With Means To Attach Graft To Natural Blood Vessel (e.g., Hooks, Etc.) Patents (Class 623/1.36)
-
Patent number: 12245940Abstract: Certain aspects of the disclosure concern a device for repairing or replacing a native heart valve. The device can include a frame including a first set of struts intersecting with a second set of struts at a plurality of strut connection points. The frame can be radially expandable from a radially collapsed state to a radially expanded state. The device can include at least one expansion feature including a screw head and a screw shaft connected to the screw head. The screw shaft can extend through a first strut connection point and a second strut connection point. The device can further include a plurality of penetrating members extending from a first end of the frame. Rotating the screw shaft in a first direction can radially expand the frame from the radially collapsed state to the radially expanded state.Type: GrantFiled: November 8, 2021Date of Patent: March 11, 2025Assignee: EDWARDS LIFESCIENCES CORPORATIONInventors: David M. Taylor, Tri D. Tran, Sean Chow, David L. Hauser, Pui Tong Ho, Alexander H. Cooper
-
Patent number: 12239535Abstract: A delivery system includes an elongated shaft component, a self-expanding valve prosthesis, at least one cinching suture, and a radially-expandable sleeve. The valve prosthesis is disposed over a distal portion of the elongated shaft component and includes a compressed configuration for delivery and an expanded configuration for deployment. The at least one cinching suture removably couples the valve prosthesis to the elongated shaft component and radially compresses the valve prosthesis into the compressed configuration for delivery. The sleeve is secured to and encircles an outer surface of the valve prosthesis. The sleeve has a delivery state with a first diameter extending over a full length of the valve prosthesis in the compressed configuration and a deployed state with a greater second diameter extending over the full length of the valve prosthesis in the expanded configuration. The sleeve is configured to prevent paravalvular leakage in situ in the deployed state.Type: GrantFiled: April 27, 2023Date of Patent: March 4, 2025Assignee: MEDTRONIC VASCULAR, INC.Inventors: Paul Rothstein, Marc Anderson, Laura Ruddy, Grainne Carroll
-
Patent number: 12239520Abstract: A reinforcement device for reinforcing tissues having one or more structural deficiencies includes a longitudinally-extending reinforcing layer for treating the structural deficiency, a plurality of spiked naps distributed across the reinforcing layer and projecting therefrom for adhering to the tissue, and a dissolvable matrix layer covering at least a portion of the reinforcing layer and a portion of the plurality of spiked naps. The matrix layer increases the time before the spiked naps substantially adhere to the tissue, thereby allowing the practitioner additional time to position the reinforcement device.Type: GrantFiled: January 9, 2023Date of Patent: March 4, 2025Assignee: Covidien LPInventor: Martin G. Paul
-
Patent number: 12226305Abstract: The invention relates to a multilumen implant for the application in human and animal bodies, comprising a substantially tubular element (1) that divides into a proximal (2) and a distal section (3), and at least one stent (8) for the fixation of the proximal section in a target vessel, wherein the tubular element (1) is designed to branch in the distal section (3) into at least two lumens (4, 5).Type: GrantFiled: November 14, 2017Date of Patent: February 18, 2025Assignee: Stental GmbHInventors: Jörg Teßarek, Milisav Obradovic
-
Patent number: 12194161Abstract: A living body-adhesive sheet of the present disclosure includes a living body-adhesive film and a support. The living body-adhesive film has a thickness of 5 ?m or less and contains cellulose. The support supports the living body-adhesive film. The support is formed of a material in which a hydrogen bonding component ?H in a Hansen solubility parameter is 2 to 20 MPa1/2.Type: GrantFiled: September 26, 2020Date of Patent: January 14, 2025Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Yuki Namigata, Tomoko Kawashima, Takahiro Aoki, Yuko Taniike
-
Patent number: 12178665Abstract: A marking body, a method for producing a marking body and a method for using a marking body are disclosed. In an embodiment a marking body includes a self-expanding structure of a shape-memory metal, wherein the shape-memory metal forms a tubular structure that has at least two elongated openings along its length that extend no further than from a head section to a foot section of the tubular structure, wherein the tubular structure comprises at least one stripe of the shape-memory metal located between two adjacent elongated openings, and wherein the tubular structure is configured to be compressed when in an application condition and configured to be stretched when in a non-application condition.Type: GrantFiled: August 14, 2019Date of Patent: December 31, 2024Assignee: Alleima Karlsruhe GmbHInventor: Bernd Vogel
