Preform Reshaping Means With Treating Means Patents (Class 65/268)
  • Patent number: 11427494
    Abstract: A tempering furnace for tempering a glass object may include a housing, a heating device for heating the glass object, and a cooling device for cooling the glass object. Additionally, the tempering furnace may further include a turning device provided for turning the glass object inside the housing. The turning device is configured to counteract an effect of gravitational forces on the glass object when the glass object is heated to its softening phase.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: August 30, 2022
    Assignee: Vosstech AS
    Inventor: Stig Ove Bjørgum
  • Patent number: 10611663
    Abstract: A device for producing glass products for primary pharmaceutical packaging is provided. The device includes a clamping chuck for clamping a glass product, a drive for driving the clamping chuck rotatingly about a longitudinal axis thereof, and a burner for heating a glass products received within the clamping chuck. The clamping chuck has a baffle structure for generating a gas current for cooling the clamping chuck when the clamping chuck is rotatingly driven about a longitudinal axis thereof while the glass product is heated above its softening temperature for hot-forming.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: April 7, 2020
    Assignee: SCHOTT AG
    Inventors: Alexander Humbertjean, Xaver Jud, Oliver Fruhner
  • Patent number: 9249044
    Abstract: A sag-bending glass mold for creating a partial parabolic-curved glass sheet is disclosed. The glass mold comprises a glass-support surface having a cross-sectional profile of varying height. The cross-sectional profile has a first portion with profile of a non-parabolic, linear-square root composite shape. A method for forming a partial parabolic glass sheet is also disclosed. The method comprises positioning a planar glass sheet on a sag-bending mold having a linear-square root composite shape and deforming the glass sheet to follow the linear-square root composite shape of the sag-bending mold.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: February 2, 2016
    Assignee: SUNPOWER CORPORATION
    Inventors: Zachary S. Judkins, Benjamin C. Bourne, Amine Berrada
  • Publication number: 20150121964
    Abstract: The present invention discloses a device for processing columnar curved tempered glass. The device mainly comprises a glass heating furnace, a glass bending mechanism and a glass tempering mechanism connected sequentially, wherein the arrangement of each supporting roller in the rollers supporting the high temperature flat glass is changed from planar arrangement in space into curved arrangement corresponding to the shape of the glass to be formed, so that the glass bending mechanism enables the glass to suffer bending deformation. Transferring rollers for outputting the formed curved glass in the axial direction of the supporting roller are arranged at the clearance of the rollers of the bending mechanism.
    Type: Application
    Filed: July 12, 2012
    Publication date: May 7, 2015
    Applicant: LUOY-ANG LANDGLASS TECHNOLOGY CO., LTD.
    Inventors: Yan Zhao, Kezhi Zhang
  • Publication number: 20150107305
    Abstract: A glass molding method for molding a glass preform to a glass product via an assembly mold includes the following steps. The glass preform is preheated to a glass molding temperature. The assembly mold is heated to a predetermined mold temperature lower than the glass molding temperature and maintained at the mold temperature. The preheated glass preform is transferred to the assembly mold. The assembly mold is closed together for molding the glass preform to the glass product. The glass product and the assembly mold are gradually cooled to an open temperature. Then the assembly mold is opened to take the glass product out of the assembly mold.
    Type: Application
    Filed: December 22, 2013
    Publication date: April 23, 2015
    Applicant: WEIS LIMITED
    Inventor: KANG WEI
  • Publication number: 20150080205
    Abstract: A device for forming a glass semi-product loaded in a die set is comprised of: a first chamber enclosing a heating zone, a waiting zone and a cooling zone arranged in a row along a first direction and being controllable of an atmosphere in the first chamber; a second chamber in spatial communication with the first chamber and closable so as to keep vacuum in the second chamber, the second chamber so neighboring on the waiting zone as to receive the die set moving from the waiting zone in a second direction perpendicular to the first direction; and a ram disposed in the second chamber and movable to get contact with the die set and carry out press-forming on the glass semi-product in the vacuum kept in the second chamber.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventor: Isao MATSUZUKI
  • Publication number: 20140352357
