Enlarged End Patents (Class 623/1.31)
  • Patent number: 6585762
    Abstract: The invention provides arteriovenous grafts and methods for implanting the same. In one aspect of the invention, there are provided arteriovenous grafts that have a stepped down venous end. In another aspect, the invention provides arteriovenous grafts having cuffs for attachment to a target vein. The invention also provides methods for implanting arteriovenous grafts that include inserting the venous end of a graft into the target vein for positioning downstream of the venotomy site.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: July 1, 2003
    Inventor: Paul Stanish
  • Patent number: 6579314
    Abstract: A portion of a covered stent is encapsulated with ePTFE, so that the unencapsulated portion, which is covered by a single ePTFE covering, imparts an unimpaired flexibility to the stent. One surface of the stent, either the luminal or abluminal surface, is covered by a single continuous layer of ePTFE, while limited regions, preferably near the ends of the stent, of the other surface are also covered by ePTFE. The regions covered by ePTFE on both surfaces become encapsulated when the ePTFE of one layer becomes bonded to second layer. By leaving a middle region of the stent unencapsulated, the stent retains flexibility similar to a bare stent, thereby reducing the loading and deployment forces.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 17, 2003
    Assignee: C.R. Bard, Inc.
    Inventors: Sylvie Lombardi, Guido Koch, Richard Layne, Tarun Edwin, Wolfgang Supper, Walter Gamer, Thomas Kirchhoff
  • Patent number: 6569193
    Abstract: A self-expanding, tapered profile stent for implantation in a body lumen, such as an artery, is disclosed. The stent is constructed of a plurality of radially expandable cylindrical elements generally aligned on a common longitudinal stent axis and interconnected by one or more interconnecting members placed so that the stent is flexible in the longitudinal direction. The lengths of the cylindrical elements increase from one end of the stent to the opposite end by increasing the lengths of the struts and the lengths of the interconnecting members. Each cylindrical element is formed from repeating patterns of upright V's and inverted V's connected by straight strut arms with shoulders to create an overall serpentine wave pattern around the circumference. A step, continuous, parabolic, or curved taper in the stent can be imparted by using an expansion mandrel and applying deforming forces to the stent. The stent is made from pseudoelastic and shape memory alloys.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: May 27, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Daniel L. Cox, Kent C. B. Stalker, Joe Ventura, II
  • Publication number: 20030097172
    Abstract: A reducer implant for insertion in a blood vessel, for reducing an inner diameter of said vessel and flow therethrough, having at least one narrowed section having a first diameter; and at least one flared section having a diameter substantially greater than said first diameter. Optionally, the reducer is formed of a material and has a geometry that does not cause coagulation of blood in its vicinity.
    Type: Application
    Filed: September 26, 2002
    Publication date: May 22, 2003
    Inventors: Ilan Shalev, Jonathan Tsehori, Nissim Darvish
  • Patent number: 6499487
    Abstract: Described are devices and methods for diverting emboli away from the carotid arteries in the aorta. The devices are aortic diverters that generally comprise a hollow tube with a substantially cylindrical or conical wall, which is impermeable to emboli and which has open ends that allow blood to enter one end, flow through the tube and exit the other end. Additionally, snowshoe aortic diverters, which are planar rather than cylindrical are also shown. The methods of the invention generally include the steps of providing an aortic diverter carried by an intravascular catheter, introducing the intravascular catheter into the vascular system, advancing the intravascular catheter into the aortic arch to the region of the carotid arteries, and deploying the aortic diverter.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: December 31, 2002
    Assignee: Embol-X, Inc.
    Inventors: John McKenzie, Sachiko Hattori
  • Publication number: 20020123790
    Abstract: Novel intraluminal devices that include a plurality of engagement members to minimize graft migration and vessel wall damage are described. Applications of the instant teachings for AAA and TAA issues wherein proximal neck attachments are critical are featured, in addition to general usages with stenotic disease. Further, an enhanced engagement member is described for preventing the migration of a prosthetic device through a body lumen.