-
Patent number: 12127958Abstract: An intraluminal device and method of resisting migration of a device in a lumen, the lumen having muscle defining an intraluminal sphincter includes a device having a body with a size and shape of a portion of the lumen. The device further includes at least one tine extending distally from the body. The at least one tine is rigid or semi rigid. The device is deployed in the lumen with the body proximal the sphincter with respect to peristaltic movement of the lumen and with the at least one tine penetrating the muscle of the sphincter to resist distal migration.Type: GrantFiled: September 24, 2021Date of Patent: October 29, 2024Assignee: BFKW, LLCInventors: Randal S. Baker, Frederick J. Walburn
-
Patent number: 12109102Abstract: An aortic protection device including a mesh lumen shaped and sized to extend along the aorta, from a heart-side of a brachiocephalic artery exit from the aorta to distal of a left subclavian artery exit from the aorta, wherein the mesh lumen is arranged to change a porosity of mesh pores in response to external control. Related apparatus and methods are also described.Type: GrantFiled: September 27, 2018Date of Patent: October 8, 2024Inventor: Zeev Brandeis
-
Patent number: 12097136Abstract: A graft securing system including at least one expandable frame moveable from a collapsed state to an expanded state, and at least one anchor coupled to the frame via an elastic support strut, said anchor including: an anchor base, at least one deflectable prong protruding from said anchor base and having at least one penetration tip and at least one restraining sleeve at least partially slideably moveable along the at least one prong and wherein in the collapsed state, the support strut is biased radially centrally bringing the at least one anchor to point generally axially, parallel to a longitudinal axis of the frame.Type: GrantFiled: December 13, 2020Date of Patent: September 24, 2024Assignee: Endoron Medical Ltd.Inventors: Ron Karmeli, Eyal Teichman
-
Patent number: 12097375Abstract: A cardiac pacing system and a pacemaker fixation device are disclosed. The pacemaker fixation device includes a ring-shaped stent and at least one contractible member. The ring-shaped stent is configured to load a leadless pacemaker and easily fix it at a target site in a patient's body reliably without dislodgement. A connecting element in the contractible member can be reliably connected to an external mechanism, thus facilitating retrieval and removal of the cardiac pacing system with an increased success rate. During implantation, the contractible member can be adapted by operating the external mechanism to adjust the pacing location for the leadless pacemaker, thus allowing the operator to easily determine the best pacing location that can result in enhanced pacing performance of the leadless pacemaker. Further, the leadless pacemaker may be fixed in the atrium in order to pace the atrium, thus reducing non-physiological pacing with atrioventricular desynchronization.Type: GrantFiled: September 27, 2019Date of Patent: September 24, 2024Assignee: MICROPORT SOARING CRM (SHANGHAI) CO., LTD.Inventors: Peng Guo, Grace Jang, Zhijun Cheng
-
Patent number: 12036116Abstract: An implantable endoluminal prosthesis for replacing a damaged aortic valve is provided. In one embodiment, the prosthesis includes a balloon-expandable stent, a tubular conduit that extends into the ascending aorta, and a self-expanding stent. The tubular conduit extends across the balloon-expandable stent. The tubular conduit includes an artificial valve. The self-expanding stent extends across the tubular conduit into the ascending aorta. The balloon-expandable stent, the tubular conduit, and the self-expanding stent are coupled to provide unidirectional flow of fluid into the aorta and further into the coronary arteries. Also provided is a method for implanting the endoluminal prosthesis.Type: GrantFiled: June 2, 2021Date of Patent: July 16, 2024Assignee: Cook Medical Technologies LLCInventor: Timothy Am Chuter
-
Patent number: 12036114Abstract: Stented prosthetic heart valves comprising a stent frame having a compressed arrangement for delivery within a patient's vasculature and an expanded arrangement for deployment within a native heart valve. The stented prosthetic heart valves including a paravalvular leakage prevention or mitigation wrap that encircles a stent frame and is formed of a flexible material having a variable diameter defined by a greatest distance between the wrap and the stent frame. The wrap further includes a first end coupled to the stent frame and an opposing second end that is not coupled to the stent frame, wherein the wrap can selectively enlarge its diameter in situ via movement of the second end. Devices for and methods of selectively deploying the wrap are also disclosed.Type: GrantFiled: December 9, 2020Date of Patent: July 16, 2024Assignee: MEDTRONIC VASCULAR, INC.Inventors: Michael Bateman, Cynthia Clague, Jeffrey Sandstrom, Joel Racchini, James R. Keogh