    Abstract: A furnace for shaping glass sheets for aircraft transparencies using the cut-to-size method includes a preheat and cooling furnace defined as a first furnace, and a shaping furnace. A conveyor geared for reciprocating movement moves a bending iron supporting a glass sheet through the first furnace set to a preheat temperature. The glass sheet supported on the bending iron is heated in the shaping furnace by microwave beams from a gyrotron to heat portions of the glass sheet to be shaped to a complex shape. After the sheet is shaped, the conveyor moves the bending iron supporting the shaped glass sheet from the shaping furnace through the first furnace set to a cooling cycle.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Yu Jiao, Robert M. Bonaddio, Joseph G. Koepfinger, Joseph Medzius, James Franklin Priddy, Russell Willis Schrier, Dennis D. Warren, Chao Yu
  • Publication number: 20140305167
    Abstract: A glass sheet is placed on a mold and heated to a first temperature. The glass sheet is then formed into a glass article having a three-dimensional shape using the mold. An isothermal heat transfer device comprising at least one heat pipe is provided in thermal contact with the mold. With the glass article on the mold and the isothermal heat transfer device in thermal contact with the mold, the glass article, mold, and isothermal heat transfer device are transported along a thermally-graded channel to cool the glass article to a second temperature. During the transporting, the isothermal heat transfer device transfers heat from a relatively hot region of the mold to a relatively cold region of the mold.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventors: Nikolaos P. Kladias, Kenneth Spencer Morgan, Elias Panides, Rohit Rai, John R. Ridge, Ljerka Ukrainczyk
  • Patent number: 8650907
    Abstract: The method produces a reshaped glass-ceramic article by forced reshaping of a flat green glass part during a ceramicizing process with temporarily lowered viscosity due to crystallization heat. To perform the forced reshaping economically the forced reshaping takes place in a continuous oven for ceramicizing and in an oven section in which the viscosity of the green glass part is temporarily lowered as a result of crystallization heat. An apparatus for performing the process is provided in the continuous oven including different active reshaping devices and/or a hollow mold. The method produces glass-ceramic articles with undamaged surfaces corresponding to surfaces produced during the making of the green glass part (smooth or structured, e.g. knobbed).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 18, 2014
    Assignee: Schott AG
    Inventors: Martin Taplan, Herwig Scheidler, Ioannis Kosmas, Friedrich-Georg Schroeder, Wolfgang Schmidbauer, Torsten Gabelmann, Dieter Schoenig
  • Publication number: 20140026617
    Abstract: The process for manufacturing wafers includes the steps of mounting an ingot as a work piece in a manner that permits rotation about a longitudinal axis of rotation and rotating the ingot about its longitudinal axis of rotation to permit a microwave device that generates an energized beam to penetrate an outer surface layer thereof. Furthermore, the process includes exfoliating the outer surface layer with the energized beam, removing the exfoliated outer surface layer from the ingot as a continuous planar strip and cutting the continuous planar strip into a wafer.
    Type: Application
    Filed: July 30, 2013
    Publication date: January 30, 2014
    Inventor: Andrew X. Yakub
  • Patent number: 8518544
    Abstract: A glass sheet for a laminated glass to be fit into a frame of an automobile in a flash-mount structure, that is a glass sheet having a good strength, is provided. In the glass sheet of the present invention, the maximum value of the plane compressive stress on the edge of the glass sheet is at least 10 MPa and at most 18 MPa, and the maximum value of the plane compressive stress inside from the edge of the glass sheet is at most 2.4 MPa.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: August 27, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Yasumasa Kato, Akira Sugahara
  • Publication number: 20130152635
    Abstract: For improving a process of three-dimensional deformation of glass panes, said glass panes a) are heated up to the softening temperature in a first step b) are deformed in a second step, and c) are prestressed by means of targeted cooling in a third step, wherein the process steps are subsequently applied to individual successive treatment segments of the panel to be deformed in such a manner that different subsequent treatment segments of the panel are treated effectively in another process step at the same time, wherein subsequent treatment segments for example are heated up to the processing temperature, while preceding treatment segments for example are already deformed, wherein air flows are applied to the glass panes in at least one process step, the invention proposes that the air flows are combined of blown air and compressed air in a controlled manner.
