contains a specified percentage of the event probability or expected to contain the specified percentage of the events.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: October 3, 2023
    Assignee: Seismic Innovations
    Inventors: Jonathan S. Abel, Sean A. Coffin, Yoomi Hur, Yoo Hsiu Yeh
  • Patent number: 11739992
    Abstract: The air conditioning system with solar-powered subcooling system includes a main cooling system having an evaporator, a compressor, a condenser, and an expansion valve configured to operate in a conventional vapor compression refrigerant cycle. The subcooling system includes a compressor, a condenser, and an expansion valve, the compressor being powered by at least one rechargeable battery connected to a photovoltaic solar panel. The main system and the subcooling system are linked by a heat exchanger having a primary coil in the main system between the condenser and the expansion valve and a secondary coil in the subcooling system disposed between the expansion valve and the compressor. The main system and the subcooling system may use the same type of refrigerant, or different refrigerant types. The additional cooling provided to the refrigerant in the main system by subcooling increases the efficiency of the air conditioning system.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: August 29, 2023
    Assignee: KUWAIT UNIVERSITY
    Inventors: Ammar M. Bahman, Osama Mohamed Ibrahim, Sara Barghash
  • Patent number: 11698212
    Abstract: An air conditioner may include a compressor that compresses refrigerant; a condenser that condenses the refrigerant; at least one expansion valve that expands the refrigerant; a gas-liquid separator that separates and discharges the refrigerant into gas refrigerant and liquid refrigerant; an evaporator that evaporates the liquid refrigerant discharged from the gas-liquid separator; a refrigerant inflow pipe that connects the expansion valve and the gas-liquid separator; a bypass pipe that connects the gas-liquid separator and the compressor; and a refrigerant discharge pipe that connects the gas-liquid separator and the evaporator. The gas-liquid separator may include a housing in which a portion of the refrigerant inflow pipe, the bypass pipe, and the refrigerant discharge pipe may be disposed, and first and second partition walls disposed in the housing.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: July 11, 2023
    Assignee: LG ELECTRONICS INC.
    Inventors: Eunjun Cho, Jungmin Park, Pilhyun Yoon, Seongho Hong, Yejin Kim
  • Patent number: 11697268
    Abstract: A vehicle window, includes at least one transducer device and transducer electronics associated with the transducer device, wherein both the transducer device and the transducer electronics are arranged at least partially within the vehicle window, wherein the transducer device and/or a compensating device associated with the transducer device and arranged at least partially within the vehicle window and/or an electrical shielding device associated with the transducer device for electrically shielding the transducer device relative to a vehicle interior or a vehicle exterior are transparent, at least in sections.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: July 11, 2023
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Gabor Varga, Christian Effertz, Michael Zeiss, Bastian Klauss, Guillaume Francois, Ali-Osman Kizmaz, Benjamin Kaplan
  • Patent number: 11635239
    Abstract: Refrigeration systems with a purge for removing non-condensables from the refrigerant and an acid filter for remove acid from the refrigerant are provided. The acid filter can be operatively connected to the purge. Optionally, the purge can include a separating device for separating non-condensable gases from condensable refrigerant gases and an acid filter is provided to remove acid from the condensable refrigerant gases.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: April 25, 2023
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Daoud Ali Jandal, Julie Ann Majurin, Stephen Anthony Kujak, Raymond Scott Schafer, Paul Edmond Cieslinski
  • Patent number: 11592216
    Abstract: A receiver for a heating, air conditioning, and refrigeration system includes a tube extending along a tube axis from a first receiver end to a second receiver end opposite the first receiver end, and a single receiver port. The receiver port is configured as both a receiver inlet and a receiver outlet. A heating, air conditioning, and refrigeration system includes a compressor configured to compress a refrigerant flow, a refrigerant pathway configured to convey the refrigerant flow through the heating, air conditioning, and refrigeration system, and a receiver fluidly connected to the refrigerant pathway. The receiver includes a tube extending along a tube axis from a first receiver end to a second receiver end opposite the first receiver end, and a single receiver port. The receiver port is configured as both a receiver inlet and a receiver outlet, and is connected to the refrigerant pathway via the single receiver port.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: February 28, 2023
    Assignee: CARRIER CORPORATION
    Inventor: Charbel Rahhal
  • Patent number: 11215386
    Abstract: Refrigeration circuit (1a) comprising in the direction of flow of a circulating refrigerant: a compressor unit (2) comprising at least one compressor (2a, 2b, 2c); a heat rejecting heat exchanger/gas cooler (4); a high pressure expansion device (6); a receiver (8); an expansion device (10); an evaporator (12); and a low pressure gas-liquid-separation unit comprising at least two collecting containers (32, 34) which are configured for alternately separating a liquid phase portion from the refrigerant leaving the evaporator (12) and delivering the separated liquid refrigerant back to the receiver (8).
