Expandable Stent With Constraining Means Patents (Class 623/1.12)
  • Patent number: 11660179
    Abstract: A stent graft system includes a first layer of graft material, a second layer of graft material, one or more stent members, one or more reducing belts, and a release wire. The one or more stent members are located between the first layer of graft material and the second layer of graft material. The second layer of graft material is formed to have a corresponding channel over each of the one or more stent members. The one or more reducing belts each include a loop at both ends and each is located in a corresponding channel around a corresponding one of the stent members. The release wire passes through both loops of each of the one or more reducing belts when the one or more stent members are in a compressed state. Pulling the release wire allows for the stent graft system to radially expand.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: May 30, 2023
    Assignee: Endologix LLC
    Inventors: Mark Geusen, Dale Ehnes, Jason Maggard, Riley King, Craig Welk
  • Patent number: 11654011
    Abstract: The invention is directed to a system and methods for treating neurovascular compression. Certain preferred embodiments of the invention generally comprise an apparatus having an elongated body portion including a proximal anchor element and distal anchor element. The apparatus also may include one or more marker elements to facilitate placement of the apparatus by the user. The apparatus may be configured to permit the user, after insertion and deployment of the apparatus in a blood vessel, to move the blood vessel so that the blood vessel is no longer in contact with and compressing a nerve or other parts of the nervous system.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: May 23, 2023
    Assignee: University of Massachusetts
    Inventors: Miklos Marosfoi, Matthew Gounis, Ajay K. Wakhloo
  • Patent number: 11622874
    Abstract: A guide cap and a loading system for loading an implant into a delivery system are disclosed which are capable of simplifying operations required in interventional surgery using the implant. The guide cap has a lumen passing therethrough and includes: a conical section; a straight or conical tube in communication with a small open end of the conical section; and a flange, wherein a large open end of the conical section flares outward and thereby forms the flange. The loading system includes a guider and the guide cap. During the process of loading the implant into the delivery system, the guide cap enables the valve prosthesis to be coupled to the connector of the delivery system and allows the valve prosthesis to be compressed so as to be entirely capsuled in the delivery system with relatively easy and quick operations, thereby reducing surgery time during its clinical use.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: April 11, 2023
    Assignee: SHANGHAI MICROPORT CARDIOFLOW MEDTECH CO., LTD.
    Inventors: Xiang Liu, Mingming Wu, Baozhu Gui, Guoming Chen
  • Patent number: 11622873
    Abstract: A luminal endoprosthesis assembly (1) at least partially delimits a prosthesis lumen (2), for implantation in an anatomical structure (3) that at least partially defines at least one cavity (4) and includes at least one pathological portion (13). The luminal endoprosthesis (1) has two or more layers (5, 6, 7). At least one layer (5, 6, 7) includes a threadlike element (8) forming an armor (9). The luminal endoprosthesis (1) includes an anchoring portion (10) for anchoring to an anatomical portion (11) of the walls of the cavity (4) of the anatomical structure (3), and a working portion (12) for facing the pathological portion (13) of the anatomical structure (3). The two or more layers (5, 6, 7) are separated from each other in the working portion (12) of the luminal endoprosthesis (1), avoiding connecting elements between one layer (5, 6, 7) and at least one adjacent layer.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: April 11, 2023
    Assignee: Dyverto AG
    Inventor: Alessandro Santo Bortone
  • Patent number: 11622875
    Abstract: An intestinal barrier sleeve release system includes a tubular housing having a first opening at one end and a second opening at the other end. A tubular sleeve to be released is disposed in the housing. A release body connected to the one end of the tubular sleeve is disposed at the first opening of the housing and is made of a material that can be dissolved and absorbed in human intestines. An inner sheath, a middle sheath and an outer sheath are sequentially set and move relative to each other. The inner sheath and the middle sheath are operated to move axially, the release body is disengaged from the housing, and the tubular sleeve moves out of the housing and is released at a specified position of the human intestines.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: April 11, 2023
    Assignee: HANGZHOU TANGJI MEDICAL TECHNOLOGY CO., LTD.