-
Patent number: 12029643Abstract: A biocompatible and biodegradable construct comprising a base expandable member and an outer coating comprising poly(glycerol sebacate) (PGS), the base expandable member comprising acellular extracellular matrix (ECM) derived from a mammalian tissue source, the acellular ECM exhibiting a flexible, porous, expandable structure, which is adapted to expand upon exposure to and absorption of a bodily fluid, wherein the construct seals a perivalvular leak when disposed proximate thereto.Type: GrantFiled: April 15, 2021Date of Patent: July 9, 2024Assignee: Cormatrix Cardiovascular, Inc.Inventor: Robert G Matheny
-
Patent number: 12023237Abstract: A visceral double-barreled main body stent graft and methods for its use, the stent graft comprises, a main body stent graft having distal and proximal ends, the main body stent graft's length ranges from about 100-120 mm and diameter at the proximal end ranges from about 30-45 mm, first and second lumens defined at the main body stent graft's distal end, the first lumen's diameter ranges from about 18-20 mm, the second lumen's diameter ranges from about 16-18 mm, the first and second lumens have about the same length from about 50-70 mm, the first lumen is secured to the second lumen along a shared length, and the main body stent graft defines a tubular wall that is contiguous with the first and second lumens such that any fluid entering the main body must exit through one of the first or second lumens.Type: GrantFiled: August 12, 2021Date of Patent: July 2, 2024Assignee: Sanford HealthInventor: Patrick W. Kelly
-
Patent number: 12004980Abstract: Embodiments are directed in part to endovascular prostheses and methods of deploying same. Embodiments may be directed more specifically to stent grafts and methods of positioning and deploying such devices within the body of a patient.Type: GrantFiled: October 8, 2020Date of Patent: June 11, 2024Assignee: TriVascular, Inc.Inventors: Jenine S. Vinluan, William P. Stephens, Mark Geusen, Carl H. Poppe, Christopher L Staudenmayer, Michael V. Chobotov, James R. Watson, Teresa Woodson
-
Patent number: 11969519Abstract: The present application provides an orthopedic implant or a part thereof, comprising biodegradable magnesium alloy comprising magnesium and Ca in the range of 0.550-0.700 wt %, Zn in the range of 0.400-0.700 wt %, and Fe 50 ppm or less, the biodegradable magnesium alloy consisting of two phases comprising a first phase comprising magnesium and Zn and a second phase less noble than the first phase, the second phase comprising Mg2Ca precipitates larger than nano-sized. The present application also provides a method for preparing the biodegradable magnesium alloy, a method for preparing the orthopedic implant or the part thereof, and a method for treating a subject in need of therapy for a medical condition of a bone.Type: GrantFiled: May 26, 2023Date of Patent: April 30, 2024Assignee: Bioretec OyInventors: Timo Lehtonen, Kimmo Lähteenkorva, Anna-Maija Haltia, Christopher Stahle
-
Patent number: 11957573Abstract: Some embodiments of the present disclosure provide a stent-valve for transcatheter implantation to replace a cardiac valve. In some embodiments, the stent valve being compressible to a compressed state for delivery, and expandable to an operative state for implantation. In some embodiments, the stent-valve comprises a stent, a plurality of leaflets for defining a prosthetic valve, an inner skirt, an outer skirt, and a paravalve seal for sealing against surrounding tissue. In some embodiments, the paravalve seal comprising material that swells in response to contact with blood or components thereof.Type: GrantFiled: May 18, 2021Date of Patent: April 16, 2024Assignee: Boston Scientific Medical Device LimitedInventors: Stephane Delaloye, Jacques Essinger, Jean-Luc Hefti, Youssef Biadillah, Luc Mantanus, Fabien Lombardi
-
Patent number: 11944530Abstract: A vascular graft may be configured to transition from an insertion state to a deployed state. The graft comprising a proximal end having an expandable mesh, a distal end having an expandable mesh, and at least one suture cuff positioned between the proximal and distal ends, wherein each suture cuff comprises additional material relative to the proximal and distal ends that is configured to form when the vascular graft transitions from the insertion state to the deployed state.Type: GrantFiled: December 30, 2019Date of Patent: April 2, 2024Assignee: Aquedeon Medical, Inc.Inventors: Thomas J. Palermo, Pin-Hsuan Lee, Jimmy Jen
-
Patent number: 11943515Abstract: Methods, systems, and media for presenting media content are provided.Type: GrantFiled: July 8, 2022Date of Patent: March 26, 2024Assignee: GOOGLE LLCInventors: Vinit Deshpande, Kishore Subramanian, Shashank Gupta, Shubham Gupta
-