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 4, 2022
    Assignee: CARRIER CORPORATION
    Inventor: Sascha Hellmann
  • Patent number: 11105545
    Abstract: A purge system for removing non-condensables from a chiller system includes a purge chamber, a plurality of carbon beds fluidly connected to the purge chamber into which a flow of refrigerant and non-condensables is selectably directed from the purge chamber to remove the non-condensables therefrom. A vent line is fluidly connected to the plurality of carbon beds to dispose of the collected non-condensables, and a heater is operably connected to the plurality of carbon beds to selectably heat one or more of the carbon beds of the plurality of carbon beds to release refrigerant therefrom and direct the released refrigerant to the purge chamber.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: August 31, 2021
    Assignee: CARRIER CORPORATION
    Inventors: Zidu Ma, Ivan Rydkin, Warren Clough
  • Patent number: 11045783
    Abstract: The invention generally relates to systems and methods for increasing reaction yield. In certain embodiments, the invention provides systems for increasing a yield of a chemical reaction that include a pneumatic sprayer configured to generate a liquid spray discharge from a solvent. The solvent includes a plurality of molecules, a portion of which react with each other within the liquid spray discharge to form a reaction product. The system also includes a collector positioned to receive the liquid spray discharge including the unreacted molecules and the reaction product. The system also includes a recirculation loop connected from the collector to the pneumatic sprayer in order to allow the unreacted molecules and the reaction product to be recycled through the pneumatic sprayer, thereby allowing a plurality of the unreacted molecules to react with each other as the unreacted molecules cycle again through the system.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: June 29, 2021
    Assignee: Purdue Research Foundation
    Inventors: Robert Graham Cooks, Michael Stanley Wleklinski, David Logsdon
  • Patent number: 11047581
    Abstract: A method for constructing a water circulation device including a water circulation circuit that circulates water heat-exchanged with a refrigerant heated by a heat pump includes: installing a heater in the water circulation device in contact with the water; depositing scale from the water on the heater by heating the heater while circulating the water in the water circulation circuit; and removing the heater from the water circulation device after the depositing.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: June 29, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuhiro Shigyo
  • Patent number: 10921031
    Abstract: A heat pump includes a condenser for condensing compressed working vapor, a gas trap coupled to the condenser via a foreign gas feed inlet and including: a housing having a foreign gas feed entrance, a working liquid feed inlet within the housing; a working liquid discharge outlet within the housing, and a pump for pumping off gas from the housing, wherein the housing, the working liquid feed inlet and the working liquid discharge outlet are configured such that during operation, a working liquid flow takes place, within the housing, from the working liquid feed inlet to the working liquid discharge outlet, and wherein the working liquid feed inlet is coupled to the heat pump so as to direct, during operation of the heat pump, working liquid which is colder than a working liquid within the condenser.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 16, 2021
    Assignee: EFFICIENT ENERGY GMBH
    Inventors: Oliver Kniffler, Holger Sedlak
  • Patent number: 10794274
    Abstract: The gas turbine facility 10 of the embodiment includes a combustor 20 combusting fuel and oxidant, a turbine 21 rotated by combustion gas, a heat exchanger 23 cooling the combustion gas, a heat exchanger 24 removing water vapor from the combustion gas which passed through the heat exchanger 23 to regenerate dry working gas, and a compressor 25 compressing the dry working gas until it becomes supercritical fluid. Further, the gas turbine facility 10 includes a pipe 42 guiding a part of the dry working gas from the compressor 25 to the combustor 20 via the heat exchanger 23, a pipe 44 exhausting a part of the dry working gas to the outside, and a pipe 45 introducing a remaining part of the dry working gas exhausted from the compressor 25 into a pipe 40 coupling an outlet of the turbine 21 and an inlet of the heat exchanger 23.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: October 6, 2020
    Assignee: 8 RIVERS CAPITAL, LLC
    Inventors: Masao Itoh, Nobuhiro Okizono, Hideyuki Maeda, Yasunori Iwai, Jeremy Eron Fetvedt, Rodney John Allam