    Inventors: Yuxing Zuo, Yan Lu
  • Patent number: 11622858
    Abstract: A system including a self-expanding prosthesis configured to foreshorten during deployment thereof and a delivery device configured to percutaneously deliver the self-expanding prosthesis. The delivery device includes a handle having an actuator thereon, an outer sheath including a proximal end coupled to the handle and a pusher shaft slidingly disposed within the outer sheath. The pusher shaft has a proximal end coupled to the handle and a distal end configured to releasably couple to the self-expanding prosthesis such that the self-expanding prosthesis axially moves therewith. The inner shaft has a distal portion of the inner shaft that is configured to receive a self-expanding prosthesis thereon. The outer sheath and the pusher shaft are configured to simultaneously move in opposing axial directions via actuation of the actuator on the handle to compensate for the foreshortening of the self-expanding prosthesis during deployment.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: April 11, 2023
    Assignee: MEDTRONIC CV LUXEMBOURG S.A.R.L.
    Inventors: Stephen Montgomery, Maro Sciacchitano
  • Patent number: 11590008
    Abstract: A tubular prosthesis that includes a scaffolding formed by at least one scaffolding filament; a cover; and at least one controlled ingrowth feature constructed and arranged to abut an inner surface of a lumen wall when the prosthesis is implanted in the body lumen. The controlled ingrowth feature may extend inwards or outwards from the prosthesis outer surface. The controlled ingrowth feature may be formed by a scaffolding filament; by a separate filament; by the cover; and combinations thereof.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 28, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Colby Harris, Stan R. Gilbert, John A. Hingston, William Bertolino, Claude O. Clerc, Petru Andrei
  • Patent number: 11571289
    Abstract: A method of preventing contraction and peristaltic wave action of an esophagus in which a GARD is placed, preventing displacement of the GARD towards or into a stomach, the method comprising injecting botulinum toxin very precisely in the muscular layer of the esophageal wall at the level where the GARD is or will be placed. A system comprising a catheter having one or two expandable balloon(s) which carries guide needle catheters that can pierce the esophageal wall and reach precisely the muscular layer of the wall of the esophagus, the needles used to inject the toxin at precisely the exact location in the esophageal wall in relationship with the GARD device to block esophageal peristalsis locally.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: February 7, 2023
    Assignee: BIOMEDIX S.A.
    Inventor: Norman Godin
  • Patent number: 11540930
    Abstract: An implantable endoluminal prosthesis for use in the treatment of aneurysm involving branches is described, where at least one self-expandable braided framework extending along an axis is able to expand from a radially compressed state in a delivery configuration to a radially expanded state. The self-expandable braided framework includes a plurality of layers of wires made of biocompatible material forming a lattice with a plurality of wires of said layers; the wires being integrated in the mesh of at least one of the adjacent layers; the self-expandable braided framework including a lumen in a cylindrical form; characterized in that, in radially expanded state, a ratio of a thickness of a wall of the implantable endoluminal prosthesis in the radially expanded state to the diameter of wire being greater than 3.0; and the surface coverage ratio (SCR) of the braided framework is at least 30% and at most 50%.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 3, 2023
    Assignee: INTRESSA VASCULAR S.A.
    Inventor: Noureddine Frid
  • Patent number: 11517431
    Abstract: The invention relates to a catheter for the transvascular implantation of prosthetic heart valves, in particular including self-expanding anchorage supports (10), which allow a minimally invasive implantation of prosthetic heart valves. The aim of the invention is to reduce the risk to the patient during the implantation. To achieve this, according to the invention a prosthetic heart valve with anchorage supports is temporarily housed in a folded form in a cartridge-type unit (4) during the implantation. The cartridge-type unit can be fixed on the proximal end of a guide system (1), which includes a flexible region (9) that can be guided through the aorta.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 6, 2022
    Assignee: JenaValve Technology, Inc.
    Inventors: Rüdiger Ottma, Robert Moszner, Hans-Reiner Figulla, Markus Ferrari, Christoph Damm
  • Patent number: 11517459
    Abstract: Systems, methods, and apparatus for delivery systems for endovascular devices are disclosed herein. In one or more embodiments, a delivery system comprises a stent comprising a mesh. Further, the delivery system comprises a shaft comprising an inner lumen. Also, the delivery system comprises a sheath encasing the stent. In one or more embodiments, the stent and a first portion of the sheath is connected to an end of a wire, and a second portion of the sheath is folded back and connected to an end of the shaft. Further, the delivery system comprises the wire traversing within the inner lumen of the shaft such that when the shaft is pulled back relative to the wire, the sheath splits open thereby unsheathing and deploying the stent.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: December 6, 2022
    Assignee: MONARCH BIOSCIENCES, INC.