    Type: Application
    Filed: March 6, 2012
    Publication date: June 20, 2013
    Inventor: Miguel Tovar
  • Publication number: 20120167626
    Abstract: An apparatus for manufacturing tempered glass. A heating unit heats a glass substrate that is intended to be tempered. A pattern-forming unit forms a pattern on a surface of the glass substrate heated by the heating unit. A dielectric heating unit increases the temperature of the inner portion of the glass substrate, on which the pattern is formed by the pattern-forming unit. A cooling unit cools the glass substrate, the inside temperature of which is increased by the dielectric heating unit.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 5, 2012
    Inventors: Hoikwan Lee, Seo-Yeong Cho, YoonYoung Kwon, Kyungwook Park, Kyungmin Yoon, Jongsung Lee, Jaeyoung Choi, Gennady Kizevich
  • Publication number: 20120144867
    Abstract: This disclosure relates to a method of patterning glass substrate in a glass heat-strengthening line and the resulting patterned heat-strengthened glass. Such patterned heat-strengthened glass substrates are useful, for example, in glass-based solar cells.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 14, 2012
    Applicant: Cardinal FG Company
    Inventor: Kelly J. Busch
  • Patent number: 8141388
    Abstract: A glass manufacturing system and a method are described herein that use an enhanced temperature control device to help manufacture a uniformly thick glass sheet that is substantially stress free. In one example, the enhanced temperature control device includes an array of temperature controlled elements and a radiation collimator which together cool the glass sheet with a high degree of spatial resolution so as to reduce stress in the glass sheet and control the thickness of the glass sheet.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: March 27, 2012
    Assignee: Corning Incorporated
    Inventor: Steven R. Burdette
  • Publication number: 20110162411
    Abstract: Process for producing a structure on one of the faces of a glass ribbon, carried out continuously using a printing device, in which: the printing device (8) is placed in a zone (A) in which the ribbon (B) is at an average temperature T1 insufficient for printing the pattern of the printing device onto the ribbon according to the nature of the pattern to be printed, to the pressure between the printing device and the ribbon and to the time during which the ribbon is in contact with the printing device; that face to be etched, upstream of the printing device (8), is heated so as to bring a limited and sufficient thickness of the ribbon to a temperature T2>T1 necessary for printing the pattern of the printing device onto the ribbon according to the nature of the pattern to be etched, to the pressure between the printing device and the ribbon and to the time during which the ribbon is in contact with the printing device, while still keeping the rest of the ribbon at a temperature close to T1; the heat flux tra
    Type: Application
    Filed: June 30, 2009
    Publication date: July 7, 2011
    Applicant: FIVES STEIN
    Inventors: Wolf Stefan Kuhn, Bertrand Strock, Francois Pahmer, Eric Bleuset
  • Publication number: 20100186452
    Abstract: The invention relates to a method and apparatus for bending a glass panel. A heated flat glass panel is fed from a furnace onto a bending conveyor while the bending conveyor is in a straight configuration. The bending conveyor and the glass panel are arched to a desired curvature while the glass panel travels along the bending conveyor. The bent glass panel is passed from the bending conveyor onto a tempering conveyor present as its extension, which has been previously arched to a desired curve as early as or even prior to having the flat glass panel received by the straight bending conveyor.
    Type: Application
    Filed: June 13, 2008
    Publication date: July 29, 2010
    Applicant: GLASTON CORPORATION
    Inventors: Pete Harjunen, Veijo Valtonen, Mika Olan, Mikko Tanhuanpää
  • Publication number: 20100180637
    Abstract: The invention relates to a method and apparatus for bending a glass panel. A heated flat glass panel is fed from a furnace onto a bending conveyor while the bending conveyor is in a straight configuration. The bending conveyor and the glass panel are arched to a desired curvature while the glass panel travels along the bending conveyor. An interpolating position-setting for the tempering conveyor's upstream end with respect to the tempering conveyor's bending radius is performed in such a way that a certain point at the tempering conveyor's upstream end coincides with a certain point at the bending conveyor's stationary downstream end. This position-setting is performed by moving the tempering conveyor in vertical and horizontal directions and by pivoting the tempering conveyor so as to change an angle between its center line of curvature and a vertical line.
    Type: Application
    Filed: June 13, 2008
    Publication date: July 22, 2010
    Applicant: GLASTON SERVICES LTD. OY
    Inventors: Pete Harjunen, Veijo Valtonen
  • Publication number: 20100132408
    Abstract: The invention relates to a coating for a device for forming glass products, comprising: a first quasicrystalline or approximant or amorphous metallic phase; and a second phase composed of a eutectic alloy having a melting point between 950 and 1150° C. and having a nominal hardness between 30 and 65 HRc; a mould for manufacturing hollow glass products that is provided with this coating; equipment for forming glass in sheets or plates that is provided with this coating; a material constituting this coating; a premixed or prealloyed powder, or a flexible bead or flux-cored wire that makes it possible to obtain this coating; a thermal spraying process for obtaining this coating.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 3, 2010
    Applicant: SAINT-GOBAIN COATING SOLUTION
    Inventor: Dominique BILLIERES
  • Patent number: 7707853
    Abstract: In the process for partially shaping, a glass/glass ceramic article (5) is held on a planar support plate (1) by suction. The glass/glass ceramic article is heated to soften it, so that it has a viscosity below 106 dPa·s. After the softening one or more shaping dies (4) is or are moved upward through an opening or respective openings (3) in the support plate to form raised regions in the softened glass/glass ceramic article (5). The suction force is produced by a low pressure in a hollow compartment (2) below the support plate (1) and acts on the glass/glass ceramic article (5) by means of a gap (G) formed between each shaping die (4) and the support plate. Additional openings can be provided in the support plate and/or in one or more of the shaping dies to assist in applying the suction force to the glass/glass ceramic article. After solidification of the softened glass/glass-ceramic article the shaping die or dies (4) is or are withdrawn.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: May 4, 2010
    Assignee: Schott AG
    Inventors: Friedrich-Georg Schroeder, Roland Hochhaus, Bernd Weitzel, Bernd Hoppe, Hermann Lemm, Gerhard Hahn, Hans-Walter Abraham
  • Patent number: 7510989
    Abstract: The invention is directed to a silver-containing polarizing boroaluminosilicate glass composition that has been doped with a noble metal selected from the group consisting of Pt, Pd, Os, Ir, Rh and Ru, including mixtures thereof, to nucleate and precipitate silver ions to silver metal without the need for a reducing atmosphere step. The invention is further directed to a method for making the glass composition of the invention. Using the composition and method of the invention, one can prepare a glass having a selected null transmission range.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: March 31, 2009
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, George Bigelow Hares, Sasha Marjanovic, David John McEnroe, Katherine Rose Rossington, Joseph Francis Schroeder, III
  • Publication number: 20080202166
    Abstract: A dehydration-sintering furnace includes a muffle tube that accommodates therein the porous preform, a heater that heats the porous preform from outside of the muffle tube, a furnace body that accommodates the heater at an outer periphery of the muffle tube. When a gas required for dehydrating and sintering the porous preform is supplied in the muffle tube, and a pressure in the muffle tube is measured, an average value of the pressure in the muffle tube P0 and a standard deviation of the pressure in the muffle tube ?0 are controlled to satisfy a relation P0?3×?0>0.