  • Patent number: 10775083
    Abstract: A purging device that includes a purging pipe for purging a gas mixture containing a coolant and a non-condensable gas from a chiller; a purging tank; a cooling device that has a cooling heat-transfer surface provided therein which condenses the coolant in the gas mixture and is oriented in the height direction inside the purging tank; a drainage pipe for discharging the liquid coolant inside the purging tank to the chiller; an exhaust; a purging tank pressure sensor for measuring the pressure inside the purging tank; and a control device which detects that an increase in the level of the liquid coolant inside the purging tank has occurred when the measured value from the purging tank pressure sensor decreases, and thereafter, increases to a prescribed value or higher, when condensing the coolant by cooling the interior of the purging tank using the cooling device.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: September 15, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.
    Inventors: Yoshie Togano, Kazuki Wajima, Naoya Miyoshi
  • Patent number: 10739048
    Abstract: The present invention provides a refrigerating system, including: a refrigerating loop, including a compressor, a condenser, a throttling element, and an evaporator that are connected in sequence through a pipeline; and a purification loop, connected to the refrigerating loop and configured to separate a pressure maintaining gas in the refrigerating loop; wherein the refrigerating loop is connected into the purification loop from the top of the condenser or the top of the compressor. The present invention further provides a purification method for a refrigerating system, including: in a first time period, performing S1: charging, into the refrigerating system, a refrigerant that satisfies a designed refrigerating capacity; and S2: charging a pressure maintaining gas into the refrigerating system, so that pressure in the refrigerating system is higher than atmospheric pressure; and in a second time period, performing S3: separating and discharging the pressure maintaining gas in the refrigerating system.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: August 11, 2020
    Assignee: CARRIER CORPORATION
    Inventors: Michael A. Stark, Haitao Zhang
  • Patent number: 10495363
    Abstract: The purpose of the present invention is to achieve stable operation when using a low pressure, low GWP refrigerant. In the present invention, a control device (16) is provided with an estimation unit (31), a determination unit (32), and an activation control unit (33). The estimation unit (31) estimates the amount of air entering using a degree of influence of air entering, which represents the ease with which air enters determined by the structure of the chiller, and a variable obtained by a function including pressure as a parameter. The determination unit (32) determines whether a total value for the amount of air entering is greater than or equal to a preset tolerance value. The activation control unit (33) activates a bleed device when the total value of the amount of air entering is equal to or greater than the tolerance value.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: December 3, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.
    Inventors: Yoshie Togano, Kenji Ueda, Noriyuki Matsukura
  • Patent number: 9920505
    Abstract: The present invention illustrates a Confined Hypersonic Evapotranspiration (COHET) Chamber and a method of extraction of water from the Earth's atmosphere, air or other gases, using a technique called Confined Hypersonic Evaprotranspiration inside a closed chamber. It is used to extract extremely low atmospheric water, typically as low as 10 ppm (10 parts per million). Application includes extraction of water from the atmosphere, air or any other gas for the purpose of, for example, drinking and agriculture, quick analysis of pollutants in the lower and upper atmosphere, to study rain formation in confined space, and evaprotranspiration process in nature.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: March 20, 2018
    Inventor: Rajah Vijay Kumar
  • Patent number: 9377230
    Abstract: A controller, a water source heat pump and a computer useable medium are disclosed herein. In one embodiment the controller includes: (1) an interface configured to receive operating data and monitoring data from the water source heat pump and transmit control signals to components of thereof and (2) a processor configured to respond to the operating data or the monitoring data by operating at least one motor-operated valve of the water source heat pump via a control signal.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: June 28, 2016
    Assignee: Lennox Industries Inc.