    Inventors: Vikas Gupta, Colin Kealey
  • Patent number: 11510679
    Abstract: A medical device may include a catheter, an expandable member, a cover, and an actuator. The catheter may include a longitudinal axis, proximal and distal ends, and a cover lumen extending from the proximal to the distal end. The expandable member may include proximal and distal ends and may be disposed on a distal section of the catheter. The cover may include a first region that may be disposed along the expandable member, and a second region that may extend along a length of the catheter beyond the proximal end of the expandable member towards the proximal end of the catheter. A first end of the cover may invert into the cover lumen. The actuator may be coupled to the first end of the cover and configured to move the first end of the cover towards the proximal end of the catheter along the longitudinal axis of the catheter.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: November 29, 2022
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Michael Broyles, Bret J. Kilgrow
  • Patent number: 11504236
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart includes a sheath, a handle, and adjustment device including a fine adjustment mechanism, and an outer stability shaft. The sheath defines a lumen and is configured to compressively constrain the stented prosthetic heart valve. The handle is coupled to the proximal portion of the sheath and includes an actuator mechanism coupled to a proximal portion of the sheath that is configured to selectively move the sheath relative to the housing to release the stented prosthetic heat valve. The adjustment device is coupled to the handle and includes an adjustment lumen through which the sheath and the handle slidably extend. The outer stability shaft is coupled to the adjustment device. The fine adjustment mechanism is configured to selectively move the handle and the sheath relative to the adjustment device and the outer stability shaft.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: November 22, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jeffrey Sandstrom, Brendan Vaughan
  • Patent number: 11452629
    Abstract: A system and method for a stent delivery system, the delivery system having a catheter and a balloon coupled to a distal portion of the catheter. The catheter with the radially expandable member is inserted into a cavity in a mold. Heat and pressure are applied for a period of time which inflates the balloon and imparts a shape memory to a portion of the balloon. The balloon is removed from the cavity of the mold with a shape memory.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: September 27, 2022
    Assignee: Advanced Bifurcation Systems Inc.
    Inventors: Ashur Bourang, Henry Bourang
  • Patent number: 11452628
    Abstract: Loading systems for prosthetic heart valve devices are disclosed. A loading funnel is provided within a watertight interior space that is at least partially filled or fillable with biocompatible fluid. Funnel may have a cylindrical end to which is connected a delivery catheter having a lumen that will receive the collapsed prosthetic heart valve device. An expanded prosthetic heart valve device may be placed within the funnel and pushed or pulled into the funnel which provides a predictable, reliable and repeatable surface for collapsing the prosthetic heart valve device. Ultimately the prosthetic heart valve device is collapsed and translated into the lumen of the delivery catheter for further translation therealong and release into the heart chamber of interest.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: September 27, 2022
    Assignee: 4C Medical Technologies, Inc.
    Inventors: Jason S. Diedering, Saravana B. Kumar
  • Patent number: 11426277
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including a handle assembly connected to a shaft assembly on which a stented prosthesis is loaded and compressively retained with a plurality of elongate tension members. The delivery devices include a cutting assembly that can sever the elongate tension members after the stented prosthesis is expanded at a target site so that the delivery device can be withdrawn from the patient. Certain embodiments position the cutting assembly at least within the shaft assembly and others position the cutting assembly over the shaft assembly. Various disclosed cutting assemblies are actuated with the handle assembly or the like, which draw the tension members across the blade or vice versa.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: August 30, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Alan McGuinn, Paul Devereux, Brendan Vaughan, David O'Toole, Padraigh Jennings, Michael Walsh, Stephen Montgomery, Ronja Pfeiffer
  • Patent number: 11419741
    Abstract: An endoprosthesis may include an expandable framework including an anchoring portion and a body portion extending axially from the anchoring portion, the body portion having a plurality of body cells; and a polymeric cover disposed on at least a portion of the expandable framework. The anchoring portion includes a first transverse flange and a second transverse flange proximate the first transverse flange, the first and second transverse flanges being configured to secure the anchoring portion at an orifice of a body lumen. The body portion includes a window through a side of the body portion, the window occupying space equivalent to at least two of the plurality of body cells. The window is devoid of the polymeric cover and any other structure within a perimeter of the window.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: August 23, 2022
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventor: Martyn G. Folan
  • Patent number: 11406487
    Abstract: A vascular graft suitable for implantation, and more particular to a vascular graft having an expandable outflow region for restoring patency of the graft after implantation into a body lumen.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: August 9, 2022
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: James J. Scutti, David G. Culp, Ibrahim E. Dagher, Kevin W. Penn
  • Patent number: 11382735
    Abstract: The present invention eliminates the need for highly accurate alignment with a branched tubular tissue when implanting a stent graft. A stent graft 30 comprises: a framework section 31; and a tubular graft section 40. A side surface opening 42 that passes through to the lumen of the graft section is provided in one section of a tube wall 41 of the graft section. In the framework section, among the six frame bodies, the frame bodies 34, 35 that are provided facing the side surface opening section have a first frame body structure section Q that is present in the tube wall along the entire circumference, and a second frame body structure section P that is present in the tube wall in a partial region 41A, which excludes the side surface opening section in the circumferential direction of the tube wall.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: July 12, 2022
    Assignee: SB-KAWASUMI LABORATORIES, INC.