    Type: Application
    Filed: February 23, 2007
    Publication date: August 28, 2008
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshinori Ishida, Seiichi Shinada, Mitsuhiro Kawasaki
  • Publication number: 20080120996
    Abstract: A method and a device for bending and cooling a glass pane or a bundle of glass panes, in which the glass panes heated to their bending temperature are bent in a horizontal position into a desired shape using a molding ring, and the bent glass panes placed on the molding ring are cooled in a cooling station by blowing cooling air using blowing plenums and then conveyed to a removal station. In the path between the bending station, the cooling station, the removal station, and its return to the bending station, the molding ring travels in an entirely closed path, particularly a circular path.
    Type: Application
    Filed: June 14, 2005
    Publication date: May 29, 2008
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventor: Herbert Radermacher
  • Patent number: 7231787
    Abstract: An apparatus and method for bending and/or tempering glass substrate(s) are provided. The amount of near-IR radiation which reaches the glass to be bent and/or tempered is limited (e.g., via filtering or any other suitable technique). Thus, the IR radiation (used for heating the glass) which reaches the glass to be bent and/or tempered includes mostly mid-IR and/or far-IR radiation, and not much near-IR. In such a manner, coating(s) provided on the glass can be protected and kept at lower temperatures so as to be less likely to be damaged during the bending and/or tempering process. Heating efficiency can be improved.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: June 19, 2007
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: George Neuman, Andre Heyen
  • Patent number: 7107791
    Abstract: The process according to the invention reduces the effort required to shape a glass piece. In this process a liquid glass piece is provided on a structured supporting surface of an electrically conducting base. A voltage is applied across the liquid glass piece by connecting a voltage source between a contact position on the liquid glass piece and the electrically conducting base. The apparatus for performing the process has an electrically conducting base on which the liquid glass piece is supported and a device for applying a voltage between a contact position on the liquid glass piece and the electrically conducting base.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 19, 2006
    Assignee: Schott AG
    Inventors: Ulrike Stoehr, Olaf Claussen, Ralf-Dieter Werner
  • Patent number: 7086252
    Abstract: A glass sheet forming system (20) includes a roll bending station (28) having a lower roll conveyor (30) and an upper roll former (32) between which a heated glass sheet is progressively formed with a curved shape by lower and upper rolls (50) and (52) supported on lower and upper elongated beams (46) and (48) that extend along the direction of conveyance.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: August 8, 2006
    Assignee: Glasstech, Inc.
    Inventor: Ronald A. McMaster
  • Patent number: 7024889
    Abstract: For bending a glass sheet so that the glass sheet has a compound curvature, an apparatus comprises a furnace including hearth beds on a bed support and a quenching unit provided with upper and lower air blowers. The final hearth bed may have a top surface with a simple curvature, be provided with one upstream corner cut away thereby defining a cut surface section and arranged in such a manner that the cut surface section is nearly parallel to the hearth bed adjacent to the final hearth bed. Alternatively, the final hearth bed may have a top surface with a compound curvature, so that the glass sheet is bent under the conditions set by controlling a temperature in a downstream part of the furnace, adjusting the inclination of the lower air blower and/or rotating final hearth bed so as to reverse the upstream and downstream ends thereof.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: April 11, 2006
    Assignee: Central Glass Company, Limited
    Inventors: Masami Nishitani, Makoto Shinohara
  • Patent number: 6823695
    Abstract: An object of the present invention is to enable to use a common transfer machine for transferring performs to and for transferring products from a press-forming system for glass having a plurality of press units. The press-forming system for glass has a plurality of press units. A linear moving stage is arranged in the proximity of the press units. A transfer robot is mounted on the linear moving stage. A pallet changer is arranged in the proximity of an end of the linear moving stage. A tray presently in use is mounted on a first mount and a new tray on standby is mounted on a second mount on the pallet changer. The inner space of the tray is partitioned into sections so as to correspond to press units in number. In each section, a plurality of pockets is arranged for storing preforms or products one by one.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: November 30, 2004
    Assignee: Toshiba Machine Co., Ltd.