Patent number: 11938022Abstract: A transcatheter valve prosthesis and a method for implanting the prosthesis in a heart are disclosed. The prosthesis includes a tubular body a coupled to a prosthetic valve. A fabric may be disposed on an outer surface of the tubular body. The method includes partially deploying the tubular body from a catheter to at position distal of a distal edge of a native valve leaflet, and moving the catheter such that the deployed outflow end portion of the tubular body engages the distal edge of the native valve leaflet and lifts the native valve leaflet in the proximal direction towards an atrial chamber of the heart. Then, the tubular body can be fully deployed such that the native valve leaflet is captured between the outflow end portion and the inflow end portion.Type: GrantFiled: May 25, 2021Date of Patent: March 26, 2024Assignee: HIGHLIFE SASInventors: Malek Nasr, Georg Börtlein
-
Patent number: 11931252Abstract: The present invention comprises a novel and safer mechanism of deployment using a self-positioning, self-centering, and self-anchoring method. To embody the present invention, a disk-based valve apparatus allowing the repositioning and retrieval of the implantable valve while working on a dysfunctional valve structure is disclosed. The disk-based valve apparatus may comprise one or more disks, either proximal or distal, a valve-housing component and a valve component. The one or more disks may be either proximal or distal, may be either connected to each other or disconnected from each other and may either be symmetrical or have different shapes and dimensions. The disk-based valve apparatus may be self anchoring, such as anchored by pressure from the one or more disk, or may be anchored using any anchoring.Type: GrantFiled: July 15, 2019Date of Patent: March 19, 2024Assignee: Cephea Valve Technologies, Inc.Inventors: Matteo Montorfano, Alaide Chieffo, Juan F. Granada
-
Patent number: 11931480Abstract: A hydrogel material for modulating an immune response in a human subject or other mammal includes a collection of microgel particles having one or more network cross linker components, wherein the microgel particles, when exposed to an endogenous or exogenous annealing agent, links the microgel particles together in situ to form a covalently-stabilized scaffold of microgel particles having interstitial spaces formed between the microgel particles and wherein the collection of microgel particles further includes at least one of an antigen and an adjuvant.Type: GrantFiled: February 14, 2017Date of Patent: March 19, 2024Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Dino Di Carlo, Westbrook Weaver, Tatiana Segura, Philip Scumpia, Donald R. Griffin
-
Patent number: 11918450Abstract: Devices, systems, and methods for coupling a prosthetic implant to a fenestrated body are disclosed herein. In some embodiments, a branch stent graft is provided. The branch stent graft can include an engagement portion for engagement with an opening in a fenestrated body, such as a vessel wall or an aortic stent graft. The engagement portion of the branch stent graft can be coupled to the fenestrated body such that the branch stent graft can move, rotate or shift relative to the fenestrated body but such that axial movement of the branch stent graft is restricted and/or prevented.Type: GrantFiled: March 25, 2021Date of Patent: March 5, 2024Assignee: Bolton Medical, Inc.Inventors: Casey Torrance, Shannon Eubanks, Edward Wulfman, Thomas Douthitt
-
Patent number: 11903825Abstract: A replacement heart valve has an expandable frame configured to engage a native valve annulus and a valve body mounted to the expandable frame. The valve body can have a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and prevent flow in a second direction, the second direction being opposite the first direction.Type: GrantFiled: July 28, 2020Date of Patent: February 20, 2024Assignee: Edwards Lifesciences CardiAQ LLCInventors: Arshad Quadri, J. Brent Ratz, Robrecht Michiels
-
Patent number: 11896509Abstract: A tissue anchoring device including an expandable frame and at least one anchor having a tissue penetrating portion. The anchor is attached to the expandable frame through a plurality of beams forming a frame or a tab that enable the anchor to elastically bend with respect to a longitudinal axis of the expandable frame.Type: GrantFiled: May 15, 2022Date of Patent: February 13, 2024Assignee: Endoron Medical Ltd.Inventors: Eyal Teichman, Ron Karmeli, Tanhum Feld
-
Patent number: 11896776Abstract: The subject matter of this specification can be embodied in, among other things, an indwelling catheter with an integrated coil section. The coil section, in use, is disposed outside of the urethra and can stretch and bend to accommodate various activities of a user by reducing frictional forces and trauma within the urethra. This improved catheter design results in an increase in range of motion and a decrease in pain for the user.Type: GrantFiled: October 19, 2021Date of Patent: February 13, 2024Inventor: Anthony Alcindor
-