    Inventors: Eric Perez, Steve Schneider, Harold Gene Havard, Jr.
  • Patent number: 9318242
    Abstract: In a thermally insulated double pipe, a structure is provided in which an inner pipe may be prevented from being appreciably offset relative to an outer pipe due to thermal contraction. The structure includes an inner pipe 101, within which a superconducting cable is mounted, an outer pipe 103 within which the inner pipe is housed, with the inner and outer pipes constituting a thermally insulated double pipe, and an inner pipe support member 104 supporting the inner pipe. The inner pipe support member 104 is secured to the inner and outer pipes.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: April 19, 2016
    Assignee: CHUBU UNIVERSITY EDUCATIONAL FOUNDATION
    Inventors: Sataro Yamaguchi, Hirofumi Watanabe
  • Patent number: 9151522
    Abstract: An air conditioning system has a controller and a receiver located between an indoor and outdoor units. The receiver serves as an auxiliary reservoir for refrigerant. The controller generates signals to adjust the amount of refrigerant to be stored in this reservoir as a way of adjusting the amount of refrigerant flowing in the system during various modes of operation. By increasing or decreasing the amount of refrigerant in the receiver, the controller may achieve or maintain a desired level of performance and/or efficiency.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: October 6, 2015
    Assignee: LG ELECTRONICS INC.
    Inventor: Bongsoo Choi
  • Patent number: 9038402
    Abstract: The invention relates to an apparatus and a method for separating droplets from vaporized refrigerant. The droplet separator according to the invention has a separation vessel, where the droplets gravitationally separate from the vaporized refrigerant. A partition plate has been arranged in the separation vessel, which partition plate divides the separation space into two separation parts. Thereby the refrigerant is arranged—to pass firstly through the first separation space on the first side of the partition plate, —then to transfer to the second side of the partition plate, i.e. to the second separation space—then to pass through the second separation space on the second side of the partition plate.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: May 26, 2015
    Assignee: VAHTERUS OY
    Inventor: Jyrki Sonninen
  • Publication number: 20150107279
    Abstract: An apparatus (230) for recovering refrigerant from an air conditioning system (200) comprises an evaporator (232) arranged to receive the refrigerant from the air conditioning system (200) and to separate it from impurities in it present, obtaining purified refrigerant, a compressor (233) for circulating the purified refrigerant, a condenser (236), and a storage container (60) arranged to contain the condensed refrigerant. The storage container (60) defines a storage chamber (61) arranged to contain a liquid phase of the refrigerant (25) and a gaseous phase (26) comprising a vapour component of the refrigerant (26a) and an air component (26b).
    Type: Application
    Filed: May 29, 2013
    Publication date: April 23, 2015
    Inventor: Rahhali Sanhaji
  • Patent number: 8899073
    Abstract: A refrigerant storage device that arranges two end plates to form a cavity and includes a turbulator plate within the cavity. The turbulator plate is arranged within the cavity to reinforce the cavity by providing a plurality of reinforcement portions between the end plates. The cavity is sized and the turbulator plate is configured so a liquid portion of refrigerant flowing through the cavity collects onto the turbulator plate. The device has a rectangular shape that simplifies vehicle packaging and allows the device to be readily integrated into a plate-type refrigerant-to-liquid coolant heat exchanger. The device is formed by a stacking arrangement of parts that provides for a readily scalable design.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 2, 2014
    Assignee: Delphi Technologies, Inc.