    Inventors: Satoshi Fukuyama, Hiroaki Fujii, Isao Matsuzuki, Hirotaka Masaki
  • Patent number: 6802189
    Abstract: A process for the remelting of glass bars, including the steps of introducing a glass bar into an upper end of a receiving shell; providing a molten bath having a surface underneath the receiving-shell; positioning the receiving shell such that a lower edge of the receiving shell is located at the height of the surface or above it; heating a lower end of the glass bar to a temperature above a softening temperature of the glass, resulting in a melt-off process at the lower end of the glass bar to produce a melt stream; controlling the melt-off process such that the melt stream continuously enters the molten bath proximate the surface with avoidance of a constriction; and drawing off melt from the molten bath by means of an arrangement for drop generation.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: October 12, 2004
    Assignee: Schott Glas
    Inventors: Andreas Langsdorf, Hildegard Römer, Paul Kissl
  • Patent number: 6698243
    Abstract: A heated glass sheet is bent by pressing together with at least one belt made of a heat-resistant material against a bending member. The glass sheet is bent as the glass sheet is conveyed with the belt along the bending member, and the bending member is curved at least in a direction that is vertical to a conveying direction of the glass sheet. According to this invention, the bent glass sheets having surfaces on which defects such as mark of rollers are reduced can be produced efficiently.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: March 2, 2004
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventor: Hideo Yoshizawa
  • Patent number: 6668590
    Abstract: A furnace (10) and method for heating conveyed glass sheets within a housing (12) includes forced convection heaters (24) spaced along the direction of conveyance both below and above a roll conveyor (20). Each forced convection heater (24) includes a gas burner assembly (32) generally adjacent one of the housing side walls and has an outlet (34) through which products of combustion are supplied to the housing heating chamber (18) at a location intermediate its side walls. A hot gas distributor (38) of each forced convection heater (24) includes an inlet (40) that is spaced from the outlet (34) of the gas burner assembly (32), and the hot gas distributor (38) has a suction fan (42) for drawing in heated products of combustion together with spent recirculating gas in the heating chamber (18) for mixing to provide heated gas that is distributed to the conveyed glass sheets.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: December 30, 2003
    Assignee: Glasstech, Inc.
    Inventor: Troy R. Lewandowski
  • Publication number: 20030177792
    Abstract: An apparatus and method for bending and/or tempering glass substrate(s) are provided. The amount of near-IR radiation which reaches the glass to be bent and/or tempered is limited (e.g., via filtering or any other suitable technique). Thus, the IR radiation (used for heating the glass) which reaches the glass to be bent and/or tempered includes mostly mid-IR and/or far-IR radiation, and not much near-IR. In such a manner, coating(s) provided on the glass can be protected and kept at lower temperatures so as to be less likely to be damaged during the bending and/or tempering process. Heating efficiency can be improved. A ceramic (e.g., aluminosilicate) filter or baffle may be used in certain embodiments in order to reduce the amount of mid-IR and/or far-IR radiation reaching the glass to be tempered and/or bent.
    Type: Application
    Filed: September 18, 2002
    Publication date: September 25, 2003
    Inventors: Anthony V. Longobardo, George Neuman, Daniel F. Prone, Andre Heyen
  • Publication number: 20030079500
    Abstract: A method for manufacturing an information recording medium glass substrate that prevents a glass plate from drying and prevents material from collecting on the surface when the glass plate is transferred. The method includes immersing the glass plate in a heated chemical strengthening liquid, washing the glass plate with warm water to remove adhered material from the surface of the glass plate, washing the glass plate to remove residual adhered material from the surface of the glass plate, and transferring the glass plate from a location at which the warm water washing is performed to a location at which the washing is performed by wetting or moistening the glass plate with liquid.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 1, 2003
    Inventor: Tatsuro Umeyama
  • Publication number: 20030037570
    Abstract: A method of thermally treating a glass or glass-like material, preferably a glass sheet, without the use of conventional tunnel-type furnaces, to effect rapid heating of glass and glass-like materials from any initial temperature to any required temperature so that the glass sheet can be processed by shaping, bending, tempering, annealing, coating and floating of the glass sheet without cracking of the glass sheet is described. In the inventive method a microwave radiation with appropriate uniformity, frequency and power density is chosen so as to accomplish glass heating from any initial temperature to any required (e.g., softened) temperature in a selected short time while ensuring that the temperature distribution on the external surfaces and in the interior of the glass sheet that arises from microwave exposure is uniform enough to prevent the exposed glass sheet's internal thermal stress from exceeding its modulus of rupture, thereby avoiding glass breakage.