Patent number: 11872622Abstract: Proposed is a nitinol nanofiber with an average surface roughness that is enhanced through mechanical and chemical treatments. The enhanced surface roughness improves biocompatibility and promotes tissue growing, thereby improving the bioavailability of the nitinol nanofiber. The nitinol nanofiber undergoes infrared irradiation whereby the nitinol fiber exhibits improved tensile strength, elastic modulus, and maximum restorative stress. Therefore, fatigue fraction does not easily occur in the nitinol fiber even when the nitinol nanofiber has a constant roughness. The present invention provides bio-use or medical nitinol nanofibers that are highly biocompatible.Type: GrantFiled: July 23, 2021Date of Patent: January 16, 2024Assignee: TINIKO CO., LTD.Inventor: Ji-Hoon Kang
-
Patent number: 11793623Abstract: A catheter having opposed tissue contacting surfaces for creating an anastomosis between two blood vessels is utilized to facilitate a method for percutaneously placing a biologic graft at a procedural site. The method may comprise steps of inserting a guidewire into a blood vessel, placing a sheath over the guidewire, advancing a biologic graft over the guidewire into the blood vessel at a biologic graft attachment site, advancing a catheter over the guidewire, pushing a distal tip of the catheter through the biologic graft, a vessel wall of the blood vessel, and into a lumen of the blood vessel, and creating an anastomosis between the biologic graft and the blood vessel by activating the catheter to apply energy to the vessel wall and to a wall of the biologic graft.Type: GrantFiled: October 14, 2020Date of Patent: October 24, 2023Assignee: AVENU MEDICAL, INCInventors: Jeffrey E. Hull, Justin K. Mann, Mark A. Ritchart
-
Patent number: 11771553Abstract: The invention relates to a prosthetic valve (1) for regulating fluid flow between an upstream side (4) and a downstream side (5) and being operable between an open status and a closed status. The prosthetic valve comprises: —an orifice (2) arranged in a surrounding member (3) and extending between the upstream side (4) and the downstream side (5) wherein in the open status of the prosthetic valve (1) the fluid flow through the orifice is maximally enabled and wherein in the closed status of the prosthetic valve the fluid flow through the orifice in a restriction direction (21) from the downstream side (5) to the upstream side (4) is restricted; and—a leaflet (6) arranged in the orifice and being operable between an open status corresponding to the open status of the prosthetic valve and a closed status corresponding to the closed status of the prosthetic valve.Type: GrantFiled: July 7, 2020Date of Patent: October 3, 2023Assignee: Medtronic, Inc.Inventors: Richard Cornelussen, Asimina Glynou, Pascalle Reiters, Robert Vestberg, Ulrich Wolfhard
-
Patent number: 11678971Abstract: The invention discloses a stent graft used for interventional treatment of abdominal aortic disease, comprising a tube body composed of a tubular covering and a plurality of annular stents, and the tube body comprises a first tube body and a second tube body that arranged in sequence from the proximal end to the distal end, wherein the diameter of the first tube body is greater than diameter of the second tube body; the first tube body and the second tube body are connected by a transition section as a whole; the diameter at central part of the transition section is smaller than the diameter of the proximal end of the transition section and the diameter of the distal end of the transition section; a plurality of fenestrations are disposed on the first tube body and the transition section.Type: GrantFiled: December 27, 2018Date of Patent: June 20, 2023Assignee: HANGZHOU ENDONOM MEDTECH CO. LTD. HANGZHOU, CHINAInventors: Wei Guo, Yongsheng Wang, Anwei Li
-
Patent number: 11660191Abstract: A distal end of a guide catheter is transvascularly advanced into a left ventricle of a heart of a subject. While the distal end of the guide catheter remains disposed in the left ventricle, a first tissue anchor of an implant is deployed from the distal end of the guide catheter. Subsequently, the guide catheter is retracted while progressively exposing the implant. Subsequently, a second tissue anchor of the implant is anchored to a posterior annulus of a mitral valve of the heart by deploying at least part of the second anchor within a left atrium of the heart, such that the implant extends from the first tissue anchor, over an atrial side of a posterior leaflet of the mitral valve, and to the second tissue anchor. Other embodiments are also described.Type: GrantFiled: January 21, 2020Date of Patent: May 30, 2023Assignee: EDWARDS LIFESCIENCES CORPORATIONInventors: Aaron M. Call, Joseph P. Lane
-