    Inventors: Gary Scott Vreeland, Frederick Vincent Oddi
  • Patent number: 8888898
    Abstract: A two-phase working fluid, having a liquid phase and a gas phase, is purged of non-condensable gas prior to being used to charge a closed thermal management system, improving the heat transfer performance of the thermal management system. The liquid phase of the two-phase working fluid is exposed to conditions that cause non-condensable gas to separate from the two-phase working fluid. The non-condensable gas is vented, and two-phase working fluid that vaporizes under the conditions is captured.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: November 18, 2014
    Assignee: Google Inc.
    Inventors: Jeremy Rice, Jeffrey Spaulding
  • Patent number: 8863538
    Abstract: A method of treating a contaminated refrigeration fluid including the steps of transferring, separating, returning, moving and removing. The transferring step includes the transferring of a portion of the contaminated refrigeration fluid from a refrigeration system to a first tank. The separating step includes the separating of refrigerant from the portion of the contaminated refrigeration fluid resulting in the refrigerant and a refrigerant depleted portion. The returning step includes the returning of the refrigerant to the refrigeration system. The moving step includes the moving of the refrigerant depleted portion to a second tank. The removing step includes the removing of oil from the refrigerant depleted portion.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Wagner-Meinert LLC
    Inventors: Lawrence F. Hildebrand, Wayne Douglas Zollinger
  • Publication number: 20140109602
    Abstract: A system for filtering inlet air of an air conditioner air handler, and method of filtering inlet air without a conventional filter, said system is a structure comprising: an air inlet, an air directing structure, a water chamber, positioned within an internal cavity, a structure for directing condensate from an air handler into said water chamber, a drain positioned to impart a maximum water level of water accumulated in said first water chamber; a second air directing structure configured to direct air from said first internal cavity towards an outlet that is affixed to the inlet of an air conditioner air handler.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 24, 2014
    Inventor: Nivaldo Cerdan
  • Patent number: 8689571
    Abstract: Provided is a dryer for minimizing moisture entrained within a refrigerant used to provide a cooling effect to a temperature-controlled environment, and a refrigeration appliance including such a dryer. The dryer includes a housing defining a drying chamber and a desiccant disposed within the drying chamber for removing at least a portion of the moisture from the refrigerant. A first outlet is formed in the housing adjacent a lower region of the drying chamber when the drying chamber is viewed in an operational orientation. A second outlet is also formed in the housing at an elevation vertically above the first outlet when the dryer is viewed in the operational orientation for discharging at least a portion of the refrigerant introduced into the drying chamber to be delivered to a second heat exchanger with a relatively-low internal pressure. The elevation of the second outlet relative to the first outlet promotes the discharge of the refrigerant through the first outlet instead of through the second outlet.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 8, 2014
    Assignee: Electrolux Home Products, Inc.
    Inventors: Juan Antonio Contreras Lafaire, David L. Hall, Marcelo Candeo, Dennis Carl Hansen
  • Patent number: 8656728
    Abstract: An assembly for filtering water includes a housing and a water inlet for supplying unfiltered water to the housing. A water filter includes an outer casing attached to the housing in communication with the water inlet and a filter medium within the outer casing. The outer casing has at least one portion that is at least partially translucent. The water filter filters the unfiltered water through filter medium to provide filtered water. A water outlet is attached to the housing for transferring filtered water from the outer casing to a device via the housing. An illumination device is mounted adjacent to the outer casing for selectively illuminating the portion of the outer casing that is at least partially translucent. Related refrigeration appliances incorporating such devices are also disclosed.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventor: Alan Joseph Mitchell
  • Patent number: 8652303
    Abstract: A desalination device includes a vessel, a breathable sheet, a water-repellent particle layer and a tank layer. The tank layer is positioned at the lower portion inside the vessel and the breathable sheet is interposed between the water-repellent particle layer and the tank layer. The breathable sheet includes a through-hole, the water-repellent particle layer is composed of a plurality of water-repellent particles, and the surface of the respective water-repellent particles includes a water-repellent film. The saltwater is desalted by a step of pouring saltwater into the vessel to dispose the saltwater on the surface of the water-repellent particle layer, a step of heating the saltwater to evaporate the saltwater into vapor; and a step of liquefying the vapor to obtain fresh water in the tank layer.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: February 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Norihisa Mino, Daisuke Ueda
  • Publication number: 20130283830
    Abstract: Refrigeration systems with a purge for removing non-condensables from the refrigerant and an acid filter for remove acid from the refrigerant are provided. The acid filter can be operatively connected to the purge. Optionally, the purge can include a separating device for separating non-condensable gases from condensable refrigerant gases and an acid filter is provided to remove acid from the condensable refrigerant gases.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 31, 2013
    Applicant: TRANE INTERNATIONAL INC.