    Type: Application
    Filed: September 27, 2001
    Publication date: September 5, 2002
    Inventors: Geoffrey Hamilton White, Mark Dehdashtian
  • Patent number: 6383214
    Abstract: An encapsulated stent having a stent or structural support layer sandwiched between two biocompatible flexible layers. One preferred embodiment has a stent cover which includes a tubular shaped stent that is concentrically retained between two tubular shaped grafts comprised of expanded polytetrafluoroethylene. Another preferred embodiment has a stent graft which includes at least one stent sandwiched between the ends of two tubular shaped grafts wherein at least a portion of the grafts are unsupported by the stent. Still another embodiment includes an articulating stented graft which includes a plurality of stents spaced apart from one another at a predetermined distance wherein each stent is contained between two elongated biocompatible tubular members. The graft/stent/graft assemblies all have inseparable layers.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: May 7, 2002
    Assignee: IMPRA, Inc., a subsidiary of C. R. Bard, Inc.
    Inventors: Christopher E. Banas, Tarun J. Edwin
  • Patent number: 6379379
    Abstract: A stent having at least one smooth end is disclosed. The stent may include a coating or coatings on one or both end portions to provide a smooth finish to reduce possible damage to body passages when the stent is deployed and delivered. The stent may also contain drugs or surgical adhesives or a combination thereof in or on the coated portion of the stent. The stent may also be of the type where the materials of the stent may be treated to have a smooth flexible end or ends. The stent may also be of a configuration such that at least one end is more flexible than the middle portion of the stent.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: April 30, 2002
    Assignee: SciMed Life Systems, Inc.
    Inventor: Lixiao Wang
  • Publication number: 20010044647
    Abstract: Modular endoluminal stent-grafts include at least two different sized stent-grafts which are deployed one within the other. According to one embodiment of the invention, a first stent-graft is provided having a flared end which is expandable to a first diameter and a midsection which is expandable to a second diameter smaller than the first diameter. A second stent-graft is also provided having an end which is expandable to a diameter which engages the midsection of the first stent-graft. The first embodiment of the invention is deployed by expanding the first stent-graft such that its flared end engages a large diameter vessel, then expanding the second stent-graft inside the midsection of the first stent graft and inside a small diameter vessel such that the second stent graft engages the small diameter vessel and the midsection of the first stent-graft.
    Type: Application
    Filed: July 18, 2001
    Publication date: November 22, 2001
    Inventors: Leonard Pinchuk, Jean-Pierre Dereume
  • Publication number: 20010037148
    Abstract: An arterial graft device and a process for positioning the same, wherein said device comprises a first part positioned by conventional techniques within the artery, and a second part positioned on the first part by guiding means which are provided on the first part so as to prevent a catheter guidewire—whereby said second part is positioned in place—from deviating and damaging arterial walls.
    Type: Application
    Filed: June 20, 2001
    Publication date: November 1, 2001
    Inventor: Juan Carlos Parodi
  • Patent number: 6302908
    Abstract: An arterial graft device and a process for positioning the same, wherein the device comprises a first part positioned by conventional techniques within the artery, and a second part which is positioned and fixed on the first part by a cone-shaped segment which is provided on the first part so as to prevent a catheter guidewire—whereby the second part is positioned in place—from deviating and damaging arterial walls.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: October 16, 2001
    Inventor: Juan Carlos Parodi
  • Patent number: 6293964
    Abstract: A stent for use in the treatment of stenosis of the ostium of tubular organs, more particularly, blood vessels comprising a multiplicity of flanges located at an end of a generally tubular stent body. The flanges permit the accurate positioning of the stent within the vessel, while presenting dislodgement of the stent.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: September 25, 2001
    Inventor: Jay S. Yadav
  • Patent number: 6273912
    Abstract: An expanded polytetrafluoroethylene flanged vascular graft (10) suitable for end-to-side anastomosis grafting having an integral terminal polytetrafluoroethylene flanged skirt or cuff section (12) which facilitates an end-to-side anastomosis directly between an artery and the expanded polytetrafluoroethylene flanged bypass graft (10) without need for an intervening venous collar or venous patch.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: August 14, 2001
    Assignee: Impra, Inc.