Patent number: 11654224Abstract: Methods, devices, and kits for implanting a vascular graft to perform hemodialysis treatments on patients with renal failure are disclosed. The kits can include access devices comprised of an access catheter having a guidewire lumen and stylet lumen, a guide tube having a curved distal end, a stylet, an actuator handle and a vascular graft. The methods describe techniques for using the described kits and devices for performing vascular procedures, such as percutaneous implantation of the vascular graft.Type: GrantFiled: December 27, 2017Date of Patent: May 23, 2023Assignee: Vascular Access Technologies, Inc.Inventor: Lakshmikumar Pillai
-
Patent number: 11599996Abstract: Methods and systems are described for assessing a vessel obstruction. The methods and systems obtain a volumetric image dataset of a myocardium and at least one coronary vessel, wherein the myocardium comprises muscular tissue of the heart. A three-dimensional (3D) image corresponding to a coronary vessel of interest is created from the volumetric image dataset. Feature data that represents features of both the myocardium and the coronary vessel of interest is generated. At least some of the feature data is determined by a first machine learning-based model based on the 3D image. A second machine learning-based model is used to determine at least one parameter based on the feature data, wherein the at least one parameter represents functionally significant coronary lesion severity of the coronary vessel of interest.Type: GrantFiled: June 24, 2020Date of Patent: March 7, 2023Assignee: Pie Medical Imaging B.V.Inventors: Ivana Isgum, Majd Zreik, Jean-Paul Aben
-
Patent number: 11571559Abstract: An improved system for supporting (e.g., localization and/or positioning of) intravascular devices discussed herein provides for example a multi-element arrangement. A set of struts optionally projects from the intravascular device and contacts the vessel walls. The localization and positioning of the pump may be provided by the struts and/or by use of a tether opposing a propulsive force to ensure localization.Type: GrantFiled: June 6, 2022Date of Patent: February 7, 2023Assignee: PROCYRION, INC.Inventors: William Clifton, Ronald G. Earles, Benjamin Hertzog, Jason J. Heuring, Christopher A. Durst, Omar Benavides, Eric S. Fain
-
Patent number: 11491033Abstract: A heart valve assembly includes an inner frame comprising a graft covering housing a prosthetic heart valve, wherein the graft covering extends around the prosthetic heart valve for providing sealing to the heart valve, an outer frame formed from a metallic material and defining a gridded configuration, and being secured to the graft covering by a plurality of stitches, and a sealing material positioned externally to the outer frame for providing sealing between the outer frame and a patient's anatomical wall to prevent paravalvular leaks. The sealing material includes a plurality of radially extending fibers that extend outwardly of the outer frame. The graft covering is made of polyester, polytetrafluoroethylene, expanded polytetrafluoroethylene, or a polymer.Type: GrantFiled: April 12, 2022Date of Patent: November 8, 2022Assignee: Aortic Innovations, LLCInventor: Ali Shahriari
-
Patent number: 11484406Abstract: Embodiments of a prosthetic heart valve are disclosed. An implantable prosthetic valve can include an annular frame having an inflow end, an outflow end and a central longitudinal axis extending from the inflow end to the outflow end. The valve can include a valvular structure including two or more leaflets, each of the two or more leaflets having a leaflet inflow edge positioned at least partially outside of the frame and a leaflet outflow edge positioned within the frame, wherein at least a portion of each of the leaflet inflow edges is unsupported by the frame.Type: GrantFiled: November 5, 2019Date of Patent: November 1, 2022Assignee: Edwards Lifesciences CorporationInventor: Tamir S. Levi
-
Patent number: 11382776Abstract: The present disclosure provides an endoprosthesis where a preferably polymeric coating has a number of surface features such as protrusions or textures that are arranged in a micropattern. The endoprosthesis optionally has an expanded state and a contracted state, and in some cases includes a stent with a polymeric coating attached to an outer surface of the stent. The stent may have an inner surface defining a lumen, an outer surface, and a stent thickness defined between the inner surface and outer surface. The stent may comprise a plurality of surface textures extending from the stent surfaces, wherein the textures are arranged in a macropattern.Type: GrantFiled: July 29, 2019Date of Patent: July 12, 2022Assignee: BVW Holding AGInventors: Lukas Bluecher, Michael Milbocker
-
Patent number: 11351359Abstract: An improved system for supporting (e.g., localization and/or positioning of) intravascular devices discussed herein provides for example a multi-element arrangement. A set of struts optionally projects from the intravascular device and contacts the vessel walls. The localization and positioning of the pump may be provided by the struts and/or by use of a tether opposing a propulsive force to ensure localization.Type: GrantFiled: November 24, 2021Date of Patent: June 7, 2022Assignee: PROCYRION, INC.Inventors: William Clifton, Ronald G. Earles, Benjamin Hertzog, Jason J. Heuring, Christopher A. Durst, Omar Benavides, Eric S. Fain
