Abstract: Processes and systems for producing glass fibers having regions devoid of glass using submerged combustion melters, including feeding a vitrifiable feed material into a feed inlet of a melting zone of a melter vessel, and heating the vitrifiable material with at least one burner directing combustion products of an oxidant and a first fuel into the melting zone under a level of the molten material in the zone. One or more of the burners is configured to impart heat and turbulence to the molten material, producing a turbulent molten material comprising a plurality of bubbles suspended in the molten material, the bubbles comprising at least some of the combustion products, and optionally other gas species introduced by the burners. The molten material and bubbles are drawn through a bushing fluidly connected to a forehearth to produce a glass fiber comprising a plurality of interior regions substantially devoid of glass.
Type:
Grant
Filed:
July 3, 2012
Date of Patent:
May 19, 2015
Assignee:
Johns Manville
Inventors:
Mark William Charbonneau, Kevin Patrick McHugh
Abstract: A glass-melting device for producing glass fibers capable effectively reducing inclusion of bubbles into glass fibers to be spun, and a method for producing glass fibers using the same are provided. A glass-melting device 100 for producing glass fibers comprises: a first glass-melting tank 12; a conduit 14 extending downward from the first glass-melting tank 12; a sucking device 18 for exposing the first glass-melting tank 12 to a reduced-pressure atmosphere; a second glass-melting tank 20 provided on a lower portion of the conduit 14 and exposed to an atmospheric-pressure atmosphere; and a bushing 22 provided at a bottom portion of the second glass-melting tank 20 and equipped with a number of nozzles 22a.
Abstract: The present invention relates to a control system, method and computer program product to control a process having a large dead time. An exemplary process controllable by embodiments according to the invention is the glass manufacturing process, where fuzzy logic is used to control a level of molten and melting raw materials in a furnace during a glass-manufacturing process by controlling the rate at which raw materials enter the furnace.
Abstract: The invention relates to a process for manufacturing a glass by melting, at more than 1300° C., batch materials comprising silica and an alkali or alkaline-earth metal sulfate, characterized in that a sulfide is added to the batch materials in order to reduce the height of foam at the surface of the bath of liquid glass at more than 1300° C. The invention reduces the formation of foam at the surface of the glass and improves the heat exchanges between the overhead burners and the glass bath. The invention is particularly suitable for glass intended to be fiberized.
Type:
Application
Filed:
September 3, 2007
Publication date:
November 12, 2009
Applicant:
SAINT-GOBAIN TECHNICAL FABRICS EUROPE
Inventors:
Philippe Pedeboscq, Remi Jacques, Anne Berthereau
Abstract: An assessing mark of microlens array fabricated in a scribe line region includes two vertical line patterns arranged substantially in parallel with each other, and a horizontal line pattern connecting the vertical line patterns. The vertical line patterns and horizontal line pattern define an inner index path. When treated by baking process, the two vertical line patterns are fluidized due to heat and partially merge together from the horizontal line pattern of the assessing mark along the inner index path.
Abstract: Method of manufacturing a multi-component glass cylindrical part comprising the operations of providing a vertical cylindrical cavity lined with porous membranes whose inside dimensions are very slightly larger than those of the glass cylindrical part and in which can slide a cylindrical pedestal, providing a seed mass of the glass on the pedestal, heating the seed mass until it melts, injecting a gas continuously into the porous membranes to form and maintain a layer of gas between the porous membranes and the molten seed mass preventing any contact between the molten seed mass and the porous membranes, feeding the molten seed mass from the top of the cavity by continuously dispensing a powder made up of the components of the glass, varying the composition of the powder as the cylindrical part is formed, so that the glass cylindrical part has a composition that varies in the longitudinal direction, and lowering the pedestal as the cylindrical part is formed.