    Type: Application
    Filed: June 24, 2002
    Publication date: February 27, 2003
    Inventors: Vladislav E. Sklyarevich, Mykhaylo Shevelev
  • Patent number: 6502424
    Abstract: A method and plant for treating laminated glass having at least two glass sheets between which is arranged at least on intermediate sheet of non-glass material. The glass is attacked in a basic solution of fragmented laminated glass, so as to obtain an attack medium, wherein the fragments are disintegrated into non-laminated glass fragments and non-glass material, separating in a) the basic solution, b) the disintegrated non-laminated fragments and c) the disintegrated fragments of the non-glass material, and neutralizing the disintegrated fragments “b) and c)” before their subsequent recycling or upgrading.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: January 7, 2003
    Inventor: Gérard Jean-Marie Debailleul
  • Publication number: 20020189290
    Abstract: A system (10) and method for forming and quenching glass sheets with curvatures both along and transverse to a direction of conveyance includes a furnace (12) having an exit end (22) with a roll bending station (14), a press bending station located downstream from the exit end of the furnace and having a lower ring mold (46) and an upper press mold (48) operated by an actuator (50), and a quench station (18) that provides toughening of the formed glass sheet. The location of the roll bending station (14) with sets (30) of inclined bending rolls (32) having increasing inclinations along the direction of conveyance together with the external press station (16) and the quench station (18) provides the glass sheet forming without the necessity for excessive heating so that the glass is sufficiently hot upon quenching to provide the toughening.
    Type: Application
    Filed: June 19, 2001
    Publication date: December 19, 2002
    Applicant: Glasstech, Inc.
    Inventor: Terry A. Bennett
  • Publication number: 20020162360
    Abstract: Thermal 3-D microstructuring of photonic structures is provided by depositing laser energy by non-linear absorption into a focal volume about each point of a substrate to be micromachined at a rate greater than the rate that it diffuses thereout to produce a point source of heat in a region of the bulk larger than the focal volume about each point that structurally alters the region of the bulk larger than the focal volume about each point, and by dragging the point source of heat thereby provided point-to-point along any linear and non-linear path to fabricate photonic structures in the bulk of the substrate. Exemplary optical waveguides and optical beamsplitters are thermally micromachined in 3-D in the bulk of a glass substrate. The total number of pulses incident to each point is controlled, either by varying the rate that the point source of heat is scanned point-to-point and/or by varying the repetition rate of the laser, to select the mode supported by the waveguide or beamsplitter to be micromachined.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 7, 2002
    Inventors: Chris Schaffer, Andre Brodeur, Rafael R. Gattass, Jonathan B. Ashcom, Eric Mazur
  • Publication number: 20020148254
    Abstract: For bending a glass sheet so that the glass sheet has a compound curvature, an apparatus comprises a furnace including hearth beds on a bed support and a quenching unit provided with upper and lower air blowers. The final hearth bed may have a top surface with a simple curvature, be provided with one upstream corner cut away thereby defining a cut surface section and arranged in such a manner that the cut surface section is nearly parallel to the hearth bed adjacent to the final hearth bed. Alternatively, the final hearth bed may have a top surface with a compound curvature, so that the glass sheet is bent under the conditions set by controlling a temperature in a downstream part of the furnace, adjusting the inclination of the lower air blower and/or rotating final hearth bed so as to reverse the upstream and downstream ends thereof.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 17, 2002
    Applicant: Central Glass Company, Limited
    Inventors: Masami Nishitani, Makoto Shinohara
  • Publication number: 20020121112
    Abstract: In the process for partially shaping, a glass/glass ceramic article (5) is held on a planar support plate (1) by suction. The glass/glass ceramic article is heated to soften it, so that it has a viscosity below 106 dPa·s. After the softening one or more shaping dies (4) is or are moved upward through an opening or respective openings (3) in the support plate to form raised regions in the softened glass/glass ceramic article (5). The suction force is produced by a low pressure in a hollow compartment (2) below the support plate (1) and acts on the glass/glass ceramic article (5) by means of a gap (G) formed between each shaping die (4) and the support plate. Additional openings can be provided in the support plate and/or in one or more of the shaping dies to assist in applying the suction force to the glass/glass ceramic article. After solidification of the softened glass/glass-ceramic article the shaping die or dies (4) is or are withdrawn.