    Inventors: Hans Scholz, Ulf Kruger, Utz Settmacher
  • Publication number: 20010012962
    Abstract: An implantable tubular textile prosthesis particularly useful in branched end-to-side anastomoses is provided. The prosthesis includes a first portion including an elongate tubular main wall which defines a fluid passageway therethrough, and a second portion including a tubular branch wall which extends laterally from the tubular main wall and which defines a fluid passageway therethrough. The tubular branch wall includes an elongate tubular extent and a contiguous flared tubular extent. The tubular branch wall is secured to the tubular main wall at the flared tubular extent to establish fluid communication between the passageways of the tubular main wall and the tubular branch wall. The flared tubular extent includes a gradual increase in diameter with respect to the tubular branch extent to provide a seamless and substantially fluid-tight transition between the tubular main wall and the tubular branch wall along the flared tubular extent.
    Type: Application
    Filed: January 11, 2001
    Publication date: August 9, 2001
    Inventors: Peter J. Schmitt, Klaus Heck, James Rudnick
  • Patent number: 6258120
    Abstract: The present invention is directed to devices and methods for diverting emboli away from the carotid arteries in the aorta. The devices are aortic diverters that generally comprise a hollow tube with a substantially cylindrical or conical wall, which is impermeable to emboli and which has open ends that allow blood to enter one end, flow through the tube and exit the other end. Additionally, snowshoe aortic diverters, which are planar rather than cylindrical are also disclosed. The methods of the invention generally include the steps of providing an aortic diverter carried by an intravascular catheter, introducing the intravascular catheter into the vascular system, advancing the intravascular catheter into the aortic arch to the region of the carotid arteries, and deploying the aortic diverter.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: July 10, 2001
    Assignee: Embol-X, Inc.
    Inventors: John McKenzie, Sachiko Hattori
  • Patent number: 6258119
    Abstract: A myocardial implant for insertion into a heart wall for trans myocardial revascularization (TMR) of the heart wall. The TMR implant provides for means to promote the formation of new blood vessels (angiogenesis), and has a flexible, elongated body that contains a cavity and openings through the flexible, elongated body from the cavity. The TMR implant includes a coaxial anchoring element integrally formed at one end for securing the TMR implant in the heart wall.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: July 10, 2001
    Assignee: Myocardial Stents, Inc.
    Inventors: Hany Hussein, Stanislaw Sulek
  • Publication number: 20010002443
    Abstract: A stent graft device for locate inside an aorta affected by an aneurysm causing the aorta having an inner diameter smaller than the sum of inner diameters of the iliac arteries, the graft having an upper main tubular portion dividing into two pending graft limbs capable of accommodating together within the restricted inner diameter of the aorta without the restriction of the aorta affecting the diameter of the limbs, the limbs having respective distal end portions having diameters larger than the diameters of the graft limbs so as to be accommodated and retained within the iliac arteries.
    Type: Application
    Filed: January 18, 2001
    Publication date: May 31, 2001
    Inventor: Juan Carlos Parodi
  • Patent number: 6221101
    Abstract: A vascular prosthesis comprising a tube of material other than autologous vascular tissue but considered/approved as safe and supple enough for use instead of such tissue, the tube having an end formation for surgical connection directly to an opening formed in an artery, the end formation serving to promote, at that end and/or within the direct connection and in response to normally pulsed blood flow, localized movement of blood having a non-laminar nature with a shear stress inducing relation to receiving arterial wall.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: April 24, 2001
    Assignee: IMPRA, Inc.
    Inventors: Peter Lyon Harris, Thien Voon How
  • Patent number: RE38091
    Abstract: The device comprises a prosthesis designed as a hollow body compressed against the action of restoring spring forces to a cross section reduced relative to an expanded use position, and held in this position by a strippable sheath. After the sheath is stripped, the prosthesis automatically expands to a cross section corresponding to the use position. The sheath, which can be a meshwork in the approximate form of crocheted material, extends over the entire length of the prosthesis and consists of at least one continuous thread and at least one drawstring. The prosthesis, held in the radially compressed position by the sheath, can be mounted displaceably on a feed wire or non-axially-displaceably on the insertion end of a probe or a catheter.
    Type: Grant
    Filed: April 10, 1997
    Date of Patent: April 22, 2003
    Assignee: Boston Scientific Corporation
    Inventor: Ernst Peter Strecker