-
Patent number: 11351024Abstract: An airway support device of the present disclosure can be attached to tracheal and/or bronchial cartilage on opposing sides of a tracheal and/or bronchial wall to pull the tracheal and/or bronchial cartilages toward each other to reconstruct and/or reshape to a normal anatomy across the membranous tracheal and/or bronchial wall and thus relieving tension across the tracheal and/or bronchial wall. The airway support device can include at least two longitudinal strips that extend longitudinally along and are attached (e.g., sutured) to the trachea and/or bronchus on opposite sides of the tracheal and/or bronchial wall. Pairs of lateral strips extending from each of the longitudinal strips can be attached to each other under tension. The tracheal and/or bronchial wall can be attached (e.g., sutured) to the lateral strips to open the airway of the trachea and/or bronchus.Type: GrantFiled: June 18, 2020Date of Patent: June 7, 2022Assignee: Lazzaro Medical, LLCInventor: Richard Lazzaro
-
Patent number: 11351045Abstract: An illustrative stent may comprise an elongated tubular member having a first end and a second end and an intermediate region disposed therebetween. The elongated tubular member may include at least one barb attached thereto. The barb may be configured to be tucked under a filament of the stent during delivery of the stent and protrude radially from the stent, when the stent is deployed.Type: GrantFiled: February 27, 2020Date of Patent: June 7, 2022Assignee: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Martyn G. Folan, Martin Hynes, Damien V. Nolan, Enda Connaughton, Matthew Montague, Thomas M. Keating, Michael Walsh
-
Patent number: 11246625Abstract: A drive assembly for use with a delivery catheter for delivering an implantable medical device includes a drive motor configured to be operably coupled to an inner shaft of the delivery catheter such that operation of the drive motor causes the inner shaft to translate relative to the outer shaft and a controller. The controller is configured to receive a position signal from a position sensor indicating a position of the implantable medical device relative to the outer shaft as well as a motor signal indicating a rotational position of an output shaft of the drive motor. The controller is configured to output a control signal instructing operation of the drive motor based upon the indicated rotational position of the output shaft of the drive motor and the indicated position of the implantable medical device relative to the outer shaft.Type: GrantFiled: January 21, 2019Date of Patent: February 15, 2022Assignee: Boston Scientific Scimed, Inc.Inventors: Michael J. Kane, Peter James Keogh, Kevin Robert Poppe, Daniel J. Foster, Stephen J. Burke
-
Patent number: 11202717Abstract: A medical fixation device having a device attachment portion, a compression bearing portion and a barb portion. The barb portion is separated from a device constraining means by the incorporation of the compression bearing portion.Type: GrantFiled: November 26, 2019Date of Patent: December 21, 2021Assignee: W. L. Gore & Associates, Inc.Inventor: Edward E. Shaw
-
Patent number: 11033294Abstract: A method of treatment for a body vessel is provided. The body vessel includes a dissection flap formed from a wall of the body vessel, which longitudinally separates a natural body vessel lumen into a true lumen and a false lumen. One or more cuts are formed in the dissection flap with a cutting device or system. An expandable device is inserted within the true lumen, and expanded to reappose the dissection flap against the wall of the body vessel where the dissection flap was detached from the wall such that the false lumen is closed. A variety of cut patterns are disclosed.Type: GrantFiled: February 14, 2018Date of Patent: June 15, 2021Assignee: Cook Medical Technologies LLCInventors: Blayne A. Roeder, Joshua F. Krieger, Jarin A. Kratzberg, Matthew J. Phillips, Zachary Berwick, Ghassan Kassab
-
Patent number: 11000359Abstract: Devices, systems, and methods for coupling a prosthetic implant to a fenestrated body are disclosed herein. In some embodiments, a branch stent graft is provided. The branch stent graft can include an engagement portion for engagement with an opening in a fenestrated body, such as a vessel wall or an aortic stent graft. The engagement portion of the branch stent graft can be coupled to the fenestrated body such that the branch stent graft can move, rotate or shift relative to the fenestrated body but such that axial movement of the branch stent graft is restricted and/or prevented.Type: GrantFiled: February 1, 2019Date of Patent: May 11, 2021Assignee: Aortica CorporationInventors: Casey Torrance, Shannon Eubanks, Edward Wulfman, Thomas Douthitt
-