    Type: Application
    Filed: February 28, 2002
    Publication date: September 5, 2002
    Inventors: Friedrich-Georg Schroeder, Roland Hochhaus, Bernd Weitzel, Bernd Hoppe, Hermann Lemm, Gerhard Hahn, Hans-Walter Abraham
  • Patent number: 6408649
    Abstract: A method of thermally treating a glass or glass-like material, preferably a glass sheet, without the use of conventional tunnel-type furnaces, to effect rapid heating of glass and glass-like materials from any initial temperature to any required temperature so that the glass sheet can be processed by shaping, bending, tempering, annealing, coating and floating of the glass sheet without cracking of the glass sheet is described. In the inventive method a microwave radiation with appropriate uniformity, frequency and power density is chosen so as to accomplish glass heating from any initial temperature to any required (e.g., softened) temperature in a selected short time while ensuring that the temperature distribution on the external surfaces and in the interior of the glass sheet that arises from microwave exposure is uniform enough to prevent the exposed glass sheet's internal thermal stress from exceeding its modulus of rupture, thereby avoiding glass breakage.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: June 25, 2002
    Assignee: Gyrotron Technology, Inc.
    Inventors: Vladislav E. Sklyarevich, Mykhaylo Shevelev
  • Patent number: 6378339
    Abstract: A glass sheet forming system (10) includes apparatus (12) having a forming station (22) for forming glass sheets by cooperation of a lower deformable roll forming conveyor (26) and an upper deformable roll forming press (32). The upper deformable roll forming press (32) includes upper deformable rolls (34) whose axes are located along a direction of conveyance between the axes of lower deformable rolls (28) of the lower deformable roll forming conveyor (26) in a manner that prevents leading glass edge curling as the lower conveyor and upper forming press are moved between flat and curved shapes to provide glass sheet forming.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: April 30, 2002
    Assignee: Glasstech, Inc.
    Inventors: Thomas J. Zalesak, Alfredo Serrano
  • Patent number: 6370918
    Abstract: A press forming machine for optical devices which manufactures, an optical device from silica glass with a high glass transition point. A transparent quartz tube surrounds an upper die unit, lower die unit, fixed shaft, and moving shaft to form an airtight chamber inside it. Infrared lamps are arranged along the outer surface of the transparent quartz tube, and a reflecting mirror is arranged behind the infrared lamps. A cooling gas jacket is formed to cover the rear surface of the reflecting mirror. The inner-diameter side wall surface of the jacket and the reflecting mirror have many through holes. A cooling gas is sprayed from the interior of the jacket toward the transparent quartz tube through the through holes, thereby cooling the reflecting mirror, quartz bulbs constituting the outer surfaces of the infrared lamps, and the transparent quartz tube.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: April 16, 2002
    Assignee: Toshiba Machine Co., Ltd.
    Inventors: Satoshi Fukuyama, Toshihisa Kamano, Isao Matsuzuki, Hiroshi Murakoshi
  • Patent number: 6321570
    Abstract: A method of and apparatus for bending and tempering a sheet of glass heated to a formable state provides an improved rigid mold and pressing member for pressing the heated sheet against the rigid mold which cools and bends the sheet. The pressing member includes a conformable pressing element which permits a manifold to be positioned between the rigid mold and the pressing member to direct a gas to cool the heated sheet of glass during bending. The conformable pressing element is pressurized into a convex shape for initially pressing on a portion of the heated sheet and for rolling the heated sheet onto the rigid mold. The rigid mold and the conformable pressing element may each include a cover to increase the heat transfer from the heated sheet to the bending and tempering apparatus. Furthermore, the covers may have increased thermal conductivity in their peripheral regions for increased cooling of the edge of the sheet of glass.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: November 27, 2001
    Assignee: Donnelly Corporation
    Inventors: Martin De Vries, Jr., Donald L. Bareman, Mervin Dirkse, Niels Alfred Olesen, James M. Beebe
  • Patent number: 6314765
    Abstract: A method and apparatus for controlling the shape and position of a deformable object are described. At least a portion of an object is heated to a temperature sufficient to render the heated portion deformable by a force. An image profile of the heated portion of the object is obtained. A controller compares the image profile to a reference profile and produces an error image signal. Based on the error image signal, an instruction signal is generated. A force applicator responsive to the instruction signal applies a radial force to at least one distinct predetermined location on the heated portion of the object in response to the instruction signal to cause the heated portion of the object to conform to the reference profile. The invention is particularly useful in controlling the shape of an optical fiber preform.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: November 13, 2001
    Assignee: Alcatel
    Inventors: Roger Charlton, Daniel G. Fletcher, Charles A. Giebner
  • Patent number: 6279347