    Inventors: Kentaro Hidari, Toshiyasu Yuba
  • Patent number: 11364133
    Abstract: A stent and a securely-installed artificial valve replacement device having the same, the stent being of a cylindrical structure; the top of the stent is provided with a fixed ear (60); the fixed ear (60) has a neck portion (601) connected to the top of the stent, and a head portion (602) engaged with the fixed head of the stent; the head portion (602) has a bending structure for improving the overall radial thickness; and the artificial valve replacement device is comprised of a stent and a prosthetic valve fixed on the stent. The stent with a bending structure overcomes the problem of easily disengaging from the fixed head of the stent, while not affecting the release of the stent.
    Type: Grant
    Filed: October 18, 2020
    Date of Patent: June 21, 2022
    Assignee: Venus Medtech Changzhou, Inc.
    Inventors: Rongjun Lei, Zhifei Zhang, Qiming Zhang
  • Patent number: 11357626
    Abstract: The present disclosure relates to heart valve prostheses, delivery devices, actuation handles, and other improved devices and methods that facilitate delivery of a heart valve prosthesis to a defective native valve structure in a patient, such as the aortic valve.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 14, 2022
    Assignee: JC Medical, Inc.
    Inventors: Ji Zhang, Brandon G. Walsh, Cheng Yong Yang, Jinhua Zhu
  • Patent number: 11351027
    Abstract: A system for repairing a defective heart valve. The system includes a delivery device, a balloon and a prosthetic heart valve. The delivery device includes an inner shaft assembly and a delivery sheath assembly. The delivery sheath assembly provides a capsule terminating at a distal end. The prosthesis includes a stent carrying a prosthetic valve. In a delivery state, the capsule maintains the prosthesis in a collapsed condition over the inner shaft assembly, and the balloon is in a deflated arrangement radially between the prosthetic heart valve and the capsule. In a deployment state, at least a portion of the balloon and at least a portion of the prosthetic heart valve are distal the capsule. Further, the balloon is inflated and surrounds an exterior of at least a portion of the prosthetic heart valve. The balloon controls self-expansion of the prosthetic heart valve.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 7, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Marc Anderson, Patrick Griffin
  • Patent number: 11331184
    Abstract: Methods of assembling and delivering a valve prosthesis and delivery system are disclosed herein. A method can include housing a valve prosthesis in a compacted state within a sheath of a delivery system. The valve prosthesis can include a valve anchor and a support frame coupled to the valve anchor, and the valve anchor can include a plurality of anchoring legs having a plurality of connection apertures. The method can further include slidably coupling a pin assembly around a core member so that the pin assembly is slidable longitudinally along the core member, and inserting a plurality of pins of the pin assembly through the plurality of connection apertures of the valve anchor and a plurality of lock apertures of the delivery system to engage the plurality of anchoring legs of the valve anchor.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: May 17, 2022
    Assignee: JC Medical, Inc.