Patent number: 10993802Abstract: A biocompatible and biodegradable construct having a base expandable member and an integral, internal support structure. The support structure is preferably formed from poly(glycerol sebacate) (PGS) or a magnesium alloy. The base member is preferably formed from acellular extracellular matrix (ECM) derived from small intestine submucosa (SIS) tissue that exhibits a flexible, porous, sponge-like structure adapted to expand upon absorption of a bodily fluid, wherein the construct seals a perivalvular leak when disposed proximate thereto.Type: GrantFiled: December 8, 2017Date of Patent: May 4, 2021Assignee: CorMatrix Cardiovascular, Inc.Inventor: Robert G Matheny
-
Patent number: 10959864Abstract: Disclosed herein is a stent which includes stent ring structures made up of at least one wire and at least one tubular connector through which a portion of the wire is disposed. The tubular connector includes a side wall with an aperture formed therethrough. A portion of the wire extends therethrough and acts as a barb. A method of making such a stent is also disclosed.Type: GrantFiled: January 11, 2019Date of Patent: March 30, 2021Assignee: Cook Medical Technologies LLCInventors: Kevin D. Wilger, Ryan C. Bradway
-
Patent number: 10939913Abstract: An anastomotic coupler is provided. A ring forms an aperture operable to receive a tubular structure. The ring can include a plurality of receiving portions. A fixation device includes a housing and a cartridge. The cartridge includes a plurality of fasteners, and the housing is operable to receive the tubular structure such that the cartridge is inserted into a lumen of the tubular structure. The ring is aligned with the cartridge such that the receiving portions are aligned with the fasteners. Upon actuation of the fixation device, the fasteners puncture the tubular structure radially outward from the lumen and are received by the receiving portions such that the tubular structure is coupled with the ring.Type: GrantFiled: November 17, 2020Date of Patent: March 9, 2021Inventor: Donald W. Buck
-
Patent number: 10898190Abstract: A power system, for powering a surgical instrument including an end effector and a motor configured to generate at least one motion to effectuate the end effector, includes a primary power source configured to supply a first power to operate the surgical instrument, wherein the primary power source is detachable from the surgical instrument, a secondary power source configured to supply a second power to operate the surgical instrument when the primary power source is detached from the surgical instrument, wherein the secondary power source is rechargeable, and wherein the primary power source is configured to charge the secondary power system, and a power management circuit configured to selectively transmit the first power from the primary power source and the secondary power from the secondary power source to operate the surgical instrument.Type: GrantFiled: January 22, 2018Date of Patent: January 26, 2021Assignee: Ethicon LLCInventors: David C. Yates, Steven G. Hall, Emily A. Schellin, Frederick E. Shelton, IV
-
Patent number: 10835412Abstract: In an embodiment, a surgical implant includes a body extending from a distal end to a proximal end, the body having a first section proximal to the distal end and a second section between the first section and the proximal end, a needle attachment member located at the distal end of the body, the needle attachment member configured to attach to a needle for insertion of the surgical implant into a patient's tissue, a plurality of first barbs located on the first section of the body, the first barbs pointed towards the proximal end of the body, and a plurality of second barbs located on the second section of the body, the second barbs pointed towards the distal end of the body, wherein the second barbs are configured to be folded inwardly for insertion of the surgical implant into the patient's tissue by the needle.Type: GrantFiled: September 28, 2018Date of Patent: November 17, 2020Assignee: ZELEGENT, INC.Inventors: Yosef P. Krespi, David Volpi, Alexander K. Arrow, Joseph F. Paraschac
-
Patent number: 10111764Abstract: A prosthesis may include a tubular frame comprising rings which are concentric along an axis of the tubular frame. The rings may have a serpentine shape with apexes in a longitudinal direction such that the rings are configured to move between a compressed configuration and an expanded configuration. A first ring of the rings can include a first apex that includes a first anchoring member extending radially outward and a first crossbar extending radially inward. The first ring can further include a second apex that neighbors the first apex. The first crossbar can extend toward the second apex and extend radially inward further than the second apex. When in the compressed configuration, the first crossbar can engage the second apex such that the first anchoring member is moved radially inward.Type: GrantFiled: February 27, 2015Date of Patent: October 30, 2018Assignee: COOK MEDICAL TECHNOLOGIES LLCInventor: Elizabeth A Eaton