    Inventors: Daoud Ali JANDAL, Julie Ann MAJURIN, Stephen Anthony KUJAK, Raymond Scott SCHAFER, Paul Edmond CIESLINSKI
  • Publication number: 20130118189
    Abstract: A refrigerant recovery unit is provided and includes a safe purging mode. The safe purging mode allows non-condensable gases to be incrementally purged from a storage tank when the determined ideal vapor pressure is high, such as 40 p.s.i., in order to minimize refrigerant loss during purging. The purging can be done in small increments of time, pressure or mass. The storage tank can include a dip tube that extends into the liquid portion of the refrigerant in order to heat up the refrigerant in the tank with the heated recovered refrigerant.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 16, 2013
    Applicant: Service Solutions U.S. LLC
    Inventor: Service Solutions U.S. LLC
  • Publication number: 20130031918
    Abstract: A gas extraction device installed in a refrigerator removes uncondensed gases that exist in the refrigerator. The gas extraction device includes a gas extraction tank used to circulate a refrigerant put in an evaporator, a circulation pipe for circulation between the gas extraction tank and the evaporator, a gas extraction pump which feeds the refrigerant in the evaporator to the gas extraction tank, a shutoff valve configured to shut off a flow of the refrigerant from the gas extraction tank to the evaporator, a gas extractor which extracts the uncondensed gas in the refrigerator into the gas extraction tank, and an auxiliary tank which receives an inflow of the refrigerant filling up the gas extraction tank, and overflowing therefrom.
    Type: Application
    Filed: March 6, 2012
    Publication date: February 7, 2013
    Applicant: UNION INDUSTRY CO., LTD.
    Inventors: Yasuo Yonezawa, Shingo Sawai, Takashi Murakami, Norimichi Murai, Toshiharu Shimizu
  • Publication number: 20130019618
    Abstract: In certain example embodiments, moisture sensors, defoggers, etc., and/or related methods, are provided. More particularly, certain example embodiments relate to moisture sensors and/or defoggers that may be used in various applications such as, for example, refrigerator/freezer merchandisers, vehicle windows, building windows, etc. When condensation or moisture is detected, an appropriate action may be taken (e.g., actuating windshield wipers, turning on a defroster, triggering the heating of a merchandiser door or window, etc.). Bayesian approaches optionally may be implemented in certain example embodiments in an attempt to improve moisture detection accuracy. For instance, models of various types of disturbances may be developed and, based on live data and a priori information known about the model, a probability of the model being accurate is calculated. If a threshold value is met, the model may be considered a match and, optionally, a corresponding appropriate action may be taken.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 24, 2013
    Applicant: Guardian Industries Corp.