    Inventors: Ji Zhang, Brandon G. Walsh, Cheng Yong Yang
  • Patent number: 11324615
    Abstract: The present disclosure describes treatment of the vasculature of a patient with an expandable implant. The implant is constrained to a reduced delivery diameter for delivery within the vasculature by at least one sleeve. The implant can be constrained to other diameters, such as an intermediate diameter. The sleeves can be expanded, allowing for expansion of the diameter of the expandable implant, by disengaging a coupling member from the sleeve or sleeves from outside of the body of the patient. The expandable implant can comprise a steering line or lines which facilitate bending and steering of the expandable implant through the vasculature of a patient.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: May 10, 2022
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Roberta A. Bloss, Dustin C. Burkart, Patrick M. Norris, Matthew G. Sondreaal, Stephanie M. Walsh
  • Patent number: 11311379
    Abstract: A prosthetic heart valve includes a self-expanding wire frame body, a valve disposed in the body, a leaflet clip coupled to the body, and a control element operably coupled to the leaflet clip. The body has a proximal end and a distal end. The leaflet clip is configured to be transitioned between a first configuration in which the prosthetic valve can be inserted into a heart, and a second configuration in which the leaflet clip is disposed to capture a native valve leaflet between the leaflet clip and the wire frame body when the body is disposed in a native annulus of an atrioventricular valve of a heart. The control element extends from the leaflet clip through a ventricle of the heart and out a wall of the ventricle to allow a user to transition the leaflet clip from its first configuration to its second configuration.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: April 26, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Zachary J. Tegels, Craig A. Ekvall, Robert M. Vidlund
  • Patent number: 11224530
    Abstract: Various embodiments for a stent delivery device that utilizes a wheel for slow retraction of an outer sheath and a slider for fast retraction of the outer sheath during delivery of a self-expanding implantable device such as a stent or stent graft.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: January 18, 2022
    Assignee: Cardinal Health Switzerland 515 GmbH
    Inventors: Phillip Halbert, Matt Gill, Sean Higginson
  • Patent number: 11224436
    Abstract: A hemorrhage control device for sealing a penetrating wound includes a tube having a connector engaged to a first end thereof. The connector can selectively engage a container so that the container is in fluidic communication with the tube. The container can selectively pressurize a fluid positioned therein so that the fluid is selectively dispensable through the tube. A shell is engaged to a second end of, and in fluidic communication with, the tube. The shell is selectively expandable from a compacted configuration wherein the shell is substantially circumferentially equivalent to the tube. The shell can be at least partially inserted into a penetrating wound in a mammal, such as a bullet wound. The shell then can be selectively expanded, as the fluid is dispensed from the container through the tube, so that the shell contacts a surface of the penetrating wound to control hemorrhaging.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: January 18, 2022
    Inventor: Cesar Munoz
  • Patent number: 11191642
    Abstract: A loading device configured to radially collapse an expandable medical implant may include an operating handle having an opening therein extending along a longitudinal axis, a native sheath coupled to the operating handle and partially extending into the opening, such that the native sheath is configured to translate relative to the operating handle parallel to the longitudinal axis, a removable sheath removably coupled to the native sheath, an actuation rod extending parallel to the longitudinal axis at least partially through the opening, a lumen of the native sheath, and a lumen of the removable sheath, a distal end of the actuation rod being configured to be removably coupled to the expandable medical implant, and a first control element movable relative to the operating handle and coupled to the native sheath, the first control element being configured to translate the native sheath and the removable sheath relative to the operating handle.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: December 7, 2021
    Assignee: Cephea Valve Technologies, Inc.
    Inventors: Evelyn Haynes, Diana Chu, Peter Gregg, Randolf Von Oepen
  • Patent number: 11166815
    Abstract: A catheter that comprises a sheath that is connected at opposing ends to concentric tubes that move relative to each other in a manner that alternatively covers and exposes a medical device loaded onto the catheter. A portion of the sheath is arranged so as to invert upon itself so that axial movement of one tube relative to the other simultaneously moves the inversion point over or away from the device, alternatively covering or exposing the device.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: November 9, 2021
    Assignee: Medtronic CV Luxembourg S.a.r.l
    Inventor: Gregory Scott Kelley
  • Patent number: 11147700
    Abstract: Systems for the delivery of endoluminal devices are disclosed. An illustrative system may include a delivery sheath having an inner sheath and an outer sheath. The delivery sheath may be configured to restrain a stent in a compressed delivery configuration. The outer sheath may cover the entire length of the stent and the inner sheath may cover a portion of the length of the stent.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: October 19, 2021
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jan Weber, James M. Anderson, Timothy A. Ostroot, Derek C. Sutermeister, Cass A. Hanson