    Abstract: This invention provides a method and an apparatus for producing a bent glass sheet. A heated glass sheet (4, 24, 24*) conveyed from a heating furnace (1, 21) is bent by pressing with at least one belt (5, 9, 25) made of a heat-resistant material against a bending member (6, 10, 26, 28). The bent glass sheet is further conveyed and cooled for quenching or annealing in a cooling apparatus (3, 23). The bent glass is cooled after separating the belt. According to this invention, the bent glass sheets having surfaces on which defects, such as marks of rolls, are suppressed can be produced efficiently.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: August 28, 2001
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventor: Hideo Yoshizawa
  • Patent number: 6016669
    Abstract: An apparatus for applying heat to a rotatable workpiece is disclosed. A rotating lathe is provided for mounting a workpiece, for example a quartz tube, thereto so as to enable rotation of the workpiece. At least one translatable burner is coupled to a fuel source and an oxygen source for producing a flame. The burner is directed such that flame impinges upon the workpiece mounted on the rotating lathe. A first pulse control valve is coupled to and positioned between the translatable burner and the fuel source. A second pulse control valve is coupled to and positioned between the translatable burners and the oxygen course. The first and second pulse control valves are pulsed at a predetermined frequency to prevent the formation of a steady thermal boundary layer about the workpiece to improve the rate of heat transfer between the flame and the workpiece.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: January 25, 2000
    Assignee: General Electric Company
    Inventors: Sanjay Marc Correa, Alan S. Feitelberg
  • Patent number: 6014873
    Abstract: A process for bend-shaping a glass plate by heating the glass plate to a softening temperature of the glass plate, while the glass plate is transferred along a transferring surface in a shaping furnace. The glass plate is transferred along a complex bending transferring surface having a complex curved face which is upwardly projected with predetermined radius of curvatures along both the axis of the transferring direction and the axis perpendicular to the transferring direction.
    Type: Grant
    Filed: March 22, 1993
    Date of Patent: January 18, 2000
    Assignee: Asahi Glass Company Ltd.
    Inventors: Takashi Hirotsu, Kazuyoshi Ohtani, Teruji Nagaoka
  • Patent number: 6003339
    Abstract: A molding die assembly includes an upper molding die and a lower molding die facing the upper molding die with provision for their alignment. The upper molding die includes an upper core, while the lower molding die includes a hollow cylinder and a lower core. The upper core has one of the molding surfaces that corresponds to a molding, while the lower core has the other molding surface corresponding to the molding. The lower core slides in the cylinder and defines a cavity in cooperation with the upper core. A clamping device applies a clamping force to the upper molding die and the lower molding die, and a compression device applies a compressive force between the upper core and the lower core. The clamping force is generated between the upper molding die and the lower molding die but not between the upper core and the lower core so that no clamping force is applied to the preform.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: December 21, 1999
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventor: Nobuo Morikita
  • Patent number: 5938810
    Abstract: A method of and apparatus for bending and tempering a sheet of glass heated to a formable state provides an improved rigid mold and pressing member for pressing the heated sheet against the rigid mold which cools and bends the sheet. The pressing member includes a conformable pressing element which permits a manifold to be positioned between the rigid mold and the pressing member to direct a gas to cool the heated sheet of glass during bending. The conformable pressing element is pressurized into a convex shape for initially pressing on a portion of the heated sheet and for rolling the heated sheet onto the rigid mold. The rigid mold and the conformable pressing element may each include a cover to increase the heat transfer from the heated sheet to the bending and tempering apparatus. Furthermore, the covers may have increased thermal conductivity in their peripheral regions for increased cooling of the edge of the sheet of glass.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: August 17, 1999
    Assignee: Donnelly Corporation
    Inventors: Marrin De Vries, Jr., Donald L. Bareman, Mervin Dirkse, Niels Alfred Olesen, James M. Beebe
  • Patent number: 5938807
    Abstract: In press molding, a shaft (metal mold 13) is moved by positional or torque control to cause upper and lower molds to reach a set position slightly before a position where the upper and lower molds are set in a final mold closed state. As soon as the upper and lower molds reaches the set position, the control is switched to torque control using a small force which does not deform a glass material to perform feedback control. For this reason, when the cooling process is started, the mobile shaft is moved by the same amount as a contraction amount of the shaft, the actual position of the shaft is moved. However, a tight contact state between the molds and the glass material is kept without changing the thickness of the glass material, and positional control and torque control can be apparently performed at once. Thereafter, when temperature reaches an almost glass transition point, final pressing is performed.
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: August 17, 1999
    Assignee: Toshiba Machine Co., Ltd.
    Inventors: Yoshizo Komiyama, Tetsuya Tanioka, Toshihisa Kamano, Hirotaka Masaki