    Inventors: Vijayen S. VEERASAMY, Jose NUNEZ-REGUEIRO
  • Patent number: 8230691
    Abstract: A method of cleaning an air conditioner utilizing carbon dioxide as a working refrigerant includes three steps. In a charging step, a refrigeration cycle is charged with carbon dioxide. In a venting step, a charging target with which the refrigeration cycle is charged is vented after the charging step. In a repeating step a unit operation is performed at least one time or more. The unit operation includes the charging step and the venting step. An air conditioner includes a refrigeration cycle configured to perform the unit operation at least one time, and a counter configured to count and output the number of times that the unit operation has been performed.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: July 31, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Toshiyuki Kurihara, Hiromune Matsuoka
  • Patent number: 8122731
    Abstract: A refrigerant recovery unit is provided that can clear oil from an oil inject path in order to prepare the unit to switch over to a different kind of oil. The refrigerant recovery unit includes an oil inject circuit that receives an oil from the oil bottle into the refrigerant system. The refrigerant recovery circuit is coupled in fluid communication with the oil inject circuit. The refrigerant recovery circuit is operable to receive and transfer a fluid drawn through the oil inject circuit. A controller is operatively connected to the refrigerant recovery circuit and to the oil inject circuit so that as the fluid is drawn through the oil inject circuit a quantity of the oil in the oil inject circuit is removed.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: February 28, 2012
    Assignee: SPX Corporation
    Inventors: Mark McMasters, Gary P. Murray, William Brown
  • Patent number: 8055453
    Abstract: In certain embodiments, estimating air in a cooling system includes measuring a property that can be used to estimate the air to yield a plurality of measurements. The measurements are performed for different heat loads and for different concentrations of non-condensable gas in the cooling system. The measurements are stored a data set.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: November 8, 2011
    Assignee: Raytheon Company
    Inventor: William G. Wyatt
  • Publication number: 20110126561
    Abstract: A method of operating a refrigerated merchandiser. The refrigerated merchandiser includes a case that defines a product display area, and at least one door that provides access to the product display area. The method includes sensing a parameter of an ambient environment adjacent the case, delivering a signal indicative of the sensed parameter to a controller, and determining a duty cycle using the controller based on the signal indicative of the sensed parameter. The method also includes detecting a change in the sensed parameter using the controller, interrupting the duty cycle by initiating a clearing interval using the controller in response to the controller receiving the signal indicative of the change in the sensed parameter, and clearing condensation from the door during the clearing interval.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Applicant: HUSSMANN CORPORATION
    Inventors: Ted Wayne Sunderland, Craig Steven Reichert, Dennis L. Dickerson
  • Publication number: 20110100032
    Abstract: An apparatus for removing a first gas from a system including a second different gas, includes a collecting basin for collecting the first gas, wherein the collecting basin includes a variable inlet opening for letting in the first gas into the collecting basin, wherein the inlet opening can be brought into communication with the system, and a variable outlet opening for letting out the first gas from the collecting basin, wherein the variable outlet opening is not in communication with the system, and a generator for generating a pressure within the collecting basin, which is higher than the pressure of an atmosphere outside the variable outlet opening, wherein the inlet opening and the outlet opening are implemented such that in a discharge mode at a pressure within the collecting basin which is higher than the pressure in the atmosphere, the inlet opening has a higher fluid resistance than the outlet opening, such that the second gas can be output from the collecting basin via the outlet opening, and that
    Type: Application
    Filed: January 15, 2009
    Publication date: May 5, 2011
    Inventors: Holger Sedlak, Oliver Kniffler
  • Publication number: 20110016892
    Abstract: The invention relates to an apparatus and a method for separating droplets from vaporized refrigerant. The droplet separator according to the invention has a separation vessel, where the droplets gravitationally separate from the vaporized refrigerant. A partition plate has been arranged in the separation vessel, which partition plate divides the separation space into two separation parts. Thereby the refrigerant is arranged—to pass firstly through the first separation space on the first side of the partition plate,—then to transfer to the second side of the partition plate, i.e. to the second separation space—then to pass through the second separation space on the second side of the partition plate.
    Type: Application
    Filed: October 12, 2007
    Publication date: January 27, 2011
    Inventor: Jyrki Sonninen
  • Publication number: 20100281891
    Abstract: A device for drying fluids conducted in a closed circuit provides a bypass line which can be switched in parallel to a pipe of the closed circuit that conducts a fluid via a first valve and a second valve. A first demoisturizer may be disposed in the bypass line. A method for drying fluids conducted in closed circuits is also provided. Part of the fluid may be directed from the pipe of the closed circuit into the bypass line connected in parallel to the pipe of the closed circuit and dried using the device according to the system described herein.