  • Patent number: 11141298
    Abstract: A stent delivery system includes an elongate shaft including a proximal portion, a distal portion, at least one lumen extending at least partially therethrough, and a stent receiving portion on the distal portion of the elongate shaft. A stent is positioned on the stent receiving portion of the elongate shaft, the stent having a first configuration and a second configuration. A sheath is positioned longitudinally around the inner elongate shaft, the elongate shaft extending coaxially at least partially within the lumen of the sheath is also included. A proximal constraining arrangement is engaged with a proximal end of the stent. A distal constraining arrangement is engaged with a distal end of the stent. A handle assembly comprising an axially moveable outer shuttle, a first inner shuttle operably connected to the proximal constraining arrangement and a second inner shuttle operably connected to the distal constraining arrangement and outer sheath.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 12, 2021
    Assignee: Cook Medical Technologies LLC
    Inventors: Vincent McHugo, Triona Campbell, Gerard Treacy, Melissa Anenden, Criostoir O. Bhealtun
  • Patent number: 11141299
    Abstract: A stent delivery system includes an elongate shaft including a proximal portion, a distal portion, at least one lumen extending at least partially therethrough, and a stent receiving portion on the distal portion of the elongate shaft. A stent is positioned on the stent receiving portion of the elongate shaft, the stent having a first configuration and a second configuration. A proximal constraining arrangement is engaged with a proximal end of the stent. A distal constraining arrangement is engaged with a distal end of the stent. A release wire is disposed through the elongate shaft and releasably engaged with portion of the proximal constraining arrangement and the distal constraining arrangement member. A handle assembly is operably connected to the proximal constraining arrangement and the distal constraining arrangement, the handle assembly comprising a brake assembly. The proximal arrangement and the distal arrangement are coupled to the brake of the handle.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 12, 2021
    Assignee: Cook Medical Technologies LLC
    Inventors: Vincent McHugo, Triona Campbell, Gerard Treacy, Melissa Anenden, Criostoir O. Bhealtun
  • Patent number: 11123207
    Abstract: A stent delivery system, which includes a catheter and a stent stabilizer and pusher mechanism to capture and deploy a braided stent. The stabilizer pusher mechanism has a reinforced polymer shaft with two ends, a hub, a marker band and a braided mesh sock. The stent stabilizer and pusher mechanism further possesses a reinforced polymer shaft, which is constructed to have a low friction lumen. The low friction lumen may be guide wire compatible.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 21, 2021
    Assignee: Micro Medical Solutions, Inc.
    Inventors: Gregory Sullivan, Benedict Shia
  • Patent number: 11110250
    Abstract: A catheter (1) comprising an elongate tubular body (2) having a proximal end (3), a distal end (4), and an inner lumen (5) extending through the elongate tubular body (2), wherein the elongate tubular body (2) comprises a proximal section (6) and a distal section (7), wherein at least the proximal section (6) comprises at least two layers, wherein the proximal end (3) is connected with a catheter hub (8) being an adapter of greater radial outside dimension than the elongate tubular body (2), wherein the catheter hub (8) has an inner lumen (9) of larger inside diameter than the elongate tubular body (2), and wherein the innermost layer (10) of the proximal section (6) extends into the catheter hub (8) and flares from the proximal section (6) to the catheter hub (8). The catheter ensures a smooth transition of a medical device, e.g. a stent to be transferred from a storage device like a sheath into the tubular body of the catheter.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: September 7, 2021
    Assignee: Phenox Ltd.
    Inventors: Volker Trösken, Hermann Monstadt, Ralf Hannes, David Slattery, Ken Beatty
  • Patent number: 11103234
    Abstract: Articulating surgical instruments are disclosed. In one embodiment, a surgical instrument may include an elongated shaft assembly including an articulable portion moveable between a non-articulated configuration and an articulated configuration. First and second articulating shafts of the elongated shaft assembly may be coaxially arranged and axially fixed at an attachment point located distally from the articulable portion. Proximal portions of the first and second articulating shafts may be displaceable in opposing directions to articulate the articulable portion from the non-articulated configuration to the articulated configuration. In another embodiment, an articulation control may be movable from a first position to a second position to move an articulation lock from a locked configuration to an unlocked configuration to selectively permit articulation of a surgical instrument. The articulation lock also may be movable from the second position to a third position to articulate the surgical instrument.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 31, 2021
    Assignee: C.R. Bard, Inc.
    Inventors: Augustus Felix, Derek J. Leatzow, Nathan Stewart Cauldwell, Derek Affonce, Kevin J. Ranucci, Tomas Matusaitis, Alan Bachman
  • Patent number: 11096774
    Abstract: Systems, devices, and methods are provided for the delivery of an implant into the prostatic urethra. Embodiments of delivery systems can include a delivery device for insertion into the patient and a proximal control device for use in controlling release of the implant from the delivery device.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: August 24, 2021
    Assignee: ZENFLOW, INC.
    Inventors: Marcel Song Sicotte, Austin Michael Bly, Ben Collett-Nye, Shreya Mehta
  • Patent number: 11083611
    Abstract: An implant delivery system comprises an elongate tubular member having a lumen, a tubular implant coaxially disposed within the lumen of the elongate tubular member, and a delivery assembly having a distal portion coaxially disposed within tubular implant. The delivery assembly comprises a delivery wire, an engaging bumper fixedly coupled to the delivery wire, a stopper bumper fixedly coupled to the delivery wire, and a floating element slidably coupled around the delivery wire and disposed between the bumpers, thereby limiting linear translation of the floating element therebetween. The floating element has an engaging portion configured to engage the engaging bumper when the delivery wire is axially translated relative to the elongate member in a first direction. The floating element is configured to radially expand outward to frictionally engage the implant when the engaging portion of the floating element engages the engaging bumper.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: August 10, 2021
    Assignee: Stryker Corporation
    Inventor: Siddharth Loganathan
  • Patent number: 11058566
    Abstract: Devices, methods, and systems for prosthesis delivery to patient vasculature are provided. A prosthesis delivery device provided herein delivers a prosthesis to the vasculature of a patient and permits an operator to deploy the prosthesis using a single action mechanism to deploy the prosthesis at a standard deployment rate and a dual action mechanism to deploy the prosthesis at an accelerated deployment rate. Deploying the prosthesis at an accelerated deployment rate results in alterations to the deployed prosthesis structure because the prosthesis is deployed with increased axial compression that results in the prosthesis having increased radial force.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: July 13, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Sohrab Sethna, Jeffery Argentine
  • Patent number: 11020223
    Abstract: A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached, includes a shaft assembly including a distal end and a coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve. The system includes a sheath assembly defining a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The coupling structure is configured to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve based on longitudinal movement of the distal end of the shaft assembly.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: June 1, 2021
    Assignee: Medtronic, Inc.
    Inventors: Matthew Rust, Savage Padraig, Gianfranco Pellegrini, Finn Rinne
  • Patent number: 11007059
    Abstract: Devices and methods are disclosed for the treatment or repair of regurgitant cardiac valves, such as a mitral valve. An illustrative annuloplasty device can be placed in the coronary sinus to reshape the mitral valve and reduce mitral valve regurgitation. The disclosure also provides improved techniques for cardiac pacing.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 18, 2021
    Assignee: Transmural Systems LLC
    Inventors: Nasser Rafiee, Stuart MacDonald, Koosha Rafiee
  • Patent number: 10993822
    Abstract: A hand-held actuator device for releasing into the body from a delivery system a medical prosthesis, like a stent, comprising a frame that acts as a housing, a reel for receiving a wire, a manually operable slider mounted to the frame and a one-way connection between the slider and the reel. Actuating the slider causes the reel to wind up the wire and release the medical prosthesis.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: May 4, 2021
    Assignee: C. R. Bard, Inc.
    Inventors: Jurgen Dorn, Martin Wubbeling, Michael Vogel
  • Patent number: 10993823
    Abstract: The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: May 4, 2021
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Tony C. Hopkins, Siddharth Vad, Michael P. DeBruyne, Zachary Wagner, Blayne A. Roeder, William J. Havel, Jarin Kratzberg, Rick Hadley
  • Patent number: 10973665
    Abstract: Methods and devices useful, for example, in the field of angioplasty and stenting are disclosed. In some embodiments, the methods, devices and kits are configured for directional expansion inside a lumen, for example of a blood vessel obstructed by plaque. In some embodiments, the directional expansion displaces the plaque in a desired direction.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: April 13, 2021
    Inventors: Marco Antonio Peña Duque, Carlos Vonderwalde
  • Patent number: 10973527
    Abstract: Low profile, self-expandable, blood flow restrictors include a hollow channel open at axial ends to allow blood flow through the restrictor installed in a blood vessel. The channel may include a mesh and have a narrowing, or sandglass, profile to reduce blood flow. The sandglass shape is in a central portion of the channel and may be surrounded by a blocking coating impermeable to blood flow or a suture that dissolves over time. The mesh may be formed of a memory alloy. Restrictors include a retrieval connector at an end that is permeable to blood flow and permits attachment for restrictor positioning with a catheter.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: April 13, 2021
    Inventors: Hemant Deshmukh, Krantikumar Rathod
  • Patent number: 10966831
    Abstract: A prosthetic mitral annuloplasty ring includes a wire, an adjustment member for changing a length of the wire and a jacketing annulus for adjusting a radial dimension of the mitral valve annuloplasty ring. The jacketing annulus is sleeved over the wire and forms, together with the adjustment member, a shape matching that of a native mitral valve annulus. After the prosthetic mitral annuloplasty ring is implanted by suturing in a conventional surgical procedure and the patient's heart starts to beat again, the adjustment member can be connected to the delivery device and the wire length therein can be adjusted by a rotating operation of the delivery device so that the mitral valve annuloplasty ring will be expanded or contracted until the prosthetic mitral annuloplasty ring perfectly fits the native mitral valve annulus in shape, effectively avoiding the problem of incomplete mitral leaflet coaptation.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: April 6, 2021
    Assignee: Shanghai Newmed Medical Co., Ltd.