    Type: Application
    Filed: March 13, 2008
    Publication date: November 11, 2010
    Inventors: Peter Behrends, Alexander Brödel
  • Patent number: 7827808
    Abstract: The invention relates to a method for washing cooling or air conditioning circuits, according to which a washing agent is conducted through said cooling or air conditioning circuit. Said agent dissolves and absorbs the soluble substances that adhere to the cooling or air conditioning circuits and discharges the mechanical contaminants. The washing agent is conducted through the cooling or air conditioning circuit that is washed in a closed cycle without escaping into the environment, by the pressure differential between the pressure chamber and the distillation chamber and is returned to the pressure chamber after being cleaned in the distillation chamber, compressed by a compressor and cooled in a condenser. The invention also relates to a device for washing cooling or air conditioning circuits, said device consisting of a pressure chamber containing a washing agent. The outlet pipe for fluid of the pressure chamber is connected to the cooling or air conditioning circuit that is washed.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 9, 2010
    Assignee: Ekotez, Spol. S.R.O.
    Inventor: Franti{hacek over (s)}ek Janda
  • Publication number: 20100218521
    Abstract: Provided is a dryer for minimizing moisture entrained within a refrigerant used to provide a cooling effect to a temperature-controlled environment, and a refrigeration appliance including such a dryer. The dryer includes a housing defining a drying chamber and a desiccant disposed within the drying chamber for removing at least a portion of the moisture from the refrigerant. A first outlet is formed in the housing adjacent a lower region of the drying chamber when the drying chamber is viewed in an operational orientation. A second outlet is also formed in the housing at an elevation vertically above the first outlet when the dryer is viewed in the operational orientation for discharging at least a portion of the refrigerant introduced into the drying chamber to be delivered to a second heat exchanger with a relatively-low internal pressure. The elevation of the second outlet relative to the first outlet promotes the discharge of the refrigerant through the first outlet instead of through the second outlet.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 2, 2010
    Applicant: ELECTROLUX HOME PRODUCTS, INC.
    Inventors: Juan Antonio Contreras Lafaire, David L. Hall, Marcelo Candeo, Dennis Carl Hansen
  • Publication number: 20100212333
    Abstract: A water dispenser is provided, which includes a cold water container configured to store water therein, having a hollow portion; a water purification device fluidly connected to the cold water container and configured to purifying the water supplied from the cold water container, the water purification device being installed inside the hollow portion of the cold water container; and a cooling device installed outside the cold water container and configured to cool the water stored in the cold water container.
    Type: Application
    Filed: March 13, 2009
    Publication date: August 26, 2010
    Applicant: CLOVER COMPANY LTD.
    Inventors: Young Mu MOON, Hyung Min PARK, Young Wook KIM
  • Patent number: 7694942
    Abstract: A swamp cooler filter for filtering debris from fluid drawn from a fluid reservoir for a swamp cooler is provided. The swamp cooler filter includes a water intake hose being operationally coupled to a swamp cooler whereby the water intake hose is in fluid communication between a fluid reservoir and a pump of the swamp cooler. A filter member is selectively positioned in the water intake hose. The filter member is for filtering debris from the fluid being drawn from the fluid reservoir by the pump to inhibit the debris being pumped through the swamp cooler by the pump.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 13, 2010
    Inventors: Felipe Genera, Eva Genera
  • Publication number: 20100083672
    Abstract: System and methods for providing anti-condensation system are disclosed. A relative humidity (RH) sensor signal from a sensor on or near a control surface is received. An AC power input is received. A phase of the AC power input is modulated at least partly in response to the sensor signal in such a manner that a phase-modulated AC power output provided to a heater is a) substantially constant at a first power level (P1st) in a low RH region ranging from 0% RH to a first RH (RH1), b) varying as a function of the sensor signal from P1st to a second power level (P2nd) in an intermediate RH region ranging from RH1 to a second RH (RH2), and c) substantially constant at P2nd in a high RH region beginning at RH2.
    Type: Application
    Filed: December 18, 2008
    Publication date: April 8, 2010
    Inventors: Doo Eui Yoon, Paul Artwohl