    Inventors: Qifeng Yu, Lihong Hou, Zhijie Wang, Haishan Wang, Tao Qin
  • Patent number: 10959735
    Abstract: Embodiments disclosed herein are directed towards an endovascular clip comprising a proximal anchoring member and a distal self-expanding member. The proximal anchoring member and distal self-expanding member are configured to extend across opposite sides of a neck of an aneurysm.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: March 30, 2021
    Assignee: NOHA, LLC
    Inventor: Hesham Morsi
  • Patent number: 10959868
    Abstract: A vascular intervention device delivery system, such as for implanting a self expanding stent, includes a thumbwheel rotatably mounted in a handle. The thumbwheel includes a radially outward facing thumb surface and a radially inward facing ratchet surface of a ratchet. A catheter has a proximal end attached to the handle, and a distal carrier segment for mounting a vascular intervention device thereon. A retractable sheath is movable from a first position covering the distal carrier segment to a second position retracted proximally uncovering the distal carrier segment. A pull extends between the thumbwheel and the retractable sheath. A ratchet pawl is mounted in the handle and has a catch in contact with the ratchet surface. The ratchet holds the thumbwheel against rotation in a forward direction, and the retractable sheath moves responsive to rotation of the thumbwheel in a reverse direction.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 30, 2021
    Assignee: Cook Medical Technologies, LLC
    Inventors: Sean Cummins, Darach McGrath
  • Patent number: 10959869
    Abstract: An example introducer is disclosed. An example introducer sheath includes a tubular member including a first layer and a second layer and a stent disposed between the first layer and the second layer of the tubular member. The stent includes an outer surface and an inner surface. Additionally, the stent is configured to shift from a first configuration to a second expanded configuration and the outer surface of the stent contacts the first layer of the tubular member in the second expanded configuration.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: March 30, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David Robert Wulfman, Matthew Nelson Frost, Pieter Spitael, Thomas Martin Keating, Martyn G. Folan, Martin Hynes, Christopher Brian Rognrud, Matthew Boyer
  • Patent number: 10952845
    Abstract: A percutaneous transseptal surgical implantation method for replacing a defective atrioventricular (AV) valve with a conical shaped prosthetic valve formed from extracellular matrix (ECM) tissue. When the method is employed to replace a native mitral valve, the method positions the prosthetic tissue valve in the mitral valve region, whereby the valve does not obstruct the outflow tract of the aortic valve and prevents the leaflets of the aortic valve from coapting.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 23, 2021
    Assignee: Co-Matrix Cardiovascular, Inc.
    Inventor: Robert G Matheny
  • Patent number: 10952739
    Abstract: Systems for treating an aneurysm in a cerebral vessel and methods of use are described. In one embodiment, the system includes an elongate tubular member having a lumen, an expandable stent, and a delivery device. The expandable stent has a constrained state that is configured for delivery through the lumen of the elongate tubular member, and an expanded state configured for placement within the cerebral vessel adjacent the aneurysm. The delivery device includes an elongate member and a self-expandable portion. The proximal end of the self-expandable portion is coupled to the elongate member at or near the distal end of the elongate member. The self-expandable portion of the delivery device includes a tubular mesh structure having a constrained state and an expanded state. The stent is engaged (e.g., mechanical, frictional, or intermeshing) with the self-expandable portion of the delivery device.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: March 23, 2021
    Assignee: SEQUENT MEDICAL, INC.
    Inventors: Claudio Plaza, James M Thompson, Hung P Tran